JP3131911B2 - Method for producing thick porous carbon material - Google Patents

Method for producing thick porous carbon material

Info

Publication number
JP3131911B2
JP3131911B2 JP03237190A JP23719091A JP3131911B2 JP 3131911 B2 JP3131911 B2 JP 3131911B2 JP 03237190 A JP03237190 A JP 03237190A JP 23719091 A JP23719091 A JP 23719091A JP 3131911 B2 JP3131911 B2 JP 3131911B2
Authority
JP
Japan
Prior art keywords
sheet
semi
molding
cured
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03237190A
Other languages
Japanese (ja)
Other versions
JPH0551280A (en
Inventor
和義 灰野
嘉彦 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP03237190A priority Critical patent/JP3131911B2/en
Publication of JPH0551280A publication Critical patent/JPH0551280A/en
Application granted granted Critical
Publication of JP3131911B2 publication Critical patent/JP3131911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、良好な気孔性状と高強
度の骨格組織を備える肉厚のポーラスカーボン材を製造
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick porous carbon material having good porosity and high strength skeletal structure.

【0002】[0002]

【従来の技術】軽量で導電性、耐熱性、耐薬品性などの
特性に優れるポーラスカーボン材は、従来からフィルタ
ー材、電池用電極材、吸着材、断熱材その他の工業用部
材として広範囲の用途分野で使用されているが、中でも
工業用フィルターには前記特性に加え、高い気孔率と制
御された気孔性状を生かして多用されつつある。
2. Description of the Related Art Porous carbon materials, which are lightweight and have excellent properties such as conductivity, heat resistance and chemical resistance, have been widely used as filter materials, battery electrode materials, adsorbent materials, heat insulating materials and other industrial materials. Although they are used in the field, industrial filters are being widely used, taking advantage of the above characteristics, high porosity and controlled porosity.

【0003】従来、ポーラスカーボン材の製造技術とし
ては、粒度を揃えたコークス粉をタールピッチのような
炭化性バインダーとともに捏合したのち、粉砕、成形お
よび焼成炭化処理するプロセスが典型的な方法として知
られているが、均質かつ安定な気孔構造を付与するため
の条件設定が難しい関係で、量産性に乏しい欠点があ
る。そのうえ、得られる材質には十分な強度を付与する
ことができないため、使用中にカーボン粉の脱離が生じ
易い等の実用上の難点があった。
Conventionally, as a typical technique for producing a porous carbon material, a process of kneading coke powder having a uniform particle size with a carbonizable binder such as tar pitch, followed by pulverization, molding, and calcining carbonization is known as a typical method. However, since it is difficult to set conditions for providing a uniform and stable pore structure, there is a disadvantage that mass productivity is poor. In addition, since the obtained material cannot be given sufficient strength, there has been a practical problem such as detachment of carbon powder during use.

【0004】この点、炭素繊維をパルプおよびバインダ
ー成分とともに成形した混合シートに熱硬化性樹脂液を
含浸させたのち焼成炭化する多孔質カーボン材の製造技
術(特開昭50−25808 号公報) は、炭素繊維が補強骨格
を形成するうえ熱硬化性樹脂がガラス状カーボン組織に
転化するため、材料強度を効果的に高めることが可能と
なる。ところが、この方法においては、嵩密度、気孔
径、気孔率などの制御に難点があり、加えて高価な炭素
繊維を原料とする関係で製造原価が高騰化する問題があ
る。
[0004] In this respect, a technique for producing a porous carbon material (Japanese Patent Application Laid-Open No. 50-25808) in which a mixed sheet formed by molding carbon fibers together with pulp and a binder component is impregnated with a thermosetting resin liquid and then calcined and carbonized. Since the carbon fibers form the reinforcing skeleton and the thermosetting resin is converted into a glassy carbon structure, the material strength can be effectively increased. However, in this method, there are difficulties in controlling bulk density, pore diameter, porosity, and the like, and in addition, there is a problem that the production cost rises because expensive carbon fiber is used as a raw material.

【0005】このため、高価な炭素繊維に代えてその原
料となる有機繊維を使用し、これにパルプ、炭素質粉末
などを配合して成形したシートに有機高分子物質あるい
は炭素質粉末を懸濁させた有機高分子物質を含浸したの
ち焼成処理する方法(特開昭61−236664号公報、同61−
236665号公報) が提案されている。しかし、この方法で
は、組織内に局部的に閉塞された空隙部分が多く形成さ
れるため、均質で制御された気孔構造を得ることが困難
である。
Therefore, instead of expensive carbon fibers, organic fibers as raw materials are used, and an organic polymer substance or carbonaceous powder is suspended in a sheet formed by mixing pulp, carbonaceous powder, or the like. A method of impregnating the impregnated organic polymer substance and then performing a baking treatment (JP-A-61-236664, JP-A-61-236664)
236665). However, in this method, it is difficult to obtain a uniform and controlled pore structure because many locally closed voids are formed in the tissue.

【0006】本発明者らは、先に良好な気孔性状と高い
骨格強度を兼備するポーラスカーボン材を得るための製
造技術として、α−セルロースを主成分とする熱揮散性
物質を抄紙してシート化する工程と、シートに残炭率40
%以上の熱硬化性樹脂溶液を含浸する工程と、含浸処理
後のシートを50〜150 ℃の温度で半硬化する工程と、半
硬化シートを積層して全面を均一加熱しながらシート厚
さが70〜20%になるように圧縮する工程と、圧縮シート
を非酸化性雰囲気下で800 ℃以上の温度により焼成炭化
する工程からなる方法を開発した(特願平1−321729
号) 。
[0006] The inventors of the present invention have previously proposed a production technique for obtaining a porous carbon material having both good porosity and high skeletal strength by making a heat-volatile substance containing α-cellulose as a main component. Process and the residual carbon ratio of 40 in the sheet
% Of the thermosetting resin solution, a step of semi-curing the impregnated sheet at a temperature of 50 to 150 ° C., a step of laminating the semi-cured sheets and uniformly heating the entire surface to reduce the sheet thickness. A method has been developed which comprises a step of compressing to 70 to 20% and a step of calcining and carbonizing the compressed sheet at a temperature of 800 ° C. or more in a non-oxidizing atmosphere (Japanese Patent Application No. 1-321729).
No.)

【0007】[0007]

【発明が解決しようとする課題】上記の先願技術によれ
ば、目的に沿った良性状のポーラスカーボン材を得るこ
とができるが、圧縮工程で多量の半硬化シートを積層し
て加熱成形しようとすると圧縮された積層シートの中心
部分まで加熱が行き届かず、成形に困難性を伴うプロセ
ス上の難点があった。このため、厚さが50mmを越えるよ
うな肉厚のポーラスカーボン材を円滑に製造することが
できなかった。
According to the above prior art, a good quality porous carbon material can be obtained in accordance with the purpose. In this case, the heating did not reach the central portion of the compressed laminated sheet, and there was a problem in the process that involved difficulty in molding. For this reason, a porous carbon material having a thickness exceeding 50 mm could not be produced smoothly.

【0008】本発明の目的は、先行技術における上記の
問題点を解消し、良好な気孔性状と組織強度に加え、近
時の工業用フィルター材に要求される肉厚形状のポーラ
スカーボン材を効率よく製造するための方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art and, in addition to having good porosity and structure strength, to efficiently use a thick porous carbon material required in recent industrial filter materials. It is to provide a method for good manufacturing.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による肉厚ポーラスカーボン材の製造方法
は、α−セルロースを主成分とする有機質物60〜90重量
部と水溶性抄紙バインダー10〜40重量部を水に分散させ
て抄紙するシート成形工程、成形シートを残炭率40%以
上の熱硬化性樹脂溶液に浸漬処理したのち半硬化し、該
半硬化シートの所要枚数を加熱圧縮下に積層成形する一
次成形工程、複数枚の一次成形体を前記工程と同一の半
硬化シートを接合面に介在させて加熱圧縮下に積層成形
する二次成形工程、得られた二次成形体を非酸化性雰囲
気下で800 ℃以上の温度により焼成炭化する炭素化工程
となからなることを構成上の特徴とする。
In order to achieve the above object, a method for producing a thick porous carbon material according to the present invention comprises the steps of: providing 60 to 90 parts by weight of an organic substance containing α-cellulose as a main component; Sheet forming step of dispersing 10 to 40 parts by weight in water to make paper, immersing the formed sheet in a thermosetting resin solution with a residual carbon ratio of 40% or more, semi-curing, and heating the required number of semi-cured sheets A primary molding step of laminating under compression, a secondary molding step of laminating a plurality of primary molded bodies under heat compression with the same semi-cured sheet interposed on the joining surface as in the above step, and the obtained secondary molding It is characterized in that it comprises a carbonization step in which the body is calcined and carbonized at a temperature of 800 ° C. or more in a non-oxidizing atmosphere.

【0010】以下に各工程を詳細に説明する。 (1) シート成形工程 本発明の主要原料となるα−セルロースを主成分とする
有機質物は抄紙時にシートのフィラー成分となるもの
で、通常の木材パルプのほか、α−セルロース分90%を
含むレーヨンパルプを用いることができる。パルプ性状
としては、抄紙成形性および高気孔構造を確保する面か
ら太さ3〜10デニール、長さ5〜10mm範囲にある繊維形
状を有するものを選択することが好ましい。水溶性抄紙
バインダーは抄紙工程でシート成形の結合材として機能
する成分で、例えばアカマツ、エゾマツ、トドマツ、カ
ラマツ、モミ、ツガ等の針葉樹系パルプ類が好適に使用
される。
Hereinafter, each step will be described in detail. (1) Sheet Forming Step The organic material mainly composed of α-cellulose as a main raw material of the present invention becomes a filler component of a sheet during papermaking, and contains 90% of α-cellulose content in addition to ordinary wood pulp. Rayon pulp can be used. As the pulp properties, it is preferable to select a pulp having a fiber shape having a thickness of 3 to 10 deniers and a length of 5 to 10 mm from the viewpoint of ensuring paper formability and high pore structure. The water-soluble papermaking binder is a component that functions as a binder for sheet formation in the papermaking process. For example, softwood pulp such as red pine, spruce pine, fir pine, larch, fir, hemlock and the like are suitably used.

【0011】原料物質の配合比率は、α−セルロースを
主成分とする有機質物を60〜90重量部、水溶性抄紙バイ
ンダーを10〜40重量部の範囲に設定する。有機質物に対
する水溶性抄紙バインダーの配合量が前記の範囲を下廻
ると抄紙成形性が悪化し、逆に範囲を越えると多孔質組
織の形成を阻害する結果を与える。
The mixing ratio of the raw materials is set in the range of 60 to 90 parts by weight of the organic substance mainly composed of α-cellulose and 10 to 40 parts by weight of the water-soluble paper binder. If the amount of the water-soluble paper binder with respect to the organic substance falls below the above range, the papermaking moldability deteriorates, and if it exceeds the range, the formation of a porous structure is inhibited.

【0012】本発明のシート成形工程は、上記の二成分
系原料物質を混合して水に分散させたのち、長網式、丸
網式など適宜な抄紙化装置を用いてシート状に抄紙成形
するプロセスでおこなわれる。
In the sheet forming step of the present invention, the above-mentioned two-component raw materials are mixed and dispersed in water, and then formed into a sheet by using an appropriate papermaking apparatus such as a long net type or a round net type. The process is performed.

【0013】(2) 一次成形工程 ついで、成形シートを残炭率40%以上の熱硬化性樹脂溶
液に浸漬処理する。熱硬化性樹脂の残炭率とは、樹脂を
非酸化性雰囲気下で 800℃の温度で焼成したときに残留
する炭素分の重量%を指し、これが40%未満の場合には
得られるポーラスカーボン材の強度を実用水準まで向上
させることが困難となる。40%以上の残炭率をもつ熱硬
化性樹脂としては、フェノール系樹脂、フラン系樹脂、
ポリイミド樹脂などを挙げることができ、いずれも焼成
炭化後にガラス状カーボン組織に転化して組織の骨格強
度を高める機能を果たす。熱硬化性樹脂の溶液化に用い
られる有機溶媒は樹脂の種類に応じて選定されるが、通
常はメタノール、エタノール、アセトン、メチルエチル
ケトンのような低粘度で浸透性が高く、容易に熱揮散す
る性質の溶媒類が適用される。溶液の樹脂濃度は、5重
量%未満であると強度特性が減退し、40重量%を越すと
粘度が増大して含浸性が損なわれるうえ、気孔の閉塞を
生じて気孔率および気孔径の調整することが困難とな
る。したがって、5〜40重量%範囲の樹脂濃度に設定す
ることが望ましい。
(2) Primary forming step Next, the formed sheet is immersed in a thermosetting resin solution having a residual carbon ratio of 40% or more. The residual carbon ratio of thermosetting resin refers to the weight percent of carbon remaining when the resin is fired at a temperature of 800 ° C in a non-oxidizing atmosphere. If this is less than 40%, the resulting porous carbon It becomes difficult to improve the strength of the material to a practical level. Thermosetting resins with a residual carbon ratio of 40% or more include phenolic resins, furan resins,
A polyimide resin or the like can be used, and all of them have a function of being converted into a glassy carbon structure after firing and carbonizing to increase the skeletal strength of the structure. The organic solvent used for the solution of the thermosetting resin is selected according to the type of the resin, but usually has a low viscosity such as methanol, ethanol, acetone, and methyl ethyl ketone, has high permeability, and easily evaporates. Are applied. If the resin concentration of the solution is less than 5% by weight, the strength properties decrease, and if the resin concentration exceeds 40% by weight, the viscosity increases and impregnation property is impaired, and pores are clogged to adjust porosity and pore diameter. It will be difficult to do. Therefore, it is desirable to set the resin concentration in the range of 5 to 40% by weight.

【0014】浸漬処理後のシートは、50〜150 ℃の温度
に保持された乾燥器を通して水分等の未反応物や反応生
成物を有機溶媒成分と共に揮散除去し、同時にシートに
担持された樹脂成分を半硬化する。引き続き半硬化シー
トの所要枚数を積層し、全面を均一に加熱しながら積層
成形する。積層枚数は余り多くすると中心部まで加熱さ
れなくなって温度差に基づく硬化むらが発生し易くな
り、一次成形体の反り、焼成炭化時の膨れや割れ等の原
因となる。好適な積層条件は、一次成形体としての厚さ
が40mm以内になるように半硬化シートの積層枚数を調整
することである。積層成形の操作は、平面加熱盤を介し
て油圧プレス、空圧プレスにより熱圧する方法を採るこ
とが工業的に有利である。成形時の温度は樹脂の性状に
よって若干の差異はあるが、概ね80〜200 ℃の範囲で円
滑に成形され、同時に樹脂が硬化する。なお、この成形
段階では半硬化シートの厚さが圧縮前に比べて70〜20%
の圧縮率になるような圧縮条件を付与することが望まし
い。圧縮率が70%を上廻る程度の低圧縮率では実用的な
強度性能が得られ難くなり、他方20%を下廻るような高
い圧縮率を適用すると組織が緻密化して気孔率が低減化
する。
The sheet after the immersion treatment is passed through a drier maintained at a temperature of 50 to 150 ° C. to volatilize and remove unreacted substances such as moisture and reaction products together with an organic solvent component, and at the same time, a resin component supported on the sheet. Is semi-cured. Subsequently, a required number of semi-cured sheets are laminated, and lamination molding is performed while uniformly heating the entire surface. If the number of laminations is too large, heating is not performed up to the center, and uneven curing due to a temperature difference is likely to occur, which causes warpage of the primary molded body, swelling and cracking during firing and carbonization, and the like. Suitable lamination conditions are to adjust the number of laminated semi-cured sheets so that the thickness as a primary molded body is within 40 mm. It is industrially advantageous for the lamination molding operation to employ a method of hot pressing with a hydraulic press or a pneumatic press via a flat heating plate. The temperature at the time of molding is slightly different depending on the properties of the resin, but the molding is carried out smoothly within a range of about 80 to 200 ° C., and at the same time, the resin is cured. In this molding stage, the thickness of the semi-cured sheet is 70-20% of that before compression.
It is desirable to provide a compression condition such that the compression ratio becomes as follows. Practical strength performance is difficult to obtain with a low compression ratio of about 70% or less, while a high compression rate of less than 20% results in a denser structure and reduced porosity. .

【0015】(3) 二次成形工程 次に、複数枚の一次成形体間に上記一次成形工程で用い
たと同一の半硬化シートを介在させた状態で加熱圧縮下
に積層成形する。この工程における半硬化シートは、積
層する各一次成形体を接合するための層部材として機能
する。積層成形の操作は概ね一次成形工程に準じておこ
なわれるが、介在する半硬化シートの圧縮率が一次成形
工程における圧縮率より大きくなると接合層部分の組織
密度が高くなって材質組織が不均一となり、逆に一次成
形工程の圧縮率より極端に小さくすると接合力の不足に
より、使用時または加工時に界面剥離や破損などの現象
が発生するようになる。したがって、この段階における
半硬化シートの圧縮は、一次成形工程時の圧縮率に対し
80〜100 %になる範囲で設定することが好ましい条件と
なる。
(3) Secondary Forming Step Next, laminate molding is performed under heating and compression with the same semi-cured sheet used in the primary forming step interposed between a plurality of primary molded bodies. The semi-cured sheet in this step functions as a layer member for joining the primary molded bodies to be laminated. The lamination molding operation is generally performed in accordance with the primary molding process.However, if the compression ratio of the interposed semi-cured sheet becomes larger than the compression ratio in the primary molding process, the structure density of the joining layer portion increases and the material structure becomes uneven. Conversely, if the compression ratio is extremely smaller than the compression ratio in the primary molding step, phenomena such as interface peeling and breakage will occur during use or processing due to insufficient bonding force. Therefore, the compression of the semi-cured sheet at this stage is less than the compression ratio during the primary molding process.
It is preferable to set the value in the range of 80 to 100%.

【0016】(4) 炭素化工程 得られた二次成形体は、例えば窒素、アルゴン、二酸化
炭素などの非酸化性雰囲気に保持された焼成炉に移し、
800 ℃以上の温度により焼成する。この段階で、熱揮散
成分は揮散され、同時に熱硬化性樹脂成分は炭化されて
ガラス状カーボンに転化する。なお、該炭素化工程は、
二次成形体を平滑表面を有する黒鉛板で挟み込み、適宜
な重量を与えて加圧状態に保持しながらおこなうと反り
などの熱変形の発生を防止することができる。加える加
圧加重は処理すべき二次成形体の厚みにより若干の差異
はあるが、15〜50g/cm2 の範囲に設定することが好適で
ある。15g/cm2 を下廻ると加重の効果が発揮されず、50
g/cm2 を越えると組織のつぶれによる気孔率の減退を招
く。
(4) Carbonization step The obtained secondary compact is transferred to a firing furnace maintained in a non-oxidizing atmosphere such as nitrogen, argon, carbon dioxide, etc.
Bake at a temperature of 800 ° C or higher. At this stage, the heat volatilization component is volatilized, and at the same time, the thermosetting resin component is carbonized and converted into glassy carbon. In addition, the carbonization step includes:
When the secondary molded body is sandwiched between graphite plates having a smooth surface and given an appropriate weight while being held in a pressurized state, the occurrence of thermal deformation such as warpage can be prevented. The applied pressure is slightly different depending on the thickness of the secondary molded article to be treated, but is preferably set in the range of 15 to 50 g / cm 2 . If it is less than 15 g / cm 2 , the effect of weight will not be exhibited, and 50
If it exceeds g / cm 2 , the porosity decreases due to the collapse of the tissue.

【0017】[0017]

【作用】本発明によれば、まずシート成形工程で得られ
た成形シートを、一次成形工程において含浸樹脂成分が
半硬化した段階で積層熱圧し、一定厚さの板状成形体に
成形する。この一次成形工程で積層される半硬化シート
の枚数は、成形時に中心部まで十分に加熱効果が及ぶ範
囲で適宜に調整することができるから、成形は常に円滑
に進行し、均一組織の一次成形体として形成される。一
次成形体は、引き続く二次成形工程で同一組成の半硬化
シートを介在させて複数枚を積層熱圧し、接合層を介し
て炭素化後に所望の肉厚になるような厚さの二次成形体
を得る。これら一次成形および二次成形工程を通じて、
肉厚で同質組織の成形前駆体が形成される。
According to the present invention, first, the molded sheet obtained in the sheet molding step is laminated and hot-pressed at the stage where the impregnated resin component is semi-cured in the primary molding step, and is molded into a plate-like molded body having a constant thickness. The number of semi-cured sheets to be laminated in this primary molding step can be appropriately adjusted within a range in which the heating effect sufficiently reaches the central part during molding, so that molding always proceeds smoothly and primary molding of a uniform structure Formed as a body. In the subsequent secondary molding step, a plurality of sheets are laminated and hot-pressed with a semi-cured sheet of the same composition interposed in the subsequent secondary molding step, and the secondary molding is formed to a desired thickness after carbonization via the bonding layer. Get the body. Through these primary molding and secondary molding processes,
A thick and homogeneous structure forming precursor is formed.

【0018】炭素化工程では、二次成形体中のα−セル
ロースを主成分とする有機質物が大部分熱揮散して気孔
形成に寄与し、同時にその一部は炭化残留して組織骨格
を形成する。また、シートに含浸された熱硬化性樹脂は
炭化してガラス状カーボンに転化し、前記の組織骨格に
固着して組織強度を増強する機能を果たす。この際、一
次成形体とこれを接合する層は同一組成のシートである
から、炭素化後では全体として均一かつ一体組織のポー
ラスカーボン材質となる。
In the carbonization step, the organic matter containing α-cellulose as a main component in the secondary molded product is mostly volatilized by heat and contributes to the formation of pores, and at the same time, a part thereof remains carbonized to form a tissue skeleton. I do. In addition, the thermosetting resin impregnated in the sheet is carbonized and converted into glassy carbon, and adheres to the above-mentioned tissue skeleton to fulfill the function of enhancing the tissue strength. At this time, since the primary molded body and the layer for joining the primary molded body are sheets having the same composition, the carbonized material is a porous carbon material having a uniform uniform structure as a whole after carbonization.

【0019】このような一連の作用によって均一微細な
多孔質性状でありながら組織強度が高く、かつ50mmを越
える肉厚形状のポーラスカーボン材を効率よく製造する
ことが可能となる。
By such a series of actions, it is possible to efficiently produce a porous carbon material having a thickness of more than 50 mm while having a high tissue strength while having a uniform and fine porous property.

【0020】[0020]

【実施例】【Example】

実施例1〜7 (1) シート成形工程 太さ5デニール、長さ25mmのレーヨンパルプ〔大和紡績
(株)製〕80重量部、晒し針葉樹パルプ(NBKP)20重量部
を水中で撹拌混合して均一に分散させたのち、長網式抄
紙装置を用いて抄紙成形し、乾燥して縦横200mm 、厚さ
0.21mm、平均気孔径 100μm のシートを形成した。
Examples 1 to 7 (1) Sheet forming process 80 parts by weight of rayon pulp (manufactured by Daiwa Spinning Co., Ltd.) having a thickness of 5 denier and a length of 25 mm, and 20 parts by weight of bleached softwood pulp (NBKP) were stirred and mixed in water. After being uniformly dispersed, the paper is formed using a fourdrinier paper machine, dried, and dried to 200 mm length and width.
A sheet having 0.21 mm and an average pore diameter of 100 μm was formed.

【0021】(2) 一次成形工程 成形シートを残炭率45%のフェノール樹脂〔住友デュレ
ズ(株)製“スミライトレジンPR940 ”〕をアセトンに
溶解した濃度20重量%の溶液に十分浸漬し、引き続き 1
00℃に保持された乾燥器に入れて含浸樹脂成分を半硬化
させた。ついで、半硬化状態のシートを積層し、120 ℃
に温調された均熱盤上に置いて上部から圧縮して一次成
形体(平面板)に成形した。この場合、圧縮率が40〜65
%の範囲で変動するように圧縮条件を設定した。
(2) Primary molding step The molded sheet is sufficiently immersed in a 20% by weight solution of a phenolic resin ("Sumilite Resin PR940" manufactured by Sumitomo Durez Co., Ltd.) having a residual carbon ratio of 45% dissolved in acetone. Continue 1
The impregnated resin component was semi-cured in a dryer maintained at 00 ° C. Then, the sheets in the semi-cured state are laminated, and
Was placed on a temperature-controlled soaking plate and compressed from above to form a primary molded body (flat plate). In this case, the compression ratio is 40-65
The compression conditions were set so as to vary in the range of%.

【0022】(3) 二次成形工程 一次成形体の複数枚を120 ℃の温度に加熱し、各界面間
に一次成形工程で使用した半硬化シートを介在させて積
層し、半硬化シートの圧縮率を変えた他は一次成形工程
と同一の条件により二次成形体(肉厚平面板)を成形し
た。
(3) Secondary molding step A plurality of primary molded articles are heated to a temperature of 120 ° C., laminated with the semi-cured sheet used in the primary molding step interposed between the interfaces, and compressed. A secondary formed body (thick flat plate) was formed under the same conditions as in the primary forming step except that the ratio was changed.

【0023】(4) 炭素化工程 得られた二次成形体は、平滑表面を有する黒鉛板に挟み
込んで一定の加重を加えた状態で電気焼成炉に詰め、周
囲をコークスパッキングで被包した非酸化雰囲気下で10
00℃の温度により焼成炭化処理を施した。
(4) Carbonization Step The obtained secondary molded body is sandwiched between graphite plates having a smooth surface and packed in an electric firing furnace under a certain load, and the periphery is covered with coke packing. 10 under oxidizing atmosphere
A calcined carbonization treatment was performed at a temperature of 00 ° C.

【0024】このようにして製造された各ポーラスカー
ボン材につき各種の特性を測定し、その結果を製造時の
変動条件と対比させて表1に示した。なお、各種特性の
うち平均気孔径および気孔率は水銀圧入法により、また
嵩密度はJIS R7222、固有抵抗はJIS R7
202、曲げ強さはJIS K6911によってそれぞ
れ測定した。組織観察は目視および走査型電子顕微鏡観
察によった。
Various characteristics were measured for each of the porous carbon materials manufactured as described above, and the results are shown in Table 1 in comparison with the fluctuation conditions at the time of manufacturing. Among various properties, the average pore diameter and porosity are determined by a mercury intrusion method, the bulk density is JIS R7222, and the specific resistance is JIS R7.
202, the bending strength was measured according to JIS K6911, respectively. The structure was observed visually and by scanning electron microscope.

【0025】[0025]

【表1】 [Table 1]

【0026】表1の結果から、各例のポーラスカーボン
材ともに50mmを越える肉厚でありながら良好な気孔性状
および組織強度を示した。しかし、一次成形工程時の半
硬化シート積層枚数が極端に多い実施例5では曲げ強度
が減退して組織に反りや膨れ現象が生じ、二次成形工程
でのシート成形圧縮率が一次成形工程より大きい実施例
6では接合層部分の密度が高くなって材質の均質性が低
下し、また炭素化工程時に適用する加圧加重が15g/cm2
未満の実施例7では強度の低下と組織の反りが認められ
た。
From the results shown in Table 1, each of the porous carbon materials of each example exhibited good pore properties and structural strength despite having a thickness exceeding 50 mm. However, in Example 5 in which the number of laminated semi-cured sheets during the primary forming step was extremely large, the bending strength was reduced, and the structure was warped or swelled, and the sheet forming compression ratio in the secondary forming step was lower than that in the primary forming step. In the large embodiment 6, the density of the bonding layer portion is increased, the homogeneity of the material is reduced, and the pressure applied during the carbonization process is 15 g / cm 2.
In Example 7 below, a decrease in strength and warpage of the structure were observed.

【0027】[0027]

【発明の効果】以上のとおり、本発明によれば優れた気
孔性状と組織強度を備え、かつ50mmを越える肉厚形状の
ポーラスカーボン材を効率よく製造することができる。
したがって、工業用フィルター材をはじめ大型形状の吸
着材、断熱材等の用途に極めて有用である。
As described above, according to the present invention, it is possible to efficiently produce a porous carbon material having excellent porosity and tissue strength and having a thickness exceeding 50 mm.
Therefore, it is extremely useful for applications such as industrial filter materials, large-sized adsorbents, and heat insulating materials.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 α−セルロースを主成分とする有機質物
60〜90重量部と水溶性抄紙バインダー10〜40重量部を水
に分散させて抄紙するシート成形工程、成形シートを残
炭率40%以上の熱硬化性樹脂溶液に浸漬処理したのち半
硬化し、該半硬化シートの所要枚数を加熱圧縮下に積層
成形する一次成形工程、複数枚の一次成形体を前記工程
と同一の半硬化シートを接合面に介在させて加熱圧縮下
に積層成形する二次成形工程、得られた二次成形体を非
酸化性雰囲気下で 800℃以上の温度により焼成炭化する
炭素化工程とからなることを特徴とする肉厚ポーラスカ
ーボン材の製造方法。
An organic substance containing α-cellulose as a main component.
A sheet forming process in which 60 to 90 parts by weight and a water-soluble papermaking binder are dispersed in water to form a paper by dispersing 10 to 40 parts by weight in water. The molded sheet is half-cured after being immersed in a thermosetting resin solution having a residual carbon ratio of 40% or more. A primary molding step of laminating and molding the required number of the semi-cured sheets under heat compression; and a laminating and molding of a plurality of primary molded bodies under heat compression with the same semi-cured sheet interposed in the bonding surface as in the above step. A method for producing a thick porous carbon material, comprising: a next forming step; and a carbonization step of firing and carbonizing the obtained secondary formed body at a temperature of 800 ° C. or more in a non-oxidizing atmosphere.
【請求項2】 一次成形工程を半硬化シートの圧縮率が
70〜20%になる条件でおこない、二次成形工程を半硬化
シートの圧縮率が前記一次成形工程の圧縮率に対し80〜
100 %になる条件でおこない、炭素化工程を15〜50g/cm
2 の加圧加重をかけながらおこなう請求項1記載の肉厚
ポーラスカーボン材の製造方法。
2. The compression ratio of the semi-cured sheet in the primary molding step is reduced.
Performed under the condition of 70 to 20%, and the compression ratio of the semi-cured sheet in the secondary molding process is 80 to 80% of the compression ratio of the primary molding process.
100%, carbonization process 15 ~ 50g / cm
2. The method for producing a thick porous carbon material according to claim 1, wherein the method is performed while applying a pressure load of 2 .
JP03237190A 1991-08-22 1991-08-22 Method for producing thick porous carbon material Expired - Fee Related JP3131911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03237190A JP3131911B2 (en) 1991-08-22 1991-08-22 Method for producing thick porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03237190A JP3131911B2 (en) 1991-08-22 1991-08-22 Method for producing thick porous carbon material

Publications (2)

Publication Number Publication Date
JPH0551280A JPH0551280A (en) 1993-03-02
JP3131911B2 true JP3131911B2 (en) 2001-02-05

Family

ID=17011709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03237190A Expired - Fee Related JP3131911B2 (en) 1991-08-22 1991-08-22 Method for producing thick porous carbon material

Country Status (1)

Country Link
JP (1) JP3131911B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151863B2 (en) 2019-02-25 2022-10-12 村田機械株式会社 Running car and running car system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151863B2 (en) 2019-02-25 2022-10-12 村田機械株式会社 Running car and running car system

Also Published As

Publication number Publication date
JPH0551280A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
CA2347432C (en) Porous carbon electrode substrate and its production method and carbon fiber paper
US4434206A (en) Shaped articles of porous carbon fibers
US4080413A (en) Porous carbon fuel cell substrates and method of manufacture
JPH03150266A (en) Production of carbon/carbon composite material
JP3131911B2 (en) Method for producing thick porous carbon material
JPH0559867B2 (en)
JP3739819B2 (en) Method for producing porous carbon material
JPH0211546B2 (en)
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JP2607397B2 (en) Method for producing porous glassy carbon material
JPH03183672A (en) Production of porous carbon material
JPS62270331A (en) Carbon fiber sheet-shaped article
JPH0360478A (en) Production of porous carbon sheet
JP3166983B2 (en) Method for producing tubular porous glassy carbon body
JPH06206780A (en) Production of active porous carbonaceous structure
JPH052625B2 (en)
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JP3183681B2 (en) Method for producing highly conductive porous carbon material
JPH04182307A (en) Production of vetreous carbon material
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JPH0624865A (en) Production of porous active carbon molding
JPH01320279A (en) Production of porous carbonaceous material
JPH0248466A (en) Production of thin sheetlike carbon material
CA2485232C (en) Porous carbon electrode substrate
JPH02199010A (en) Production of thin sheetlike carbon material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees