JPH0211546B2 - - Google Patents

Info

Publication number
JPH0211546B2
JPH0211546B2 JP58048845A JP4884583A JPH0211546B2 JP H0211546 B2 JPH0211546 B2 JP H0211546B2 JP 58048845 A JP58048845 A JP 58048845A JP 4884583 A JP4884583 A JP 4884583A JP H0211546 B2 JPH0211546 B2 JP H0211546B2
Authority
JP
Japan
Prior art keywords
carbon
molded article
impregnation
carbon molded
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58048845A
Other languages
Japanese (ja)
Other versions
JPS59174510A (en
Inventor
Takamasa Kawakubo
Mitsuru Yoshida
Yoshihisa Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP58048845A priority Critical patent/JPS59174510A/en
Publication of JPS59174510A publication Critical patent/JPS59174510A/en
Publication of JPH0211546B2 publication Critical patent/JPH0211546B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔発明の詳細な説明〕 本発明は炭素成形品の製造方法に関する。詳し
くは、本発明は、極薄板及び肉薄複雑形状を有す
る炭素成形品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Detailed Description of the Invention] The present invention relates to a method for manufacturing a carbon molded article. Specifically, the present invention relates to a method for producing an ultra-thin plate and a carbon molded product having a thin and complex shape.

炭素材は、非酸化性雰囲気においては溶融、変
形することなく優れた耐熱性を示す。又金属に近
い電気や熱の伝導体であり一般的にみて種々の化
学薬品にも侵されることのない大きな耐食性があ
る。
Carbon materials exhibit excellent heat resistance without melting or deforming in a non-oxidizing atmosphere. Also, it is a conductor of electricity and heat similar to metal, and generally has great corrosion resistance and is not attacked by various chemicals.

更に、高い強度対重量比を有すると共に高い比
弾性率(ヤング率/密度)を有する。この様な特
性を持つ材料は金属にもセラミツクスあるいはプ
ラスチツクスにも求め得ない有用な材料である。
Furthermore, it has a high strength-to-weight ratio as well as a high specific modulus (Young's modulus/density). Materials with such characteristics are useful materials that cannot be found in metals, ceramics, or plastics.

実用化されている炭素材料の種類は極めて多い
が、最近可撓性を有する炭素材の開拓が注目さ
れ、炭素の物理的、化学的性質の利用が本格化さ
れ始めている。とくに、高温下での高い機械的強
度の発現及び高い比弾性率、腐食性雰囲気に対す
る安定性に着目した炭素薄板及び複雑成形品は、
パツキン、ガスケツトへの応用あるいは燃料電池
用電極やセパレータ及び化学プラント等の遮蔽
板、更には高い比弾性率に着目した音響製品等の
工業用部材として極めて有用である。然るに炭素
材料は展延性に乏しく不溶・不融であるため金属
やプラスチツクスの様に目的とする形状を任意に
精密加工することが極めて困難な材料である。そ
れ故従来は大型成形された炭素材ブロツクより切
り出して切削加工するなど複雑且つ困難な作業を
余儀なくされ、特に薄板加工や肉薄の複雑形状体
を成型することは至難とされ未だ製品化に至らな
かつたものである。
Although there are many types of carbon materials that have been put into practical use, recently, the development of flexible carbon materials has attracted attention, and the use of carbon's physical and chemical properties has begun to gain momentum. In particular, we focus on carbon thin plates and complex molded products that exhibit high mechanical strength under high temperatures, high specific modulus, and stability against corrosive atmospheres.
It is extremely useful for applications in gaskets and gaskets, as electrodes and separators for fuel cells, shielding plates for chemical plants, etc., and as industrial components such as acoustic products that focus on high specific modulus. However, carbon materials have poor malleability and are insoluble and infusible, making it extremely difficult to precisely process them into desired shapes, unlike metals and plastics. Therefore, in the past, complicated and difficult work such as cutting and cutting from a large molded carbon material block was necessary, and it was especially difficult to process thin sheets and mold thin, complex-shaped bodies, and it has not yet been commercialized. It is something that

本発明の目的は、従来その製作が事実上不可能
であつた極薄板状及び肉薄の複雑形状体の製造方
法を提供することにある。
An object of the present invention is to provide a method for manufacturing extremely thin plate-like and thin-walled complex-shaped bodies, which have conventionally been virtually impossible to manufacture.

従来、有機高分子物質やピツチタール系物質等
の炭素化原材料を押出、射出、プレス等の常法の
工業的成形手段により賦形した後焼成により炭素
化することも試みられたが、極薄板状もしくは肉
薄複雑成形体では、生成形体(グリーン成形体)
を炭素化するに際してその形状維持を行うことが
極めて困難であり変形もしくは割れを生じその目
的を達するに到らなかつた。
In the past, attempts have been made to shape carbonized raw materials such as organic polymer substances and pitzital-based substances by conventional industrial forming methods such as extrusion, injection, and press, and then carbonize them by firing. Or, for thin and complex molded bodies, green molded bodies are used.
It is extremely difficult to maintain its shape when carbonizing it, resulting in deformation or cracking, making it impossible to achieve the purpose.

本願発明者は、かゝる状況を鑑み前記した炭素
材料を持つ優れた特性を活かし、任意の寸法形状
で精度高く、且つ基本的に二次加工を要しない前
記極薄板及び肉薄の複雑形状体の製造方法を開拓
せんが為鋭意研究した結果、固相炭化を辿る材料
が管理された条件下で高温下に焼成されるとその
形状を正しく維持していること。及びこれらに炭
素残査量の高い有機材料を含浸炭化するとその形
状を維持しつゝ更に高密度化された炭素体が得ら
れることを発見し、本発明を想到するに至つたも
のである。
In view of this situation, the inventors of the present application took advantage of the excellent properties of the carbon material described above to produce the ultra-thin plates and thin complex-shaped objects that can be formed into arbitrary dimensions and shapes with high precision, and basically do not require secondary processing. As a result of intensive research to develop a manufacturing method, we found that materials that undergo solid phase carbonization maintain their shape correctly when fired at high temperatures under controlled conditions. They also discovered that by impregnating and carbonizing these with an organic material with a high amount of carbon residue, a carbon body with even higher density can be obtained while maintaining its shape, leading to the idea of the present invention.

本願発明の方法においては、基本的に固相炭化
を辿る有機物質の繊維もしくは空気酸化による架
橋、あるいは濃硫酸等による酸処理によつて脱水
素反応が行われ、その後の炭化の経路が固相炭化
を辿る様な繊維を原料素材として用い、これを常
法の抄造加工法を採用することによつて直接設計
された複雑異形型に賦形するか又は、抄紙加工、
織布加工、フエルト加工を施すことで先ず紙、
布、フエルトを得た後これを折紙加工、糊着加
工、プレス加工、縫製加工等の手段により予め設
計された形状に賦形することにより所望する製品
の第一次成形体を得る。
In the method of the present invention, the dehydrogenation reaction is basically carried out by cross-linking organic material fibers or air oxidation that follows solid phase carbonization, or by acid treatment with concentrated sulfuric acid, etc., and the subsequent carbonization path is solid phase carbonization. Using carbonized fiber as a raw material, it can be directly shaped into a designed complex irregular shape by adopting a conventional papermaking process, or it can be processed into a papermaking process.
By applying woven fabric processing and felt processing, paper,
After obtaining cloth or felt, it is shaped into a pre-designed shape by means such as origami processing, gluing, press processing, sewing processing, etc. to obtain a primary molded product of a desired product.

次に、この第一次成形体に用いた有機高分子繊
維集合体が基本的に固相炭化を辿るものの場合は
そのまゝの状態で次の含浸処理工程へ移して良い
が、炭素化に際し不溶・不融化処理が必要とされ
る場合はこの段階で必要とされる空気酸化による
架橋反応又は酸処理による脱水素反応(炭素前駆
体化処理と言う)を十分行わしめた後第一次成形
体とする。
Next, if the organic polymer fiber aggregate used in this primary compact basically undergoes solid-phase carbonization, it can be transferred to the next impregnation treatment process as is, but If insoluble/infusible treatment is required, the crosslinking reaction by air oxidation or the dehydrogenation reaction (referred to as carbon precursor treatment) by acid treatment, which is required at this stage, is sufficiently carried out before primary forming. Body.

こうして得られた第一次成形体に焼成後比較的
高い炭素残査を残す前記有機材料の液状物を浸
漬、塗付又はオートクレーブ等による真空もしく
は加圧による含浸処理を施し十分に含浸材料を内
部にまで浸透させる。含浸材料を内部に充填され
た第一次成形体は更に硬化反応もしくは、不溶・
不融化処理を施して第二次成形体(グリーン成形
体という。)を得る。
The thus obtained primary molded body is impregnated with the liquid organic material that leaves a relatively high carbon residue after firing by dipping or painting, or by applying vacuum or pressure using an autoclave, etc., to thoroughly infiltrate the interior of the impregnated material. Penetrate to. The primary molded body filled with the impregnated material is further subjected to a curing reaction or an insoluble/insoluble material.
A second molded body (referred to as a green molded body) is obtained by performing an infusibility treatment.

第二次成形体(グリーン成形体)を窒素ガス等
の不活性気相雰囲気中において、徐々に昇温し
800℃以上に焼成し炭素化させることによつて目
的とする極薄板及び肉薄複雑形状を有する炭素成
形体を得る。
The temperature of the secondary compact (green compact) is gradually raised in an inert gas phase atmosphere such as nitrogen gas.
By firing at a temperature of 800° C. or higher and carbonizing, the desired ultra-thin plate and thin-walled carbon molded body having a complex shape are obtained.

なお、従来有機物繊維や炭素繊維の短繊維(チ
ヨツプドフアイバー)等や粉末状炭素、及びコー
クス粉等を体質材(フイラー)としてピツチ.タ
ールや合成樹脂類を結合材又はマトリツクスとし
て用いた試みが成されたがこれらの体質材(フイ
ラー)は成形物の形状維持能力に乏しく、焼成過
程に於ける変形が著しく設計形状のものが精度高
く得られないばかりでなく甚しくは破損するに至
り目的を達成することが極めて困難であつた。
Conventionally, organic fibers, short carbon fibers (chopped fibers), powdered carbon, coke powder, etc. have been used as fillers. Attempts have been made to use tar and synthetic resins as binders or matrices, but these fillers have poor ability to maintain the shape of molded products, and the design shape is severely deformed during the firing process, resulting in poor precision. Not only was it not possible to obtain a high quality product, but it was also damaged, making it extremely difficult to achieve the purpose.

次に本発明の実施例によつて具体的に説明する
が以下の範囲に限定されるものではない。
Next, the present invention will be specifically explained using Examples, but the present invention is not limited to the following scope.

実施例 1 500mlの水に1重量%のCMC(カルボキシメチ
ルセルロース)を溶解し、水溶液粘度を20℃で
120C.P.Sに調整した後市販セルロースを加え高速
撹拌をして高度な剪断力を加えセルロース繊維を
膨潤軟化させ適度にフイブリル化させたスラリー
を得た。このスラリーを第1図の様な予め設計さ
れた形状を有する連続多孔型に流し込み反対側よ
り減圧脱気して抄造した後60℃のエアーバス中で
1時間乾燥させて最大厚さ2mmの賦形された板紙
を脱型して第一次成形体を得た。この第一次成形
体をケルイミド(三井石油化学社製ケルイミド
1050、ポリイミド樹脂初期縮重合体)100gをそ
の溶媒であるNMP(N−メチル.ピロリドン)
200mlに溶解させた含浸用有機材料液中に浸漬し、
十分に含浸させた後余剰の含浸液を除去してから
乾燥して溶媒を揮散させ、更に120℃のエアーバ
ス中で60分間加熱処理を施し含浸されたケルイミ
ドを硬化させて第二次成形体(グリーン成形体)
とした。
Example 1 Dissolve 1% by weight of CMC (carboxymethylcellulose) in 500ml of water and adjust the viscosity of the aqueous solution at 20°C.
After adjusting to 120C.PS, commercially available cellulose was added and stirred at high speed to apply high shearing force to obtain a slurry in which the cellulose fibers were swollen and softened and appropriately fibrillated. This slurry was poured into a continuous porous mold with a pre-designed shape as shown in Figure 1, degassed under reduced pressure from the opposite side, and then dried in an air bath at 60°C for 1 hour to form a sheet with a maximum thickness of 2 mm. The shaped paperboard was demolded to obtain a primary molded body. This primary molded body is made of kerimide (Kerimide manufactured by Mitsui Petrochemical Co., Ltd.).
1050, polyimide resin initial condensation polymer) 100g and its solvent NMP (N-methyl pyrrolidone)
Immerse in organic material solution for impregnation dissolved in 200ml,
After sufficient impregnation, excess impregnating liquid is removed, the solvent is evaporated by drying, and the impregnated kerimide is hardened by heat treatment in an air bath at 120°C for 60 minutes to form a secondary molded body. (green molded body)
And so.

次に、第二次成形体を窒素ガス気流中において
10℃/時間で500℃まで、昇温し更に50℃/時で
1000℃まで昇温させて炭素化させた。
Next, the secondary compact is placed in a nitrogen gas stream.
Raise the temperature to 500℃ at 10℃/hour, then increase the temperature to 50℃/hour.
The temperature was raised to 1000°C to carbonize.

得られた異形炭素板は体積収縮率25%嵩比重
1.45gr/cm3で設計された形状を精度高く維持し
たものであつた。
The obtained deformed carbon plate has a volume shrinkage rate of 25% bulk specific gravity
The shape designed with 1.45gr/cm 3 was maintained with high precision.

実施例 2 常法に基づく抄紙工程によつて得られた厚さ
0.3m/m、大きさ150mmφの紙(東洋紙社製
No.2)を第一次成形体として用い、これを旭電化
工業社製塩化ゴム(CR−150)100grをトルエン
100mlを溶解した含浸用有機材料液中に浸漬し十
分に含浸させ、余剰の含浸液を除去し、乾燥して
溶媒を揮散させた後、エアーバス中において、
100℃で10時間更に150℃に5時間180℃に3時間
加熱処理を施して空気酸化による架橋反応を行わ
せ黒褐色の第二次成形体を得た。次にこれを表面
の平滑な2枚の黒鉛板に挾み実施例1と全く同じ
工程で焼成し平滑な極薄炭素板を得た。得られた
炭素板は厚さ0.2mm体積収縮率30%、嵩比重
1.30gr/cm3で破断面はガラス状を呈し、硬度が高
く不浸透性を有していた。
Example 2 Thickness obtained by paper making process based on conventional method
0.3m/m, size 150mmφ paper (manufactured by Toyo Paper Co., Ltd.)
No. 2) was used as the primary molded product, and 100g of chlorinated rubber (CR-150) manufactured by Asahi Denka Kogyo Co., Ltd. was mixed with toluene.
After immersing 100ml in the dissolved organic material liquid for impregnation and thoroughly impregnating it, removing the excess impregnating liquid and drying to volatilize the solvent, place it in an air bath.
Heat treatment was performed at 100°C for 10 hours, then at 150°C for 5 hours, and at 180°C for 3 hours to carry out a crosslinking reaction by air oxidation to obtain a dark brown secondary molded body. Next, this was sandwiched between two graphite plates with smooth surfaces and fired in exactly the same process as in Example 1 to obtain a smooth ultra-thin carbon plate. The obtained carbon plate has a thickness of 0.2 mm, a volume shrinkage rate of 30%, and a bulk specific gravity.
At 1.30gr/cm 3 , the fractured surface had a glass-like appearance and was highly hard and impermeable.

実施例 3 硬化ノボロイド繊維(群栄化学社製カイノール
繊維)を原料として用い常法に基づく織布加工に
よつて得られた目付200g/m2の綾織物を第一次
成形体として用い、これにフラン樹脂初期縮合物
(日立化成社製ヒタフラン302)70重量%に高結晶
性天然黒鉛(平均粒度2μm)30%を配合したも
のをロールで十分混練した。この組成物100重量
部に対し10重量部のフルフラールを加え粘度調整
したものに適量の硬化剤を加えた含浸用有機材料
液中に浸漬し余剰の含浸液を除去した後60℃のエ
アーバス中で30分処理した後100℃で予熱された
加圧プレスで50Kg/cm2に加圧して形を整え更に、
150℃で3時間加熱処理して硬化反応を完了させ
第二次成形体を得た。これを実施例2と同様の条
件で焼成して平滑な極薄炭素板を得た。得られた
炭素板は厚さ0.15mm嵩比重1.55gr/cm3で破断面は
ガラス状に呈し不浸透性を有していた。
Example 3 A twill fabric with a basis weight of 200 g/m 2 obtained by conventional fabric processing using cured novoloid fiber (Kynol fiber manufactured by Gunei Kagaku Co., Ltd.) as a raw material was used as the primary molded product. A mixture of 70% by weight of a furan resin initial condensate (Hitafuran 302 manufactured by Hitachi Chemical Co., Ltd.) and 30% of highly crystalline natural graphite (average particle size 2 μm) was thoroughly kneaded with a roll. The viscosity was adjusted by adding 10 parts by weight of furfural to 100 parts by weight of this composition, and the mixture was immersed in an organic material solution for impregnation with an appropriate amount of curing agent, and after removing the excess impregnating liquid, it was placed in an air bath at 60°C. After processing for 30 minutes, pressurize to 50Kg/cm 2 with a pressure press preheated at 100℃ to shape it.
A heat treatment was performed at 150° C. for 3 hours to complete the curing reaction and obtain a second molded product. This was fired under the same conditions as in Example 2 to obtain a smooth ultra-thin carbon plate. The obtained carbon plate had a thickness of 0.15 mm, a bulk specific gravity of 1.55 gr/cm 3 , a glass-like fracture surface, and was impermeable.

実施例 4 クラフトパルプ(KP)を原料として製紙され
た紙を波形にプレス成型したものを第2図のよう
にデンプン糊で貼り合わせハニカム構造とした第
一次成形体を加工し、これに含浸用有機材料とし
てポリイミド樹脂初期縮合物(三井石油化学社製
ケルイミド1050)を用いて以下実施例1と同様の
工程で焼成炭化して薄肉炭素ハニカム構造体を得
た。
Example 4 Paper made from kraft pulp (KP) was press-molded into a corrugated shape, and as shown in Figure 2, a primary molded body with a honeycomb structure was formed by laminating with starch glue, and this was impregnated. A polyimide resin initial condensate (Kelimide 1050, manufactured by Mitsui Petrochemicals, Inc.) was used as an organic material, and carbonized by firing in the same steps as in Example 1 to obtain a thin carbon honeycomb structure.

この炭素ハニカムは体積収縮率25%で嵩比重
1.50gr/cm3であり設計された形状を精度高く維持
していた。
This carbon honeycomb has a volume shrinkage rate of 25% and has a high bulk specific gravity.
1.50gr/cm 3 and maintained the designed shape with high precision.

実施例 5 市販のC−PVC日本カーバイド工業社製ニカ
テンプT−025(後塩素化塩ビ、重合度650塩素化
65)を0.3mmφのダイを用いて溶融紡糸し空気
中で4倍に延伸してフイラメントヤーンを得た。
このフイラメントヤーンを金属容器に入れ150℃
に加熱してフエルト・マツト状の第一次成形体を
得た。このフエルト・マツトを濃硫酸中に浸漬し
100℃で30分間処理して脱塩酸及び脱水素反応を
行わせて炭素前駆化処理を施した。こうして得ら
れたものは黒褐色を呈しその後の炭化に際し、再
度溶融変形することはない。
Example 5 Commercially available C-PVC Nikatemp T-025 manufactured by Nippon Carbide Industries Co., Ltd. (post-chlorinated PVC, degree of polymerization 650, degree of chlorination 65 ) was melt-spun using a 0.3 mm diameter die and stretched 4 times in air. and obtained filament yarn.
Place this filament yarn in a metal container and heat it to 150°C.
The mixture was heated to obtain a felt-matte primary molded body. This felt mat was immersed in concentrated sulfuric acid.
Carbon precursor treatment was performed by treating at 100° C. for 30 minutes to perform dehydrochloric acid and dehydrogenation reactions. The product thus obtained exhibits a blackish brown color and does not melt and deform again during subsequent carbonization.

この第一次成形体炭素前駆体化処理物を水洗し
た後乾燥したものにフラン樹脂初期縮合物(ヒタ
フラン302)100重量部に2重量部の硬化剤を加え
た含浸用有機材料液中に浸漬したのち、圧搾して
内部の含浸液を絞り出し、第一次成形体の繊維表
面が含浸液で均一に被覆された状態にする。次
に、これを100℃のエアーバス中で十分に硬化さ
せた後実施例1と同様の工程で焼成し炭素化させ
た。こうしてフエルトマツト状の炭素多孔体が得
られた。この炭素多孔体は気孔率80%、嵩密度
0.5g/cm3であつた。
This primary molded carbon precursor treated product was washed with water and dried, then immersed in an organic material solution for impregnation, which is made by adding 2 parts by weight of a curing agent to 100 parts by weight of a furan resin initial condensate (Hitafuran 302). Thereafter, the impregnating liquid inside is squeezed out, so that the fiber surface of the primary molded body is uniformly coated with the impregnating liquid. Next, this was sufficiently hardened in an air bath at 100°C, and then fired and carbonized in the same process as in Example 1. In this way, a felt mat-like porous carbon body was obtained. This carbon porous material has a porosity of 80% and a bulk density
It was 0.5 g/cm 3 .

以上の如く、本発明の新炭素成形品の製造方法
によれば、従来その製造が極めて困難であつた炭
素極薄板、及び炭素肉薄複雑形状体が容易に且つ
経済的にできる。
As described above, according to the method for manufacturing a new carbon molded article of the present invention, extremely thin carbon plates and thin carbon bodies with complex shapes, which have been extremely difficult to manufacture in the past, can be easily and economically produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1における抄造加工の説明図で
ある。 図において、1はスラリー、2は連続多孔体製
成型用抄型、3は成型用抄型支持枠、4は減圧室
である。 第2図は実施例4におけるハニカム構造体、 図において5は糊着部である。
FIG. 1 is an explanatory diagram of the papermaking process in Example 1. In the figure, 1 is a slurry, 2 is a continuous porous material molding mold, 3 is a molding mold support frame, and 4 is a decompression chamber. FIG. 2 shows a honeycomb structure in Example 4. In the figure, 5 is a glued part.

Claims (1)

【特許請求の範囲】 1 基本的に固相炭化する性質を有する有機高分
子繊維、または不溶不融化処理の後固相炭化を辿
る性質を有する合成高分子繊維の集合体を素材と
し、これを抄造加工することにより予め設計され
た形状に賦形し、あるいは、抄紙加工、織布加
工、またはフエルト加工によりそれぞれの素材か
ら紙、布、またはフエルトを得た後、これをその
まま、あるいは、折紙加工、糊着加工、プレス加
工、縫製加工等の手段により予め設計された形状
に賦形し、得られた賦形体に、該素材が基本的に
固相炭化する性質を有する有機高分子繊維の場合
は、そのまま、合成高分子繊維の場合は、炭素前
駆体化処理を施した含浸用基材とした後、常温に
おいて液状を呈する、あるいは、溶媒または加熱
によつて液状を呈する性質を有し、焼成後の炭素
残渣量の多い有機材料を含浸し、含浸した賦形体
に硬化処理、もしくは不溶不融化処理を施してグ
リーン成形体を得、このグリーン成形体を不活性
気相う囲気中において所定の温度で炭化させるこ
とから成る炭素成形品の製造方法。 2 基本的に固相炭化する性質を有する該有機高
分子繊維は、パルプおよびセルロース誘導体木
綿、ノボロイド(フエノール系)繊維、アラミド
(芳香族ポリアミド系)繊維およびポリアミドイ
ミド系繊維から成る群から選ばれた繊維である特
許請求の範囲第1項に記載の炭素成形品の製造方
法。 3 不溶不融化処理後固相炭化を辿る性質を有す
る該合成高分子繊維は、ポリアクリロニトリル、
ポリ塩化ビニル、後塩素化ポリ塩化ビニルおよび
ポリビニルアルコールから成る群から選ばれた繊
維である特許請求の範囲第1項に記載の炭素成形
品の製造方法。 4 該含浸用有機材料は、フラン樹脂、フエノー
ル樹脂、ビスマレイミド−トリアジン樹脂、ポリ
イミド樹脂、アミドイミド樹脂、および芳香族ボ
リアミド系樹脂から成る群から選ばれた熱硬化性
樹脂またはその初期縮重合物である特許請求の範
囲第1項に記載の炭素成形品の製造方法。 5 該含浸用有機材料は、ポリ塩化ビニル、後塩
素化ポリ塩化ビニル、塩化ゴム、塩化ビニリデ
ン、ピツチ、タールおよびリグニンから成る群か
ら選ばれた熱可塑性樹脂である特許請求の範囲第
1項に記載の炭素成形品の製造方法。 6 該含浸用有機材料の粘度は、50〜5000CPSで
ある特許請求の範囲第1項に記載の炭素成形品の
製造方法。 7 該含浸用有機材料が熱硬化性樹脂の場合は、
含浸処理の際、硬化剤を加えることから成る特許
請求の範囲第1項に記載の炭素成形品の製造方
法。 8 該含浸用有機材料が熱可塑性樹脂の場合は、
含浸処理した後、絶乾状態に乾燥させることから
成る特許請求の範囲第1項に記載の炭素成形品の
製造方法。 9 該グリーン成形体の炭化温度は、400℃以上
である特許請求の範囲第1項に記載の炭素成形品
の製造方法。
[Scope of Claims] 1. The material is an aggregate of organic polymer fibers that basically have the property of solid-phase carbonization, or an aggregate of synthetic polymer fibers that have the property of undergoing solid-phase carbonization after insoluble and infusible treatment. After shaping into a pre-designed shape through papermaking processing, or obtaining paper, cloth, or felt from each material through papermaking, weaving, or felting, it can be used as it is, or it can be made into origami. The material is shaped into a pre-designed shape by processing, gluing, pressing, sewing, etc., and the resulting material is made of organic polymer fibers that basically have the property of solid phase carbonization. In the case of synthetic polymer fibers, it is used as a base material for impregnation after being treated with a carbon precursor, and then it becomes liquid at room temperature, or it has the property of becoming liquid by using a solvent or heating. , an organic material with a large amount of carbon residue after firing is impregnated, the impregnated excipient is subjected to hardening treatment or insoluble infusibility treatment to obtain a green molded body, and this green molded body is placed in an atmosphere containing an inert gas. A method for producing a carbon molded article, which comprises carbonizing it at a predetermined temperature. 2. The organic polymer fiber, which basically has the property of solid phase carbonization, is selected from the group consisting of pulp and cellulose derivative cotton, novoloid (phenolic) fiber, aramid (aromatic polyamide) fiber, and polyamide-imide fiber. The method for producing a carbon molded article according to claim 1, wherein the carbon molded article is made of a carbon fiber. 3. The synthetic polymer fiber that has the property of undergoing solid phase carbonization after being insoluble and infusible is made of polyacrylonitrile, polyacrylonitrile,
The method for producing a carbon molded article according to claim 1, wherein the fiber is selected from the group consisting of polyvinyl chloride, post-chlorinated polyvinyl chloride, and polyvinyl alcohol. 4. The organic material for impregnation is a thermosetting resin selected from the group consisting of furan resin, phenolic resin, bismaleimide-triazine resin, polyimide resin, amide-imide resin, and aromatic polyamide resin, or an initial condensation product thereof. A method for manufacturing a carbon molded article according to claim 1. 5. The organic material for impregnation is a thermoplastic resin selected from the group consisting of polyvinyl chloride, post-chlorinated polyvinyl chloride, chlorinated rubber, vinylidene chloride, pitch, tar, and lignin. The method for manufacturing the carbon molded article described. 6. The method for producing a carbon molded article according to claim 1, wherein the organic material for impregnation has a viscosity of 50 to 5000 CPS. 7 If the organic material for impregnation is a thermosetting resin,
The method for manufacturing a carbon molded article according to claim 1, which comprises adding a hardening agent during the impregnation treatment. 8 If the organic material for impregnation is a thermoplastic resin,
The method for manufacturing a carbon molded article according to claim 1, which comprises drying the carbon molded article to an absolutely dry state after the impregnation treatment. 9. The method for producing a carbon molded product according to claim 1, wherein the carbonization temperature of the green molded product is 400°C or higher.
JP58048845A 1983-03-25 1983-03-25 Manufacture of carbon molded body Granted JPS59174510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58048845A JPS59174510A (en) 1983-03-25 1983-03-25 Manufacture of carbon molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58048845A JPS59174510A (en) 1983-03-25 1983-03-25 Manufacture of carbon molded body

Publications (2)

Publication Number Publication Date
JPS59174510A JPS59174510A (en) 1984-10-03
JPH0211546B2 true JPH0211546B2 (en) 1990-03-14

Family

ID=12814588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58048845A Granted JPS59174510A (en) 1983-03-25 1983-03-25 Manufacture of carbon molded body

Country Status (1)

Country Link
JP (1) JPS59174510A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195514A (en) * 1983-04-11 1984-11-06 Kobe Steel Ltd Molded impermeable carbon body and its manufacture
JPS6042213A (en) * 1983-08-19 1985-03-06 Showa Denko Kk Manufacture of carbon sheet
JPS60155516A (en) * 1983-12-27 1985-08-15 Showa Denko Kk Preparation of thin plate of carbon
JPS6158807A (en) * 1984-08-30 1986-03-26 Showa Denko Kk Manufacture of carbon vessel
JPS6364906A (en) * 1986-09-03 1988-03-23 Showa Denko Kk Glassy carbon plate
US4847063A (en) * 1987-12-02 1989-07-11 Fiber Materials, Inc. Hollow composite body having an axis of symmetry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942669U (en) * 1972-07-19 1974-04-15
JPS5035930A (en) * 1973-07-12 1975-04-04
JPS534011A (en) * 1976-05-18 1978-01-14 Morganite Modmor Ltd Carbonncarbon complexes
JPS5532710A (en) * 1978-08-23 1980-03-07 Toho Beslon Co Carbon fiber reinforced carbon friction material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942669U (en) * 1972-07-19 1974-04-15
JPS5035930A (en) * 1973-07-12 1975-04-04
JPS534011A (en) * 1976-05-18 1978-01-14 Morganite Modmor Ltd Carbonncarbon complexes
JPS5532710A (en) * 1978-08-23 1980-03-07 Toho Beslon Co Carbon fiber reinforced carbon friction material

Also Published As

Publication number Publication date
JPS59174510A (en) 1984-10-03

Similar Documents

Publication Publication Date Title
DE2724131C2 (en) Plate-shaped carbon body and method for its manufacture
JPS6150912B2 (en)
US4759977A (en) Flexible carbon material
JPH0211546B2 (en)
JPH03150266A (en) Production of carbon/carbon composite material
JPS5935841B2 (en) Tansozairiyounoseizohou
JPH0559867B2 (en)
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
JP3131911B2 (en) Method for producing thick porous carbon material
JPH052625B2 (en)
JPH0360478A (en) Production of porous carbon sheet
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JPS61236664A (en) Manufacture of porous carbon sheet
JPH06206780A (en) Production of active porous carbonaceous structure
JPH0859360A (en) Production of porous carbon material
KR940010099B1 (en) Process for producing carbon/carbon composite using coaltar-phenol resin
JPH03197360A (en) Production of carbon fiber-reinforced carbon material
KR20030038723A (en) Method for manufacturing composite materials
JPH04182307A (en) Production of vetreous carbon material
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH0624865A (en) Production of porous active carbon molding
JPH044242B2 (en)
JPS62160661A (en) Production of thin carbon plate for fuel cell separator
JPS5930708A (en) Manufacture of carbon product having porous-dense structure
JPH10167855A (en) Porous carbon material