JPH02199010A - Production of thin sheetlike carbon material - Google Patents

Production of thin sheetlike carbon material

Info

Publication number
JPH02199010A
JPH02199010A JP1016933A JP1693389A JPH02199010A JP H02199010 A JPH02199010 A JP H02199010A JP 1016933 A JP1016933 A JP 1016933A JP 1693389 A JP1693389 A JP 1693389A JP H02199010 A JPH02199010 A JP H02199010A
Authority
JP
Japan
Prior art keywords
carbon material
filler
electrically conductive
graphite powder
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1016933A
Other languages
Japanese (ja)
Inventor
Koji Kamata
鎌田 浩治
Shigeru Takano
茂 高野
Tsuneo Kaneshiro
庸夫 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1016933A priority Critical patent/JPH02199010A/en
Publication of JPH02199010A publication Critical patent/JPH02199010A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a thin sheetlike carbon material excellent in bending strength, electrical characteristics and gas-impermeability by impregnating a substrate in the form of a fiber aggregate or film with an electrically conductive varnish prepared by mixing and kneading a liquid resin with a filler, carrying out lamination molding of the resultant sheets of prepreg and calcining the laminated sheets. CONSTITUTION:Carbon black especially 10-100nm average particle diameter is mixed with scaly graphite powder having <=100mum average particle diameter preferably at 50-90wt.%:10-50wt.% ratio to prepare a filler. The above-mentioned filler in an amount of 2-50wt.% based on a liquid resin, such as phenolic resin, is then added and mixed therewith to provide an electrically conductive varnish. A substrate consisting of cellulosic paper or film is then impregnated with the above-mentioned electrically conductive varnish. The resultant plural sheets of prepreg are subsequently dried at 100-150 deg.C, then laminated and thermally compression molded at 100-150 deg.C under 50-150kg/cm<2> to afford an electrically conductive laminated sheet. The obtained laminated sheet is then normally calcined at 900-1500 deg.C maximum temperature to provide the objective thin sheetlike carbon material.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、薄板状炭素材料の製造方法に関し、特にリン
酸型燃料電池セパレータ用炭素材料の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a thin plate-like carbon material, and particularly to a method for producing a carbon material for a phosphoric acid fuel cell separator.

〈従来の技術〉 一般に、リン酸型燃料電池は、例えばリン酸を保持した
電解質層と、その両側に配置され白金触媒を担持した多
孔質の電極基板と、前記電極基板の各外面に形成されて
いる流通溝を覆って設けられたセパレータとで構成され
ている単位セルを、前記セパレータを介して積層したも
のである。
<Prior Art> In general, a phosphoric acid fuel cell includes an electrolyte layer holding, for example, phosphoric acid, a porous electrode substrate disposed on both sides of the electrolyte layer and supporting a platinum catalyst, and an electrolyte layer formed on each outer surface of the electrode substrate. A separator is provided to cover a flow groove, and unit cells are stacked with the separator interposed therebetween.

かかるセパレータの上下面には、燃料ガスと酸素ガスが
それぞれ流されるので、前記セパレータは燃料ガスと酸
素ガスを分離するための境界としての機能と単位セル間
の接続体としての機能を必要とするため、その材料には
、ガス不透過性、電気伝導性、機械的強度および作動温
度における耐リン酸性等について優れた特性を有するこ
とが要求され、通常、炭素材料が使用されている。
Since fuel gas and oxygen gas flow through the upper and lower surfaces of such a separator, the separator needs to function as a boundary for separating fuel gas and oxygen gas and as a connector between unit cells. Therefore, the material is required to have excellent properties such as gas impermeability, electrical conductivity, mechanical strength, and resistance to phosphoric acid at operating temperatures, and carbon materials are usually used.

また、前記炭素材の製造方法として、熱硬化性樹脂を含
浸し、かつ黒鉛粉末または炭素繊維を含むセルロース質
の紙を積層圧着し、硬化、焼成する方法が、例えば特開
昭60−161144号公報に開示されている。
Further, as a method for manufacturing the carbon material, a method of laminating and pressing cellulose paper impregnated with a thermosetting resin and containing graphite powder or carbon fiber, hardening and firing is disclosed, for example, in JP-A No. 60-161144. Disclosed in the official gazette.

〈発明が解決しようとする課題〉 前記特開昭60−161144号公報に開示された方法
では、基材表面に炭素繊維、黒鉛粉末等の炭素フィラー
が完全に含浸されないまま付着し、基材内部との組成が
異なり、最終的に熱硬化性樹脂、セルロース質紙よりな
るガラス状カーボンリッチな層と炭素フイラーリツ、チ
な層が板厚方向に交互に介在する炭素材料になってしま
い、板厚方向の導電性が低下してしまうという問題点が
ある。
<Problems to be Solved by the Invention> In the method disclosed in JP-A-60-161144, carbon fillers such as carbon fibers and graphite powder adhere to the surface of the base material without being completely impregnated, and the inside of the base material The final result is a carbon material in which glassy carbon-rich layers made of thermosetting resin and cellulose paper and carbon filler-rich layers alternate in the thickness direction. There is a problem that the conductivity in the direction decreases.

本発明は、上記問題点を解決し、曲げ強度、電気特性お
よびガス不透過性に優れた薄板状炭素材料の製造方法を
提供することを目的としている。
An object of the present invention is to solve the above-mentioned problems and provide a method for producing a thin plate-like carbon material having excellent bending strength, electrical properties, and gas impermeability.

〈課題を解決するための手段〉 上記目的を達成するために、本発明は、鱗片状を呈する
黒鉛粉末とカーボンブラックをフィラーとし、これを熱
硬化性樹脂に混合・混練した導電性ワニスをセルロース
質紙またはセルロースフィルムよりなる基材に含浸して
得られるプリプレグを、積層成形および焼成処理を施す
ことにより得られる薄板状炭素材料の製造方法を提供す
る。
<Means for Solving the Problems> In order to achieve the above object, the present invention uses graphite powder exhibiting a scale shape and carbon black as fillers, and uses a conductive varnish in which the fillers are mixed and kneaded with a thermosetting resin, and is applied to cellulose. Provided is a method for producing a thin plate-like carbon material obtained by subjecting a prepreg obtained by impregnating a base material made of quality paper or cellulose film to lamination molding and firing treatment.

また、前記黒鉛粉末とカーボンブラックの混合割合は、
カーボンブラック50〜90wt%に対し、黒鉛粉末1
0〜50wt%であるのが好ましい。
In addition, the mixing ratio of the graphite powder and carbon black is
Graphite powder 1 to 50 to 90 wt% carbon black
It is preferably 0 to 50 wt%.

そして、前記熱硬化性樹脂に対する前記フィラーの混合
割合が、熱硬化性樹脂に対し、2〜50wt%であるの
が好ましい。
Further, it is preferable that a mixing ratio of the filler to the thermosetting resin is 2 to 50 wt% with respect to the thermosetting resin.

以下に本発明をざらに詳細に説明する。The invention will now be described in more detail.

本発明は、まず繊維集合体またはフィルム状の基材に、
液状樹脂とフィラーを混合混練した導電性ワニスを含浸
し、導電性のプリプレグとする。 特に本発明において
前記フィラーは、鱗片状を呈する黒鉛粉末およびカーボ
ンブラックを含む。
In the present invention, first, a fiber aggregate or a film-like base material,
It is impregnated with conductive varnish made by mixing and kneading liquid resin and filler to make conductive prepreg. In particular, in the present invention, the filler includes graphite powder and carbon black that exhibit a scale-like shape.

前記カーボンブラックは、ワニスにした場合の分散性に
優れ、基材である繊維集合体またはフィルム状物質内部
まで完全に均一に入り込み、かつ導電性を有するものが
好ましい。 特に平均粒子径が10〜1100n、固有
抵抗がJISに一1469固有抵抗測定法にて0.1〜
1.0Ω・cmであるカーボンブラックは、基材に含浸
した際も、カーボンブラック粒子が極めて微小なため、
基材内部にまで均一に分布し、両方向、板厚方向共に導
電性に優れた炭素材料となるため好ましい。
The carbon black is preferably one that has excellent dispersibility when made into a varnish, can completely and uniformly penetrate into the fiber aggregate or film-like substance that is the base material, and has electrical conductivity. In particular, the average particle diameter is 10 to 1100n, and the specific resistance is 0.1 to 0.1 by JIS-1469 specific resistance measurement method.
Carbon black, which has a resistance of 1.0Ω・cm, has extremely small particles even when impregnated into a base material.
It is preferable because it is uniformly distributed inside the base material and becomes a carbon material with excellent conductivity in both directions and the thickness direction.

またさらに、2500℃以上で黒鉛化処理したカーボン
ブラックを使うと最終的な炭素材料の導電性が一層向上
し好ましい。
Furthermore, it is preferable to use carbon black graphitized at 2500° C. or higher because the conductivity of the final carbon material is further improved.

また、カーボンブラックと併用する鱗片状の高結晶性黒
鉛粉末には、製鉄所の製鋼工程で得られるキッシュグラ
ファイトを必要に応じて精製粉砕したものや、天然より
産出する鱗片状黒鉛粉末を精製、粉砕したもの等の人造
および天然のもので、平均粒径が100μm以下のもの
がよい。
In addition, the scaly highly crystalline graphite powder used in combination with carbon black includes refined and crushed quiche graphite obtained in the steelmaking process at a steel mill, as well as naturally occurring scaly graphite powder that is refined and crushed. Artificial and natural materials such as pulverized materials with an average particle size of 100 μm or less are preferable.

この鱗片状を呈する黒鉛粉末を用いることにより、炭素
材料とした後も、気体が透過するのを妨げる働きをする
ため、気体不透過性の優れた炭素材料になる。
By using graphite powder exhibiting this scale-like shape, even after being made into a carbon material, it functions to prevent gas from permeating, resulting in a carbon material with excellent gas impermeability.

平均粒径が100μm超の黒鉛粉末を配合した場合は、
得られる炭素材料の表面精度が悪くなったり、また基材
である繊維、気孔の内部にまで均一に入り込めないとい
う問題が生ずるため好ましくない。
When blending graphite powder with an average particle size of over 100 μm,
This is undesirable because the surface precision of the resulting carbon material deteriorates, and the fibers that are the base material cannot evenly penetrate into the interior of the pores.

カーボンブラックと黒鉛粉末との混合割合は、カーボン
ブラック50〜90wt%に対し黒鉛粉末10〜50w
t%が好ましい。
The mixing ratio of carbon black and graphite powder is 10 to 50w of graphite powder to 50 to 90wt% of carbon black.
t% is preferred.

カーボンブラックが90wt%超になった場合は、鱗片
状黒鉛粉末による気体不透過性への影響が不十分であり
、また、カーボンブラックが50wt%0wt%未満基
材への含浸時、カーボンブラックによる板厚方向の電気
特性への影響が不十分になるため好ましくない。
When carbon black exceeds 90 wt%, the effect of flaky graphite powder on gas impermeability is insufficient, and when carbon black is less than 50 wt%, when impregnating a base material, carbon black This is not preferable because the influence on the electrical properties in the thickness direction becomes insufficient.

カーボンブラックと黒鉛粉末を混合し、フィラーとする
方法としては、ヘンシェルミキサーによる方法等、一般
の混合装置にて行う。
The method of mixing carbon black and graphite powder to form a filler is carried out using a general mixing device such as a method using a Henschel mixer.

この後、前記フィラーは、熱硬化性樹脂と混合・混練し
、導電性ワニスを作る。
Thereafter, the filler is mixed and kneaded with a thermosetting resin to produce a conductive varnish.

マトリクスとして用いられる熱硬化性樹脂には、フェノ
ール樹脂、フラン樹脂、ポリイミド樹脂、エポキシ樹脂
等の液状の樹脂が使用される。
As the thermosetting resin used as the matrix, liquid resins such as phenol resins, furan resins, polyimide resins, and epoxy resins are used.

前記熱硬化性樹脂とフィラーを混合・・混練する方法と
しては、オーブンロール混練機、インテンシブミキサー
 ボールミル、三本ロール混練機等一般の混練装置を挙
げることができる。
Examples of the method for mixing and kneading the thermosetting resin and filler include general kneading equipment such as an oven roll kneader, intensive mixer, ball mill, and three-roll kneader.

また、液状樹脂とフィラーとの混合割合は、樹脂に対し
てフィラーを2〜50wt%とするのが好ましい。 フ
ィラーの混合割合が2wt%未満の場合には、導電性が
低いという問題があり、一方、50wt%超の場合には
、導電性は向上するが、ワニスとした場合、粘度が高く
なり基材への含浸性に問題が生じてしまう。
Further, the mixing ratio of the liquid resin and the filler is preferably 2 to 50 wt% of the filler to the resin. If the filler mixing ratio is less than 2wt%, there is a problem that the conductivity is low.On the other hand, if it is more than 50wt%, the conductivity improves, but when used as a varnish, the viscosity increases and the base material Problems arise in the impregnability of the material.

さらに、前記ワニスを基材に含浸する。Furthermore, the base material is impregnated with the varnish.

基材に使用される繊維集合体およびフィルムとしては、
セルロース質紙、セルロースフィルムのように800℃
以上での焼成処理において、炭素化した形で基材内に残
存する物質が使用される。
Fiber aggregates and films used as base materials include:
800℃ like cellulose paper and cellulose film
In the above firing process, the substance remaining in the base material in a carbonized form is used.

セルロース質紙には、工業用ろ紙、クラフト紙のような
一般的な紙が使用可能であり、さらにフェノール積層板
等に使用されるような、含浸性の優れた紙がより好まし
い。
As the cellulose paper, general papers such as industrial filter paper and kraft paper can be used, and papers with excellent impregnation properties, such as those used for phenol laminates, are more preferable.

また、セルロースフィルムは、アセチルセルロースを加
水分解して得られる気孔径30〜100μmの多孔質フ
ィルムが好ましい、 さらには、含浸性を向上させるた
め、あらかじめアセチルセルロースにポリビニルアルコ
ール等の開孔材を混合し、フィルム成形後、前記開孔材
を溶出処理し、気孔径100〜500μmに調整した多
孔質セルロースフィルムを用いるとなお好ましい。
In addition, the cellulose film is preferably a porous film with a pore size of 30 to 100 μm obtained by hydrolyzing acetylcellulose.Furthermore, in order to improve impregnability, a porous material such as polyvinyl alcohol is mixed in advance with the acetylcellulose. However, it is more preferable to use a porous cellulose film whose pore diameter is adjusted to 100 to 500 μm by dissolving the porous material after film forming.

基材の厚みとしては、10〜1000μmが好ましい、
  10μm未満の場合には、基材としての強度が保て
ず、また、1000μm超になると、含浸、積層成形、
焼成して得られた炭素材料の厚さが不均一になるという
問題が生じる。
The thickness of the base material is preferably 10 to 1000 μm.
If it is less than 10 μm, the strength as a base material cannot be maintained, and if it exceeds 1000 μm, impregnation, lamination molding,
A problem arises in that the thickness of the carbon material obtained by firing becomes non-uniform.

導電性ワニスを基材に含浸する方法としては、バット状
容器に入ったワニスに基材を浸す方法や、基材にへヶ、
スプレー等でワニスを塗工するという一般的な含浸方法
や、ロールを有する含浸装置を使う方法等が用いられる
Methods for impregnating the base material with conductive varnish include dipping the base material in varnish in a vat-shaped container, dipping it into the base material,
A general impregnation method of applying varnish by spraying or the like, a method using an impregnation device having a roll, etc. are used.

この含浸処理により基材表面から内部に至るまで均一な
組成を有する導電性プリプレグが得られる。
By this impregnation treatment, a conductive prepreg having a uniform composition from the surface of the base material to the inside thereof can be obtained.

得られたプリプレグを 100〜150℃で乾燥させた
後、数枚積層して 100〜150℃、50〜150k
g/cm”で加熱圧縮成形を行い、導電性積層板とする
。 プリプレグを積層する枚数は、最終的に目的とする
炭素材料の厚さに、応じて調整する。 また、成形に用
いられる方法としては、熱プレス成形法、熱ロール成形
法等、一般的な成形法が用いられる。
After drying the obtained prepreg at 100-150℃, several sheets were laminated and heated at 100-150℃ for 50-150k.
g/cm" to form a conductive laminate. The number of prepreg layers to be laminated is adjusted depending on the final thickness of the carbon material. Also, the method used for molding For this purpose, general molding methods such as hot press molding and hot roll molding are used.

次に、得られた導電性積層板を焼成炉にセットし、焼成
炭素化して目的とする薄板状炭素材料とする。 焼成に
使用される炉としては、炉内を非酸化性雰囲気下にでき
る市販のマツフル炉、トンネル炉等が使用可能であり、
N2、Ar等不活性ガスを流通させながら焼成したり、
試料の周囲をコークス微粉で充填しながら焼成するのが
好ましい、 焼成温度に関しては特に制限はないが、通
常最高温度900〜1500℃である。
Next, the obtained conductive laminate is set in a firing furnace, and fired and carbonized to obtain the desired thin plate-like carbon material. As the furnace used for firing, commercially available Matsufuru furnaces, tunnel furnaces, etc. that can create a non-oxidizing atmosphere inside the furnace can be used.
Firing while passing an inert gas such as N2 or Ar,
It is preferable to fire the sample while filling the periphery with coke fine powder. There are no particular restrictions on the firing temperature, but the maximum temperature is usually 900 to 1500°C.

〈実施例〉 以下に実施例を挙げ、本発明を具体的に説明する。<Example> EXAMPLES The present invention will be specifically described below with reference to Examples.

(実施例1) 平均粒径30μmの鱗片状黒鉛粉末(キッシュグラファ
イト)と電気比抵抗測定法(JISに−1489)にお
いて、0,2Ω・cmの高導電性カーボンブラック(東
海カーボン■製トーカブラック、平均粒径50nm)、
30wt%対70wt%をヘンシェルミキサーで混合し
た。
(Example 1) Highly conductive carbon black (Toka Black manufactured by Tokai Carbon ■) with a high conductivity of 0.2 Ω・cm was measured using a flaky graphite powder (Kish graphite) with an average particle size of 30 μm and an electrical resistivity measurement method (JIS-1489). , average particle size 50 nm),
30 wt% to 70 wt% were mixed in a Henschel mixer.

この混合フィラーを市販フェノール樹脂溶液(群宋化学
■製レジトップPL−2211、不揮発分56wt%)
に20wt%添加し、ボールミルで混合・混練して導電
性ワニスとした。
This mixed filler was added to a commercially available phenol resin solution (Regitop PL-2211 manufactured by Gunsung Chemical ■, non-volatile content 56 wt%).
was added in an amount of 20 wt% and mixed and kneaded in a ball mill to obtain a conductive varnish.

このワニスをステンレス製バットに移し、この中に、市
販の積層板用セルロース質紙(ダイセル化学■製)を通
し、含浸処理を行った。
This varnish was transferred to a stainless steel vat, and a commercially available cellulose paper for laminates (manufactured by Daicel Chemical Co., Ltd.) was passed through the vat for impregnation treatment.

得られたプリプレグを室温で10時間、オーブン中で1
00℃、30分乾燥した後、200X200mmの寸法
に切断した。 この所定寸法のプリプレグを15枚積層
し、熱プレスにセットした後、成形温度150℃、成形
圧力150 kg/cm2の条件下で成形し、厚さ2.
0mmの導電性積層板とした。
The resulting prepreg was heated in an oven for 10 hours at room temperature.
After drying at 00° C. for 30 minutes, it was cut into a size of 200×200 mm. 15 prepregs of the specified dimensions were laminated, set in a hot press, and then molded at a molding temperature of 150°C and a molding pressure of 150 kg/cm2 to a thickness of 2.5 kg/cm2.
A conductive laminate with a thickness of 0 mm was used.

次に、この成形体をステンレス製焼成箱にセットし、上
下を黒鉛板で保持した後、周囲をコークス微粉末でバッ
キングして、市販のマツフル炉を用い、N2雰囲気下、
昇温速度10’e /hr、最高温度1000℃で焼成
炭素化し、薄板状炭素材料とした。 この炭素材料の特
性を第1表に示す。
Next, this molded body was set in a stainless steel firing box, the top and bottom were held with graphite plates, the surrounding area was backed with fine coke powder, and the molded body was heated in a commercially available Matsufuru furnace under an N2 atmosphere.
Carbonization was performed by firing at a heating rate of 10'e/hr and a maximum temperature of 1000°C to obtain a thin plate-like carbon material. The properties of this carbon material are shown in Table 1.

(実施例2) 実施例1と同様の鱗片状黒鉛粉末と高導電性カーボンブ
ラックをヘンシェルミキサーで混合し、実施例1と同様
のフェノール樹脂に添加してボールミルで混合・混練し
て導電性ワニスとした。
(Example 2) The same flaky graphite powder and highly conductive carbon black as in Example 1 were mixed in a Henschel mixer, added to the same phenol resin as in Example 1, and mixed and kneaded in a ball mill to create a conductive varnish. And so.

このワニスをステンレス製バットにわし、この中に、ア
セチルセルロースを加水分解したセルロースフィルムを
通し、含浸処理を行った。
This varnish was poured into a stainless steel vat, and a cellulose film obtained by hydrolyzing acetyl cellulose was passed through the vat to perform an impregnation treatment.

得られたプリプレグを室温で10時間、オーブン中で1
00℃、30分乾燥した後、200X200mmの寸法
に切断した。 この所定寸法のプリプレグを15枚積層
し、熱プレスにセットした後、成形温度150℃、成形
圧力100 kg/c■2の条件下で成形し、厚さ2.
5mmの導電性積層板とした。
The resulting prepreg was heated in an oven for 10 hours at room temperature.
After drying at 00° C. for 30 minutes, it was cut into a size of 200×200 mm. 15 sheets of prepreg having the specified dimensions were laminated, set in a hot press, and then molded at a molding temperature of 150°C and a molding pressure of 100 kg/cm2 to a thickness of 2.
It was made into a 5 mm conductive laminate.

次に、この成形体をステンレス製焼成箱にセットし、上
下を黒鉛板で保持した後、周囲をコークス微粉末でバッ
キングして、市販のマツフル炉を用い、N2雰囲気下、
昇温速度10t /hr、最高温度1000℃で焼成炭
素化し、薄板状炭素材料とした。 この炭素材料の特性
を第1表に示す。
Next, this molded body was set in a stainless steel firing box, the top and bottom were held with graphite plates, the surrounding area was backed with fine coke powder, and the molded body was heated in a commercially available Matsufuru furnace under an N2 atmosphere.
Carbonization was performed by firing at a heating rate of 10 t/hr and a maximum temperature of 1000°C to obtain a thin plate-like carbon material. The properties of this carbon material are shown in Table 1.

(比較例1) 市販人造黒鉛粉末(平均粒径30μm)20wt%と実
施例1と同様のフェノール樹脂80wt%をボールミル
で混合・混練し、導電性ワニスとした。 このワニスを
ステンレス製バットに穆し、この中に市販の積層板用セ
ルロース質紙(ダイセル化学■製)を通し、含浸処理を
行った。
(Comparative Example 1) 20 wt % of commercially available artificial graphite powder (average particle size 30 μm) and 80 wt % of the same phenolic resin as in Example 1 were mixed and kneaded in a ball mill to obtain a conductive varnish. This varnish was poured into a stainless steel vat, and a commercially available cellulose paper for laminates (manufactured by Daicel Chemical Co., Ltd.) was passed through the vat for impregnation.

得られたプリプレグを室温で10時間、オーブン中で1
00℃、30分乾燥した後、200X200mmの寸法
に切断した。 この所定寸法のプリプレグを15枚積層
し、熱プレスにセットした後、成形温度150℃、成形
圧力150 kg/c■2の条件下で成形し、厚さ2.
0mmの導電性積層板とした。
The resulting prepreg was heated in an oven for 10 hours at room temperature.
After drying at 00° C. for 30 minutes, it was cut into a size of 200×200 mm. 15 sheets of prepreg having the specified dimensions were laminated, set in a hot press, and then molded at a molding temperature of 150°C and a molding pressure of 150 kg/cm2 to a thickness of 2.
A conductive laminate with a thickness of 0 mm was used.

次に、この成形体をステンレス製焼成箱にセットし、上
下を黒鉛板で保持した後、周囲をコークス微粉末でバッ
キングして、市販のマツフル炉を用い、N2雰囲気下、
昇温速度10t /hr% 最高温度1000℃で焼成
炭素化し、薄板状炭素材料とした。 この炭素材料の特
性を第1表に示す。
Next, this molded body was set in a stainless steel firing box, the top and bottom were held with graphite plates, the surrounding area was backed with fine coke powder, and the molded body was heated in a commercially available Matsufuru furnace under an N2 atmosphere.
Carbonization was performed by firing at a temperature increase rate of 10 t/hr% and a maximum temperature of 1000°C to obtain a thin plate-like carbon material. The properties of this carbon material are shown in Table 1.

〈発明の効果〉 本発明の炭素材料の製造方法によれば、鱗片状黒鉛粉末
と高導電性カーボンブラックを併用することによって、
均一に導電性ワニスが含浸したプリプレグを得ることが
できる。 その結果、曲げ強度、電気特性、ガス不透過
性に優れた炭素材料が得られる。
<Effects of the Invention> According to the method for producing a carbon material of the present invention, by using scaly graphite powder and highly conductive carbon black in combination,
A prepreg uniformly impregnated with conductive varnish can be obtained. As a result, a carbon material with excellent bending strength, electrical properties, and gas impermeability can be obtained.

Claims (3)

【特許請求の範囲】[Claims] (1)鱗片状を呈する黒鉛粉末とカーボンブラックをフ
ィラーとし、これを熱硬化性樹脂に混合・混練した導電
性ワニスをセルロース質紙またはセルロースフィルムよ
りなる基材に含浸して得られるプリプレグを、積層成形
および焼成処理を施すことにより得られる薄板状炭素材
料の製造方法。
(1) A prepreg obtained by impregnating a base material of cellulose paper or cellulose film with a conductive varnish made by mixing and kneading graphite powder and carbon black in a thermosetting resin as fillers, A method for producing a thin plate-like carbon material obtained by lamination molding and firing treatment.
(2)前記黒鉛粉末とカーボンブラックの混合割合は、
カーボンブラック50〜90wt%に対し、黒鉛粉末1
0〜50wt%である請求項1に記載の薄板状炭素材料
の製造方法。
(2) The mixing ratio of the graphite powder and carbon black is:
Graphite powder 1 to 50 to 90 wt% carbon black
The method for producing a thin plate-like carbon material according to claim 1, wherein the content is 0 to 50 wt%.
(3)前記熱硬化性樹脂に対する前記フィラーの混合割
合が、熱硬化性樹脂に対し、2〜50wt%である請求
項1または2に記載の薄板状炭素材料の製造方法。
(3) The method for manufacturing a thin plate-like carbon material according to claim 1 or 2, wherein a mixing ratio of the filler to the thermosetting resin is 2 to 50 wt% with respect to the thermosetting resin.
JP1016933A 1989-01-26 1989-01-26 Production of thin sheetlike carbon material Pending JPH02199010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1016933A JPH02199010A (en) 1989-01-26 1989-01-26 Production of thin sheetlike carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016933A JPH02199010A (en) 1989-01-26 1989-01-26 Production of thin sheetlike carbon material

Publications (1)

Publication Number Publication Date
JPH02199010A true JPH02199010A (en) 1990-08-07

Family

ID=11929925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016933A Pending JPH02199010A (en) 1989-01-26 1989-01-26 Production of thin sheetlike carbon material

Country Status (1)

Country Link
JP (1) JPH02199010A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012309A3 (en) * 1994-10-07 1996-10-24 Int Fuel Cells Corp Cathode reactant flow field component for a fuel cell stack
JP2010275172A (en) * 2009-06-01 2010-12-09 Tokai Univ Method for production of magnetic carbon composite material, and magnetic carbon composite material
JP2013136495A (en) * 2011-12-28 2013-07-11 Akechi Ceramics Co Ltd Method for producing dense carbon thin plate, and carbon thin plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012309A3 (en) * 1994-10-07 1996-10-24 Int Fuel Cells Corp Cathode reactant flow field component for a fuel cell stack
EP0786155A2 (en) * 1994-10-07 1997-07-30 International Fuel Cells Corporation Cathode reactant flow field component for a fuel cell stack
JP2010275172A (en) * 2009-06-01 2010-12-09 Tokai Univ Method for production of magnetic carbon composite material, and magnetic carbon composite material
JP2013136495A (en) * 2011-12-28 2013-07-11 Akechi Ceramics Co Ltd Method for producing dense carbon thin plate, and carbon thin plate

Similar Documents

Publication Publication Date Title
JPS60122711A (en) Manufacture of porous carbon board
GB2117746A (en) Fuel cell electrode substrates
US4080413A (en) Porous carbon fuel cell substrates and method of manufacture
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JPH02199010A (en) Production of thin sheetlike carbon material
JPH0559867B2 (en)
JPH0248466A (en) Production of thin sheetlike carbon material
JPH0157467B2 (en)
JP4956866B2 (en) Silica gel electrolyte membrane, method for producing the same, and fuel cell
JPS62171908A (en) Production of carbon plate
JPS6119820A (en) Production of porous carbon plate
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPH11139871A (en) Porous carbon material and its production
JPS61236664A (en) Manufacture of porous carbon sheet
JPH0360478A (en) Production of porous carbon sheet
JPH0859360A (en) Production of porous carbon material
JPH0131445B2 (en)
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JPH10158064A (en) Solid activated carbon and its production
JP3131911B2 (en) Method for producing thick porous carbon material
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPS62270412A (en) Production of carbon board
JPH03126666A (en) Production of sheetlike carbon material
JPS63297272A (en) Production of carbon material
JP3183681B2 (en) Method for producing highly conductive porous carbon material