JPH0248466A - Production of thin sheetlike carbon material - Google Patents

Production of thin sheetlike carbon material

Info

Publication number
JPH0248466A
JPH0248466A JP63197778A JP19777888A JPH0248466A JP H0248466 A JPH0248466 A JP H0248466A JP 63197778 A JP63197778 A JP 63197778A JP 19777888 A JP19777888 A JP 19777888A JP H0248466 A JPH0248466 A JP H0248466A
Authority
JP
Japan
Prior art keywords
prepreg
carbon black
carbon material
sheets
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63197778A
Other languages
Japanese (ja)
Inventor
Koji Kamata
鎌田 浩治
Shigeru Takano
茂 高野
Tsuneo Kaneshiro
庸夫 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63197778A priority Critical patent/JPH0248466A/en
Publication of JPH0248466A publication Critical patent/JPH0248466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a thin sheetlike carbon material especially useful as phosphoric acid type fuel cell separators by impregnating a cellulosic substrate with a specific electrically conductive varnish to form sheets of prepreg, laminating and molding the resultant sheets of prepreg and calcining the molded prepreg. CONSTITUTION:Sheets of cellulosic paper or cellulose film as a substrate are impregnated with a varnish containing a thermosetting resin as a matrix and carbon black having high electric conductivity as a filler mixed and kneaded therewith to form sheets of prepreg having a homogeneous composition even to the interior thereof. The resultant sheets of prepreg are then laminated, molded and calcined. Carbon black prepared by graphitizing at >=2000 deg.C temperature is preferably used to further improve characteristics. The carbon black is preferably blended in an amount of 2-50wt.% based on the thermosetting resin.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、薄板状炭素材料の製造法に関し、特にリン酸
型燃料電池セパレータ用炭素材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a thin plate-like carbon material, and particularly to a method for manufacturing a carbon material for a phosphoric acid fuel cell separator.

〈従来の技術〉 一般に、リン酸型燃料電池は、例えばリン酸を保持した
電解質層と、その両側に配置され白金触媒を担持した多
孔質の電極基板と、前記電極基板の各外面に形成されて
いる流通溝を覆って設けられたセパレータとで構成され
ている単位セルを、前記セパレータを介して積層したも
のである。
<Prior Art> In general, a phosphoric acid fuel cell includes an electrolyte layer holding, for example, phosphoric acid, a porous electrode substrate disposed on both sides of the electrolyte layer and supporting a platinum catalyst, and an electrolyte layer formed on each outer surface of the electrode substrate. A separator is provided to cover a flow groove, and unit cells are stacked with the separator interposed therebetween.

かかるセパレータの上下面には、燃料ガスと酸素ガスが
それぞれ流されるので、前記セパレータは燃料ガスと酸
素ガスを分離するための境界としての機能と単位セル間
の接続体としての機能を必要とするため、その材料には
、ガス不透過性、電気伝導性、機械的強度および作動温
度における耐リン酸性等について優れた特性を有するこ
とが要求され、通常、炭素材料が使用されている。
Since fuel gas and oxygen gas flow through the upper and lower surfaces of such a separator, the separator needs to function as a boundary for separating fuel gas and oxygen gas and as a connector between unit cells. Therefore, the material is required to have excellent properties such as gas impermeability, electrical conductivity, mechanical strength, and resistance to phosphoric acid at operating temperatures, and carbon materials are usually used.

従来、前記炭素材料の製造方法としては、黒鉛微粉に熱
硬化性樹脂を加え混錬したペーストをロール成形により
成形し、硬化させたのち、加熱炭素化処理する方法が、
例えば特開昭59−26907号公報に開示されている
Conventionally, methods for producing the carbon material include forming a paste by adding and kneading a thermosetting resin to fine graphite powder by roll forming, curing it, and then subjecting it to heating carbonization treatment.
For example, it is disclosed in Japanese Unexamined Patent Publication No. 59-26907.

また、前記炭素材の製造方法として、熱硬化性樹脂を含
浸し、かつ黒鉛粉末または炭素繊維を含むセルロース質
の紙を積層圧着し、硬化、焼成する方法が、例えば特開
昭60−161144号公報に開示されている。
Further, as a method for manufacturing the carbon material, a method of laminating and pressing cellulose paper impregnated with a thermosetting resin and containing graphite powder or carbon fiber, hardening and firing is disclosed, for example, in JP-A No. 60-161144. Disclosed in the official gazette.

〈発明が解決しようとする課題〉 特開昭59−28907号公報に開示された方法によれ
ば、電気特性の優れた炭素材が得られるが、板厚の薄い
ものを作るには困難であるという問題点があった。
<Problems to be Solved by the Invention> According to the method disclosed in JP-A-59-28907, a carbon material with excellent electrical properties can be obtained, but it is difficult to produce a thin plate. There was a problem.

前記特開昭60−161144号公報に開示された方法
では、基材表面に炭素繊維、黒鉛粉末等の炭素フィラー
が完全に含浸されないまま付着し、基材内部との組成が
異なり、最終的に熱硬化性樹脂、セルロース質紙よりな
るガラス状カーボンリッチな層と炭素フィラーリッチな
層が板厚方向に交互に介在する炭素材料になってしまい
、板厚方向の導電性が低下してしまうという問題点があ
る。
In the method disclosed in JP-A-60-161144, carbon fillers such as carbon fibers and graphite powder adhere to the surface of the base material without being completely impregnated, and the composition differs from the inside of the base material, resulting in The result is a carbon material in which glassy carbon-rich layers made of thermosetting resin and cellulose paper and carbon filler-rich layers are interposed alternately in the thickness direction, resulting in a decrease in electrical conductivity in the thickness direction. There is a problem.

本発明は、高導電性を有するカーボンブラックを配合し
たワニスを含浸することにより電気特性に優れた薄板状
炭素材料が得られる薄板状炭素材料の製造法を提供する
ことを目的としている。
An object of the present invention is to provide a method for producing a thin plate-like carbon material, in which a thin-plate carbon material with excellent electrical properties can be obtained by impregnating the material with a varnish containing highly conductive carbon black.

〈課題を解決するための手段〉 上記目的を達成するために、本発明によればセルロース
質紙またはセルロースフィルムを基材として、これにマ
トリクスヒして熱硬化性樹脂、フィラーとして高導電性
を有するカーボンブラックを混合混錬したワニスを含浸
して内部まで均一な組成を有するプリプレグを得、この
プリプレグを積層成形し、焼成処理を施すことにより得
られる薄板状炭素材料の製造法が提供される。
<Means for Solving the Problems> In order to achieve the above object, according to the present invention, a cellulose paper or a cellulose film is used as a base material, and a thermosetting resin and a highly conductive filler are added to the base material by applying a matrix thereto. Provided is a method for producing a thin plate-like carbon material obtained by impregnating a varnish mixed and kneaded with carbon black containing carbon black to obtain a prepreg having a uniform composition throughout the interior, layer-molding the prepreg, and subjecting the prepreg to a firing treatment. .

前記カーボンブラックは、黒鉛化していないものも使用
できるが、2000℃以上の温度で黒鉛化処理したもの
を使用すれば、さらに特性が向上し、好ましい。
Although it is possible to use carbon black that is not graphitized, it is preferable to use carbon black that has been graphitized at a temperature of 2000° C. or higher because the properties are further improved.

また、前記熱硬化性樹脂に対するカーボンブラックの混
合割合が、熱硬化性樹脂に対し、2〜50wt%である
のが好ましい。
Moreover, it is preferable that the mixing ratio of carbon black to the thermosetting resin is 2 to 50 wt% with respect to the thermosetting resin.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明は、まず繊維集合体またはフィルム状の基材に、
液状樹脂とフィラーを混合混錬した導電性ワニスを含浸
し、導電性のプリプレグとする。 基材に使用される繊
維集合体およびフィルムとしては、セルロース質紙、セ
ルロースフィルムのように800℃以上での焼成処理に
おいて、炭素化した形で基材内に残存する物質が使用さ
れる。
In the present invention, first, a fiber aggregate or a film-like base material,
It is impregnated with conductive varnish made by mixing and kneading liquid resin and filler to make conductive prepreg. As the fiber aggregate and film used for the base material, materials such as cellulose paper and cellulose film that remain in the base material in a carbonized form during firing treatment at 800° C. or higher are used.

セルロース質紙には、工業用ろ紙、クラフト紙のような
一般的な紙が使用可能であり、さらにフェノール積層板
等に使用されるような、含浸性の優れた紙がより好まし
い。
As the cellulose paper, general papers such as industrial filter paper and kraft paper can be used, and papers with excellent impregnation properties, such as those used for phenol laminates, are more preferable.

また、セルロースフィルムは、アセチルセルロースを加
水分解して得られる気孔径30〜100μmの多孔質フ
ィルムが好ましい。 さらには、含浸性を向上させるた
め、あらかじめアセチルセルロースにポリビニルアルコ
ール等の開孔材を混合し、フィルム成形後、前記開孔材
を溶出処理し、気孔径100〜500μmに調整した多
孔質セルロースフィルムを用いるとなお好ましい。
Moreover, the cellulose film is preferably a porous film with a pore diameter of 30 to 100 μm obtained by hydrolyzing acetyl cellulose. Furthermore, in order to improve impregnation properties, a porous cellulose film is prepared by mixing acetyl cellulose with a porous material such as polyvinyl alcohol in advance, and after film forming, the porous material is eluted and the pore diameter is adjusted to 100 to 500 μm. It is even more preferable to use

基材の厚みとしては、10〜1000μmが好ましい。The thickness of the base material is preferably 10 to 1000 μm.

  10μm未満の場合には、基材としての強度が保て
ず、また、1000μm超になると、含浸、積層成形、
焼成して得られた炭素材料の厚さが不均一になるという
問題が生じる。
If it is less than 10 μm, the strength as a base material cannot be maintained, and if it exceeds 1000 μm, impregnation, lamination molding,
A problem arises in that the thickness of the carbon material obtained by firing becomes non-uniform.

また、マトリクスとして用いられる熱硬化性樹脂には、
フェノール樹脂、フラン樹脂、ポリイミド樹脂、エポキ
シ樹脂等の液状の樹脂が使用される。
In addition, the thermosetting resin used as the matrix has
Liquid resins such as phenol resin, furan resin, polyimide resin, and epoxy resin are used.

さらに、この液状樹脂と混合混錬するフィラーには、ワ
ニスにした場合の分散性に優れ、基材である繊維集合体
またはフィルム状物質内部まで安全に均一に入り込み、
かつ導電性を有するもの、特に導電性を向上させた平均
粒子径が10〜1000m1固有抵抗がJISに一14
fi9固有抵抗測定法にて0.1〜1.0Ω−cmのカ
ーボンブラックを使用するのが好ましい。
Furthermore, the filler that is mixed and kneaded with this liquid resin has excellent dispersibility when made into a varnish, and can safely and uniformly penetrate into the fiber aggregate or film material that is the base material.
And have conductivity, especially those with improved conductivity and an average particle diameter of 10 to 1000 m1 and a specific resistance of JIS -14.
It is preferable to use carbon black with a resistance of 0.1 to 1.0 Ω-cm as determined by the fi9 resistivity measurement method.

またさらに、2000℃以上で黒鉛化処理したカーボン
ブラックを使うと最終的な炭素材料の導電性が一層向上
し好ましい。
Furthermore, it is preferable to use carbon black that has been graphitized at 2000° C. or higher because it further improves the conductivity of the final carbon material.

前記液状樹脂とフィラーを混合混錬する方法としでは、
オーブンロール混錬機、インテンシブミキサー ボール
ミル、三木ロール混錬機等一般の混錬装置を挙げること
ができる。 また、液状樹脂とフィラーとの混合割合は
、樹脂に対してフィラーを2〜50wt%とするのが好
ましい。 フィラーの混合割合が2wt%未溝の場合に
は、導電性が低いという問題があり、一方、50wt%
超の場合には、導電性は向上するが、ワニスとした場合
、粘度が高くなり基材への含浸性に問題が生じてしまう
As a method of mixing and kneading the liquid resin and filler,
General kneading devices such as an oven roll kneader, intensive mixer ball mill, and Miki roll kneader can be mentioned. Further, the mixing ratio of the liquid resin and the filler is preferably 2 to 50 wt% of the filler to the resin. When the filler mixing ratio is 2wt% without grooves, there is a problem that the conductivity is low;
In the case of super, the conductivity improves, but when used as a varnish, the viscosity becomes high and a problem arises in impregnation into the base material.

導電性ワニスを基材に含浸する方法としては、バット状
容器に入ったワニスに基材を浸す方法や、基材にへヶ、
スプレー等でワニスを塗工するという一般的な含浸方法
や、ロールを有する含浸装置を使う方法等が用いられる
Methods for impregnating the base material with conductive varnish include dipping the base material in varnish in a vat-shaped container, dipping it into the base material,
A general impregnation method of applying varnish by spraying or the like, a method using an impregnation device having a roll, etc. are used.

この含浸処理により基材表面から内部に至るまで均一な
組成を有する導電性プリプレグが得られる。
By this impregnation treatment, a conductive prepreg having a uniform composition from the surface of the base material to the inside thereof can be obtained.

得られたプリプレグを 100〜150℃で乾燥させた
後、数枚積層して 100〜150℃、50〜150k
g/cm2で加熱圧縮成形を行い、導電性積層板とする
。 プリプレグを積層する枚数は、最終的に目的とする
炭素材料の厚さに応じて調整するまた、成形に用いられ
る方法としては、熱プレス成形法、熱ロール成形法等、
−船釣な成形法が用いられる。
After drying the obtained prepreg at 100-150℃, several sheets were laminated and heated at 100-150℃ for 50-150k.
Heat compression molding is performed at g/cm2 to obtain a conductive laminate. The number of layers of prepreg to be laminated is adjusted according to the final thickness of the desired carbon material.In addition, methods used for molding include hot press molding, hot roll molding, etc.
- A simple molding method is used.

次に、得られた導電性積層板を焼成炉にセットし、焼成
炭素化して目的とする薄板状炭素材料とする。 焼成に
使用される炉としては、炉内を非酸化性霊囲気下にでき
る市販のマツフル炉、トンネル炉等が使用可能であり、
N2、Ar等不活性ガスを流通させながら焼成したり、
試料の周囲をコークス微粉で充填しながら焼成するのが
好ましい。 焼成温度に関しては特に制限はないが、通
常最高温度900〜1500℃である。
Next, the obtained conductive laminate is set in a firing furnace, and fired and carbonized to obtain the desired thin plate-like carbon material. As the furnace used for firing, commercially available Matsufuru furnaces, tunnel furnaces, etc. that can create a non-oxidizing atmosphere inside the furnace can be used.
Firing while passing an inert gas such as N2 or Ar,
It is preferable to perform firing while filling the periphery of the sample with coke fine powder. There are no particular restrictions on the firing temperature, but the maximum temperature is usually 900 to 1500°C.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

(実施例1) 市販フェノール樹脂溶液(群宋化学@製レジトップPL
−2211、不揮発分56wt%)80wt%と導電性
カーボンブラック(東海カーボン@製トーカブラック、
平均粒径50nm)20wt%をボールミルで混合混錬
して導電性ワニスとした後、ステンレス製バットに穆し
、この中に、市販の積層板用セルロース貿紙(ダイセル
化学■製)を通し、含浸処理を行った。
(Example 1) Commercially available phenol resin solution (Regitop PL manufactured by Gunsong Chemical
-2211, non-volatile content 56wt%) and conductive carbon black (Toka Black manufactured by Tokai Carbon@),
After mixing and kneading 20 wt% (average particle size 50 nm) in a ball mill to make a conductive varnish, it was milled in a stainless steel vat, and commercially available cellulose trade paper for laminates (manufactured by Daicel Chemical Co., Ltd.) was passed through it. Impregnation treatment was performed.

得られたプリプレグを室温で10時間、オーブン中で1
00℃、30分乾燥した後、200X200mmの寸法
に切断した。 この所定寸法のプリプレグを15枚積屡
し、熱プレスにセットした後、成形温度150℃、成形
圧力150 kg/cm’の条件下で成形し、厚さ2.
0mmの導電性積層板とした。
The resulting prepreg was heated in an oven for 10 hours at room temperature.
After drying at 00° C. for 30 minutes, it was cut into a size of 200×200 mm. 15 sheets of prepreg having the specified dimensions were stacked, set in a hot press, and then molded at a molding temperature of 150°C and a molding pressure of 150 kg/cm' to a thickness of 2.
A conductive laminate with a thickness of 0 mm was used.

次に、この積層板をステンレス製焼成箱にセットし、上
下を黒鉛板で保持した後、周囲をコークス微粉末でバッ
キングして、市販のマツフル炉を用い、N2雰囲気下、
昇温速度10”C/hr、最高温度1000℃で焼成炭
素化し、薄板状炭素材料とした。 この炭素材料の特性
を第1表に示す。
Next, this laminated plate was set in a stainless steel baking box, the top and bottom were held with graphite plates, and the surrounding area was backed with fine coke powder.
Carbonization was performed by firing at a heating rate of 10"C/hr and a maximum temperature of 1000°C to obtain a thin plate-like carbon material. The properties of this carbon material are shown in Table 1.

(実施例2) 実施例1と同様のフェノール樹脂溶液80wt%と、2
500℃で黒鉛化処理を行い導電性を向上させたカーボ
ンブラック(東海カーボン■製トーカブラック、平均粒
径50nm)20wt%をボールミルで混合混錬し、導
電性ワニスとした。 このワニスをステンレス製バット
に移し、その中に実施例1と同様に積層板用セルロース
質紙を通し、含浸処理を行った。
(Example 2) 80 wt% of the same phenolic resin solution as in Example 1, and 2
A conductive varnish was prepared by mixing and kneading 20 wt % of carbon black (Toka Black manufactured by Tokai Carbon ■, average particle size 50 nm) which had been graphitized at 500°C to improve conductivity. This varnish was transferred to a stainless steel vat, and cellulose paper for laminates was passed through it in the same manner as in Example 1 to perform impregnation treatment.

得られたプリプレグを実施例1と同様、室温で10時間
、オーブン中で100℃、30分乾燥した後、200x
200mmの寸法に切断し、15枚積層して熱プレスに
より成形温度150℃、成形圧力150 kg/cm2
の条件下で成形し、厚さ2.0mmの導電性積層板とし
た。
The obtained prepreg was dried in the same manner as in Example 1 at room temperature for 10 hours and in an oven at 100°C for 30 minutes, and then dried at 200×
Cut into 200 mm dimensions, stack 15 sheets, and heat press at a temperature of 150°C and a molding pressure of 150 kg/cm2.
It was molded under the following conditions to obtain a conductive laminate with a thickness of 2.0 mm.

次に、この積層板をステンレス製焼成箱にセットし、上
下を黒鉛板で保持し、周囲をコークス微粉末でバッキン
グした後、実施例1と同様のマツフル炉を用い、N2雰
囲気下、昇温速度10℃/hr、最高温度1000℃で
焼成炭素化し、薄板状炭素材料とした。 この炭素材料
の特性を第1表に示す。
Next, this laminated plate was set in a stainless steel baking box, the top and bottom were held with graphite plates, and the surrounding area was backed with fine coke powder. Using the same Matsufuru furnace as in Example 1, the temperature was raised under an N2 atmosphere. Carbonization was performed by firing at a rate of 10°C/hr and a maximum temperature of 1000°C to obtain a thin plate-like carbon material. The properties of this carbon material are shown in Table 1.

(比較例1) 実施例1と同様のフェノール樹脂溶液80wt%に人造
黒鉛粉末(平均粒径30μm)20wt%をボールミル
で混合混錬し、導電性ワニスとした。゛ このワニスを
ステンレス製バットに径し、その中に実施例1と同様に
積層板用セルロース買紙を通し、含浸処理を行った。
(Comparative Example 1) 80 wt % of the same phenol resin solution as in Example 1 was mixed and kneaded with 20 wt % of artificial graphite powder (average particle size 30 μm) using a ball mill to obtain a conductive varnish.゛ This varnish was poured into a stainless steel vat, and a cellulose paper for laminated board was passed through the vat in the same manner as in Example 1 to perform the impregnation treatment.

得られたプリプレグ表面には、フィラーの含浸不良によ
る模様が発生していた。 このプリプレグを実施例1と
同様、室温で10時間、オーブン中で100℃、30分
乾燥した後、200x200mmの寸法に切断し、15
枚積層して熱プレスにより成形温度150℃、成形圧力
150 kg/cm2の条件下で成形し、厚さ2.0m
mの導電性積層板とした。
The surface of the obtained prepreg had a pattern due to poor filler impregnation. As in Example 1, this prepreg was dried at room temperature for 10 hours and in an oven at 100°C for 30 minutes, then cut into a size of 200 x 200 mm.
The sheets were laminated and molded using a hot press at a molding temperature of 150°C and a molding pressure of 150 kg/cm2 to a thickness of 2.0 m.
It was made into a conductive laminate of m.

次に、この積層板をステンレス製焼成箱にセットし、上
下を黒鉛板で保持し、周囲をコークス微粉末でバッキン
グした後、実施例1と同様のマツフル炉を用い、N2j
J囲気下、昇温速度10℃ハr、最高温度1000℃で
焼成炭素化し、薄板状炭素材料とした。 この炭素材料
の特性を第1表に示す。
Next, this laminated plate was set in a stainless steel baking box, the top and bottom were held with graphite plates, and the surrounding area was backed with fine coke powder. Using the same Matsufuru furnace as in Example 1, N2j
Carbonization was performed by firing at a heating rate of 10° C. and a maximum temperature of 1000° C. under a J atmosphere to obtain a thin plate-like carbon material. The properties of this carbon material are shown in Table 1.

(実施例3) 実施例1と同様のフェノール樹脂溶液80wt%と導電
性カーボンブラック(東海カーボン■製トーカブラック
、平均粒径50nm)20wt%をボールミルで混合混
錬し、導電性ワニスとした。  このワニスを市販のへ
ケで、アセチルセルロースを加水分解したセルロースフ
ィルムにまんべんなく塗布し、含浸処理を行った。
(Example 3) 80 wt % of the same phenol resin solution as in Example 1 and 20 wt % of conductive carbon black (Toka Black manufactured by Tokai Carbon ■, average particle size 50 nm) were mixed and kneaded in a ball mill to obtain a conductive varnish. This varnish was evenly applied to a cellulose film prepared by hydrolyzing acetylcellulose using a commercially available spatula to perform an impregnation treatment.

得られたプリプレグを実施例1と同様、室温で10時間
、オーブン中で100℃、30分乾燥した後、200x
200mmの寸法に切断し、15枚積層して熱プレスに
より成形温度150℃、成形圧力100 kg/cm2
の条件下で成形し、厚さ2.5mmの導電性積層板とし
た。
The obtained prepreg was dried in the same manner as in Example 1 at room temperature for 10 hours and in an oven at 100°C for 30 minutes, and then dried at 200×
Cut into 200 mm dimensions, stack 15 sheets, and heat press at a temperature of 150°C and a molding pressure of 100 kg/cm2.
It was molded under the following conditions to obtain a conductive laminate with a thickness of 2.5 mm.

次に、この積層板をステンレス製焼成箱にセットし、上
下を黒鉛板で保持し、周囲をコークス微粉末でバッキン
グした後、実施例1と同様のマツフル炉を用い、N2霊
囲気下、昇温速度10℃/hr、最高温度1000℃で
焼成炭素化し、薄板状炭素材料とした。  この炭素材
料の特性を第1表に示す。
Next, this laminated plate was set in a stainless steel firing box, the upper and lower sides were held with graphite plates, and the surrounding area was backed with fine coke powder. Carbonization was performed by firing at a temperature rate of 10°C/hr and a maximum temperature of 1000°C to obtain a thin plate-like carbon material. The properties of this carbon material are shown in Table 1.

(比較例2) 実施例1と同様のフェノール樹脂溶液80wt%に人造
黒鉛粉末(平均粒径100μm)20 w t%をボー
ルミルで混合混錬し、導電性ワニスとした。 このワニ
スを実施例3と同様、市販のへケで、アセチルセルロー
スを加水分解したセルロースフィルムにまんべんなく塗
布し、含浸処理を行った。
(Comparative Example 2) 80 wt % of the same phenolic resin solution as in Example 1 was mixed and kneaded with 20 wt % of artificial graphite powder (average particle size 100 μm) using a ball mill to obtain a conductive varnish. As in Example 3, this varnish was evenly applied to a cellulose film prepared by hydrolyzing acetylcellulose using a commercially available spatula, and impregnated.

得られたプリプレグ表面には、基材に含浸されなかった
黒鉛粉末が多量に付着しており、表面性状が劣っていた
A large amount of graphite powder that was not impregnated into the base material adhered to the surface of the obtained prepreg, and the surface quality was poor.

このプリプレグを実施例1と同様、室温で10時間、オ
ーブン中で100℃、30分乾燥した後、200x20
0mmの寸法に切断し、15枚積層して熱プレスにより
成形温度150℃、成形圧力100 kg/cm”の条
件下で成形し、淳さ2.5mmの導電性積層板とした。
As in Example 1, this prepreg was dried at room temperature for 10 hours and in an oven at 100°C for 30 minutes.
It was cut to a size of 0 mm, and 15 sheets were laminated and molded by hot press at a molding temperature of 150° C. and a molding pressure of 100 kg/cm'' to obtain a conductive laminate with a thickness of 2.5 mm.

次に、この積層板をステンレス製焼成箱にセットし、上
下を黒鉛板で保持し、周囲をコークス微粉末でバッキン
グした後、実施例1と同様のマツフル炉を用い、N2雰
囲気下、昇温速度10℃/hr、最高温度1000℃で
焼成炭素化し、薄板状炭素材料とした。 この炭素材料
の特性を第1表に示す。
Next, this laminated plate was set in a stainless steel baking box, the top and bottom were held with graphite plates, and the surrounding area was backed with fine coke powder. Using the same Matsufuru furnace as in Example 1, the temperature was raised under an N2 atmosphere. Carbonization was performed by firing at a rate of 10°C/hr and a maximum temperature of 1000°C to obtain a thin plate-like carbon material. The properties of this carbon material are shown in Table 1.

〈発明の効果〉 本発明は以上説明したように構成されているので、高い
導電性を有するカーボンブラックを用いることによって
、基材内部まで均一に導電性ワニスを含浸させることが
できる。
<Effects of the Invention> Since the present invention is configured as described above, by using carbon black having high conductivity, it is possible to uniformly impregnate the inside of the base material with the conductive varnish.

その結果、電気特性だけでなく、機械特性にも優れた薄
板状炭素材料が得られる。
As a result, a thin plate-like carbon material having excellent not only electrical properties but also mechanical properties can be obtained.

−3゜-3゜

Claims (3)

【特許請求の範囲】[Claims] (1)セルロース質紙またはセルロースフィルムを基材
として、これにマトリクスとして熱硬化性樹脂、フィラ
ーとして高導電性を有するカーボンブラックを混合混錬
したワニスを含浸して内部まで均一な組成を有するプリ
プレグを得、このプリプレグを積層成形し、焼成処理を
施すことにより得られる薄板状炭素材料の製造法。
(1) Prepreg that has a uniform composition throughout the interior by using cellulose paper or cellulose film as a base material and impregnating it with a varnish made by mixing and kneading a thermosetting resin as a matrix and highly conductive carbon black as a filler. A method for producing a thin plate-like carbon material obtained by laminating and molding this prepreg and subjecting it to a firing treatment.
(2)前記カーボンブラックが、2000℃以上の温度
で黒鉛化処理したものである請求項1記載の薄板状炭素
材料の製造法。
(2) The method for producing a thin plate-like carbon material according to claim 1, wherein the carbon black is graphitized at a temperature of 2000° C. or higher.
(3)前記熱硬化性樹脂に対するカーボンブラックの混
合割合が、熱硬化性樹脂に対し、2〜50wt%である
請求項1または2記載の薄板状炭素材料の製造法。
(3) The method for producing a thin plate-like carbon material according to claim 1 or 2, wherein the mixing ratio of carbon black to the thermosetting resin is 2 to 50 wt% with respect to the thermosetting resin.
JP63197778A 1988-08-08 1988-08-08 Production of thin sheetlike carbon material Pending JPH0248466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63197778A JPH0248466A (en) 1988-08-08 1988-08-08 Production of thin sheetlike carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197778A JPH0248466A (en) 1988-08-08 1988-08-08 Production of thin sheetlike carbon material

Publications (1)

Publication Number Publication Date
JPH0248466A true JPH0248466A (en) 1990-02-19

Family

ID=16380193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197778A Pending JPH0248466A (en) 1988-08-08 1988-08-08 Production of thin sheetlike carbon material

Country Status (1)

Country Link
JP (1) JPH0248466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155672A (en) * 1991-12-05 1993-06-22 Oji Paper Co Ltd Porous carbon plate and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155672A (en) * 1991-12-05 1993-06-22 Oji Paper Co Ltd Porous carbon plate and its production

Similar Documents

Publication Publication Date Title
US4115528A (en) Method for fabricating a carbon electrode substrate
JPS60122711A (en) Manufacture of porous carbon board
GB2117746A (en) Fuel cell electrode substrates
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
EP0212965B2 (en) Process for producing a thin carbonaceous plate
JPH0622135B2 (en) Manufacturing method of carbonaceous separator for battery
JPH0559867B2 (en)
JPH0248466A (en) Production of thin sheetlike carbon material
JPH02199010A (en) Production of thin sheetlike carbon material
JPH0157467B2 (en)
JPH0131445B2 (en)
JPH0360478A (en) Production of porous carbon sheet
JPS6119820A (en) Production of porous carbon plate
JP3131911B2 (en) Method for producing thick porous carbon material
JPS62171908A (en) Production of carbon plate
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JPH052625B2 (en)
JPH0859360A (en) Production of porous carbon material
JPS6259508A (en) Production of carbonaceous, thin plate
JPS6044963A (en) Manufacture of porous carbon plate
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JPH0220589B2 (en)
JPH11139871A (en) Porous carbon material and its production
JPH03126666A (en) Production of sheetlike carbon material