JPS62171908A - Production of carbon plate - Google Patents

Production of carbon plate

Info

Publication number
JPS62171908A
JPS62171908A JP61012055A JP1205586A JPS62171908A JP S62171908 A JPS62171908 A JP S62171908A JP 61012055 A JP61012055 A JP 61012055A JP 1205586 A JP1205586 A JP 1205586A JP S62171908 A JPS62171908 A JP S62171908A
Authority
JP
Japan
Prior art keywords
weight
carbon
resin
graphite powder
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61012055A
Other languages
Japanese (ja)
Inventor
Shigeru Takano
茂 高野
Tsuneo Kaneshiro
庸夫 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61012055A priority Critical patent/JPS62171908A/en
Publication of JPS62171908A publication Critical patent/JPS62171908A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To make it possible to keep the fiber shape even after carbonization treatment and thereby sufficiently play a role in fiber reinforcement, by using infusibilized pitch fibers. CONSTITUTION:20-80wt% thermosetting resin, 10-70wt% graphite powder having <=50mu maximum particle size and 10-50wt% infusibilized pitch fibers are pressurized and molded into a plate form. The resultant plate is then completely cured within a temperature region of 150-200 deg.C and carbonized to afford the aimed carbon plate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素板の製造方法に関し、この明細書ではリン
酸型燃料電池セパレーターに対して好適に用いられる機
械的性質に優れる炭素薄板を安定して製造する方法につ
いて提案する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a carbon plate, and this specification describes a method for stabilizing a carbon thin plate with excellent mechanical properties, which is preferably used for a phosphoric acid fuel cell separator. We propose a manufacturing method using

リン酸型燃料電池は、リン酸を保持した電解質層および
その両側に配置した白金触媒を担持した多孔質電極基板
を単位セルとして、各単位セルをセパレーターを介して
積層したものである。かかるセパレーターはその両側面
のガス流通溝に供給される燃料ガスと酸化ガスの分離、
境界ならびに単位セル間の接続導体としての機能を必要
とするため、その材料には高いガス不透過性、電気伝導
性、熱伝導性、機械的強度および作動温度における耐リ
ン酸性等の特性を有することが要求される。
A phosphoric acid fuel cell has a unit cell consisting of an electrolyte layer holding phosphoric acid and a porous electrode substrate supporting a platinum catalyst disposed on both sides of the electrolyte layer, and each unit cell is stacked with a separator in between. Such a separator separates the fuel gas and oxidizing gas supplied to the gas distribution grooves on both sides of the separator.
Since it is necessary to function as a boundary and a connecting conductor between unit cells, the material has properties such as high gas impermeability, electrical conductivity, thermal conductivity, mechanical strength, and resistance to phosphoric acid at operating temperatures. This is required.

(従来の技術) 従来、上記電池セパレーター、即ち炭素板の製造方法と
しては、例えば、特開昭59−26907号公報や特開
昭59−127377号公報などに開示されているよう
な、フェノール樹脂等熱硬化性樹脂と黒鉛粉末を混練し
熱ロール又は熱プレスにて成形後必要に応じて炭化処理
する方法がある。この既知方法により製造した炭素材は
ガス不透過性、電気伝導性が優れている。しかし機械的
強度が劣り、電池を製造する際に破損しやすく、作業性
に問題を残していた。
(Prior Art) Conventionally, as a manufacturing method for the above-mentioned battery separator, that is, carbon plate, phenolic resins, such as those disclosed in Japanese Patent Application Laid-open No. 59-26907 and Japanese Patent Application Laid-Open No. 59-127377, have been used. There is a method in which a thermosetting resin and graphite powder are kneaded, molded using a hot roll or hot press, and then carbonized if necessary. The carbon material produced by this known method has excellent gas impermeability and electrical conductivity. However, it had poor mechanical strength and was easily damaged during battery manufacture, leaving problems with workability.

その他、特開昭57−207883号として提案されて
いるものがある。この既知技術は、フェノール樹脂等熱
硬化性樹脂、黒鉛粉末および炭素繊維からなる成形物を
焼成炭化処理する方法である。この方法はガス不透過性
、電気伝導性に加え機械的強度にも優れた燃料電池セパ
レーター用炭素板が得られるが、補強材に炭素繊維を使
っているため、焼成の際に炭素繊維とマトリックス樹脂
の熱収縮率の違いにより、亀裂がはいりやすく、上述し
たと同様炭素板を工業的に安定して製造することが難し
かった。
In addition, there is a method proposed in Japanese Patent Application Laid-Open No. 57-207883. This known technique is a method of firing and carbonizing a molded article made of a thermosetting resin such as a phenolic resin, graphite powder, and carbon fiber. This method yields carbon plates for fuel cell separators that have excellent gas impermeability, electrical conductivity, and mechanical strength. However, since carbon fibers are used as reinforcing materials, the carbon fibers and matrix are bonded to each other during firing. Due to the difference in thermal contraction rate of the resins, cracks are likely to occur, and as mentioned above, it has been difficult to industrially and stably manufacture carbon plates.

ガス透過性と電気伝導性には優れるが機械的強度に劣る
ために作業性が悪いという問題点、あるいは繊維補強材
を使うために安定した製造が阻害されるという上記各従
来技術の抱える問題点に対し、 それらを解決すべき課題として把え、その克服法の提案
をもって本発明の目的とする。
Although they have excellent gas permeability and electrical conductivity, they have poor workability due to poor mechanical strength, and the use of fiber reinforcement hinders stable production, which is a problem faced by each of the above conventional technologies. However, these problems are regarded as problems to be solved, and the purpose of the present invention is to propose a method for overcoming them.

(問題点を解決するための手段) 1掲の目的は、次の事項を要旨とする構成にて実現され
る。すなわち、本発明にかかる炭素板の製造方法は、熱
硬化性樹脂20〜80重量%、最大粒子径が50μm以
下の黒鉛粉末10〜70重量%および不融化処理したピ
ッチ繊維10〜50重量%を、加圧加熱して板状に成形
し、150〜200℃の温度域で完全に硬化させたのち
炭化処理することを特徴とする。
(Means for resolving the problems) The objectives listed in item 1 will be realized through a structure that has the following points as its main points. That is, the method for manufacturing a carbon plate according to the present invention includes 20 to 80% by weight of a thermosetting resin, 10 to 70% by weight of graphite powder with a maximum particle size of 50 μm or less, and 10 to 50% by weight of infusible pitch fibers. It is characterized in that it is pressurized and heated to be formed into a plate shape, completely cured in a temperature range of 150 to 200°C, and then carbonized.

(作 用) まず、本発明製造方法において用いる出発原料について
説明する。
(Function) First, the starting materials used in the production method of the present invention will be explained.

熱硬化性樹脂としては、好ましくはフェノール樹脂であ
るが、その他フラン樹脂やエポキシ樹脂、不飽和ポリエ
ステル樹脂、ポリイミド樹脂等も使用可能である。フェ
ノール樹脂が好ましい理由は、樹脂の取扱いやすさ、成
形体の特性および価格が安価であることによる。この熱
硬化性樹脂の配合量は20〜80重量%である。20重
量%未満では均一な成形体が得られず、成形体内部にボ
イドが発生してガス不透過性が低下する。また80重量
%を超えると電気伝導性が低下する。
The thermosetting resin is preferably a phenol resin, but other resins such as furan resin, epoxy resin, unsaturated polyester resin, and polyimide resin can also be used. The reason why phenolic resin is preferable is that the resin is easy to handle, the molded product has properties, and the price is low. The blending amount of this thermosetting resin is 20 to 80% by weight. If it is less than 20% by weight, a uniform molded product cannot be obtained, and voids are generated inside the molded product, resulting in a decrease in gas impermeability. Moreover, when it exceeds 80% by weight, electrical conductivity decreases.

黒鉛粉末としては、天然物、人工物又はその混合物でよ
い。用いる粉末の最大粒子径は50μm以下であること
が必要である。50μMより大きいものを使用すると密
度が上がらず、ガス不透過性、電気伝導性において満足
した特性のものが得られない。またその配合量は10〜
70重量%とする。10重重量未満では電気伝導性が悪
く、一方70重量%を超えるとガス不透過性、機械的強
度が低下する。
The graphite powder may be a natural product, an artificial product, or a mixture thereof. The maximum particle size of the powder used must be 50 μm or less. If more than 50 μM is used, the density will not increase and satisfactory gas impermeability and electrical conductivity cannot be obtained. In addition, the blending amount is 10~
70% by weight. If it is less than 10% by weight, electrical conductivity will be poor, while if it exceeds 70% by weight, gas impermeability and mechanical strength will decrease.

不融化処理したピッチ繊維としては、常法に従い、コー
ルタールピッチ、石油系ピッチを250〜400℃で溶
融し、取出し紡糸法または遠心紡糸法により紡糸した後
酸化雰囲気下で処理することによって得られる。その配
合量としては10〜50重量%である。10重量%未満
では繊維強化の効果が低く、50重量%を超えるとガス
不透過性が低下するからである。
The infusible pitch fibers can be obtained by melting coal tar pitch or petroleum pitch at 250 to 400°C, spinning the fibers using a take-out spinning method or a centrifugal spinning method, and then treating the fibers in an oxidizing atmosphere. . Its blending amount is 10 to 50% by weight. This is because if it is less than 10% by weight, the effect of fiber reinforcement is low, and if it exceeds 50% by weight, gas impermeability will be reduced.

次に上記配合原料の成形炭素化方法について説明する。Next, a method for forming and carbonizing the above blended raw materials will be explained.

樹脂成形体の製造方法は、不融化ピッチ繊維を常法によ
りフェルト状、クロス状に加工したものを黒鉛粉末、フ
ェノール樹脂混合物中に含浸し、乾燥した後、所望の厚
さになるように積層し、ロールやプレス等を使って、加
圧加熱下で成形する方法、さらには一定の長さに切断し
た不融化ピッチ繊維、黒鉛粉末、フェノール樹脂粉末を
均一に混合した後、同様にして加圧加熱下で成形する方
法を用いる。
The method for manufacturing resin moldings is to process infusible pitch fibers into felt or cloth shapes using conventional methods, impregnate them in a graphite powder and phenol resin mixture, dry them, and then laminate them to the desired thickness. Then, it can be molded under pressure and heat using a roll or press, or it can be molded in the same way after uniformly mixing infusible pitch fibers, graphite powder, and phenolic resin powder cut to a certain length. A method of molding under pressure heating is used.

次にこのようにして製造した樹脂成形体を、150〜2
00℃の温度域にて完全に硬化させた後約1000℃ま
で加熱して炭化処理することにより目的とする炭素薄板
が得られる。
Next, the resin molded body produced in this way was
After being completely cured in a temperature range of 00°C, the desired carbon thin plate can be obtained by heating to about 1000°C and carbonizing it.

(実施例) (1)  フェノール樹脂(群栄化学−社製:レジトッ
プPL2211.不揮発分−56%、粘度−100cp
s)、人造黒鉛粉末(粉砕機で粉砕処理200メツシユ
バス)含有のメタノール溶液に、不融化ピッチ繊維のフ
ェルト物(100g / n?)を含浸させて室温で乾
燥した。その配合組成を表1に示す。
(Example) (1) Phenol resin (manufactured by Gunei Chemical Co., Ltd.: Regitop PL2211. Non-volatile content - 56%, viscosity - 100 cp
s), a felt material of infusible pitch fiber (100 g/n?) was impregnated into a methanol solution containing artificial graphite powder (pulverized with a pulverizer for 200 mesh baths) and dried at room temperature. The composition is shown in Table 1.

含浸物を2枚積層して平板状の金型にはさみ、熱プレス
により、プレス温度160℃、プレス圧70kg/ c
dで熱圧成形し、厚さ0.91m 3’0OX300I
11の薄板に成形した。
Two sheets of the impregnated material are laminated, sandwiched between flat molds, and heat pressed at a pressing temperature of 160°C and a pressing pressure of 70 kg/c.
Hot pressure molded with d, thickness 0.91m 3'0OX300I
It was molded into 11 thin plates.

次に成形体を180℃に10時間放置して完全にフェノ
ール樹脂を硬化させた後、黒鉛板にはさみ、10℃/h
rの昇温速度で1000℃まで加熱して炭化処理した。
Next, the molded body was left at 180°C for 10 hours to completely cure the phenolic resin, and then placed between graphite plates at 10°C/h.
Carbonization treatment was carried out by heating to 1000° C. at a heating rate of r.

得られた炭素薄板の特性を表2に示す。さらに、炭素F
iQ板製板製定時ワレ、ヒビ等の欠陥の生じる割合を比
較例5と対比して表3に示す。
Table 2 shows the properties of the obtained carbon thin plate. Furthermore, carbon F
Table 3 shows the proportion of defects such as regular cracks and cracks in the iQ board in comparison with Comparative Example 5.

(2)フェノール樹脂(群栄化学四社製;レジトップP
G (A)−2400微粉末、天然黒鉛粉末(粉砕機で
粉砕処理200メソシユバス)、6mmの長さの不融化
ピッチ繊維を表1の配合組成にて均一に混合した後、平
板金型に供給し、以後実施例1と同様に処理して目的と
する炭素薄板を得た。
(2) Phenol resin (manufactured by Gunei Kagaku Shishasha; Resitop P
After uniformly mixing G (A)-2400 fine powder, natural graphite powder (pulverized with a pulverizer at 200 meso-syuba), and 6 mm long infusible pitch fibers according to the composition shown in Table 1, the mixture was fed to a flat mold. Thereafter, the same treatment as in Example 1 was carried out to obtain the desired carbon thin plate.

その特性を表2にあわせて示す。Its characteristics are also shown in Table 2.

(比較例1) 配合組成1.′i表1に示した様に、不融化ピッチ繊維
なしで実施例(])と同様に処理して、比較対照用炭素
薄板を得た。その特性を表2に示す。
(Comparative Example 1) Blend composition 1. 'i As shown in Table 1, carbon thin plates for comparison were obtained by processing in the same manner as in Example (]) without the infusible pitch fibers. Its characteristics are shown in Table 2.

(比較例2) 配合組成は表1に示した様に、フェノール樹脂過剰、不
融化ピンチ繊維不足で、実施例(1)と同様に処理して
比較対照用炭素薄板を得た。その特性を表2に示す。
(Comparative Example 2) As shown in Table 1, a carbon thin plate for comparison was obtained by processing in the same manner as in Example (1), with an excess of phenol resin and an insufficient amount of infusible pinch fiber. Its characteristics are shown in Table 2.

(比較例3) 配合組成は表1に示した様に、黒鉛粉末不足で実施例(
2)と同様に処理して比較対照用炭素薄板を得た。その
特性を表2に示す。
(Comparative Example 3) As shown in Table 1, the blending composition is as shown in Table 1.
A carbon thin plate for comparison was obtained by processing in the same manner as in 2). Its characteristics are shown in Table 2.

(比較例4) 配合組成は表1に示した様に、フェノール樹脂、不融化
ピッチ繊維不足で、実施例(2)と同様に処理して比較
対照様炭素薄板を得た。その特性を表2に示す。
(Comparative Example 4) As shown in Table 1, a comparative carbon thin plate was obtained by processing in the same manner as in Example (2) except that the blended composition was insufficient in phenol resin and infusible pitch fiber. Its characteristics are shown in Table 2.

(比較例5) 配合組成は、実施例(1)の不融化ピッチ繊維をPAN
系高強度タイプ炭素繊維に変えた以外は実施例(,1,
)と同様に処理して、比較対照用炭素薄板を得た。
(Comparative Example 5) The blending composition was that the infusible pitch fiber of Example (1) was mixed with PAN.
Example (1, 1,
) to obtain a carbon thin plate for comparison.

その不良品発生件数を表3に示す。Table 3 shows the number of defective products.

以上の実施例、比較例を比較してみると明らかなように
、本発明によれば、ガス透過率10−5mA/m1n−
cn!  (NZガス、1気圧、室温度)以下、電気比
抵抗5mΩ以下、曲げ強度l kg/ ram2以上の
高温リン酸中で安定な炭素薄板が工業的に安定して製造
できた。
As is clear from comparing the above examples and comparative examples, according to the present invention, the gas permeability is 10-5 mA/m1n-
cn! (NZ gas, 1 atm, room temperature) or less, a carbon thin plate that is stable in high temperature phosphoric acid with an electrical specific resistance of 5 mΩ or less and a bending strength of 1 kg/ram2 or more was industrially and stably produced.

表   3 不良品発生件数=30釧角の炭素薄板を50枚製造した
際のワレ、ヒビ等のはい った不良品が発生した数。
Table 3 Number of defective products = Number of defective products with cracks, cracks, etc. when manufacturing 50 sheets of carbon thin plate of 30 squares.

(発明の効果) 以上説明したように本発明によれば、不融化処理したピ
ッチ繊維を用いるので、炭化処理後も繊維の形状を維持
することができ、そのために繊維強化の役割を十分に果
たし、従来のフェノール樹脂−黒鉛粉末により製造した
炭素薄板の欠点である機械的強度が改善される。
(Effects of the Invention) As explained above, according to the present invention, since infusible pitch fibers are used, the shape of the fibers can be maintained even after carbonization, and therefore the role of fiber reinforcement can be sufficiently fulfilled. The mechanical strength, which is a drawback of conventional carbon thin plates manufactured using phenolic resin-graphite powder, is improved.

また一方で、この不融化処理したピッチ繊維を用いる本
発明によれば、マトリックスのフェノール樹脂と熱収縮
率の差が少ないため、上述したフェノール樹脂等熱硬化
性樹脂−黒鉛粉末一炭素繊維より製造した従来炭素薄板
製造法の欠点である焼成の際のひずみにより生ずるわれ
等の発生がなくなり、安定して炭素板を製造できるよう
になる。
On the other hand, according to the present invention using this infusible pitch fiber, there is little difference in heat shrinkage rate from the phenolic resin of the matrix, so it is manufactured from the above-mentioned thermosetting resin such as phenolic resin, graphite powder, and carbon fiber. This eliminates the occurrence of warps and the like caused by distortion during firing, which are the drawbacks of conventional carbon thin plate manufacturing methods, and makes it possible to stably manufacture carbon plates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、リン酸型燃料電池の単セルの構造を示す分解
斜視図である。 1・・・セパレーター   1′・・・セパレーター2
・・・負電極      2′・・・正電極3・・・電
解液(リン酸)
FIG. 1 is an exploded perspective view showing the structure of a single cell of a phosphoric acid fuel cell. 1... Separator 1'... Separator 2
...Negative electrode 2'...Positive electrode 3...Electrolyte (phosphoric acid)

Claims (1)

【特許請求の範囲】[Claims] 1、熱硬化性樹脂20〜80重量%、最大粒子径が50
μm以下の黒鉛粉末10〜70重量%および不融化処理
したピッチ繊維10〜50重量%を、加圧加熱して板状
に成形し、150〜200℃の温度域で完全に硬化させ
たのち、炭化処理することを特徴とする炭素板の製造方
法。
1. Thermosetting resin 20-80% by weight, maximum particle size 50%
10 to 70% by weight of graphite powder of 10 to 70% by weight or less and 10 to 50% by weight of infusible pitch fibers are heated under pressure, formed into a plate shape, and completely cured in a temperature range of 150 to 200°C. A method for manufacturing a carbon plate, characterized by carbonization treatment.
JP61012055A 1986-01-24 1986-01-24 Production of carbon plate Pending JPS62171908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012055A JPS62171908A (en) 1986-01-24 1986-01-24 Production of carbon plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012055A JPS62171908A (en) 1986-01-24 1986-01-24 Production of carbon plate

Publications (1)

Publication Number Publication Date
JPS62171908A true JPS62171908A (en) 1987-07-28

Family

ID=11794915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012055A Pending JPS62171908A (en) 1986-01-24 1986-01-24 Production of carbon plate

Country Status (1)

Country Link
JP (1) JPS62171908A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133914A (en) * 1987-08-05 1989-05-26 Kobe Steel Ltd Carbon fiber reinforced carbon composite material and production thereof
JPH01145375A (en) * 1987-12-01 1989-06-07 Akimitsu Okura Production of carbon fiber-reinforced carbonaceous composite
JPH01320763A (en) * 1988-06-23 1989-12-26 Tokai Carbon Co Ltd Manufacture of carbon composite for fuel cell
US6494926B1 (en) * 1999-09-22 2002-12-17 Nisshinbo Industries, Inc. Fuel cell separator and production method thereof
EP1253661A4 (en) * 1999-12-06 2006-08-09 Hitachi Chemical Co Ltd Fuel cell, fuel cell separator, and method of manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133914A (en) * 1987-08-05 1989-05-26 Kobe Steel Ltd Carbon fiber reinforced carbon composite material and production thereof
JPH01145375A (en) * 1987-12-01 1989-06-07 Akimitsu Okura Production of carbon fiber-reinforced carbonaceous composite
JP2625783B2 (en) * 1987-12-01 1997-07-02 明光 大藏 Method for producing carbon fiber reinforced carbon composite
JPH01320763A (en) * 1988-06-23 1989-12-26 Tokai Carbon Co Ltd Manufacture of carbon composite for fuel cell
US6494926B1 (en) * 1999-09-22 2002-12-17 Nisshinbo Industries, Inc. Fuel cell separator and production method thereof
EP1253661A4 (en) * 1999-12-06 2006-08-09 Hitachi Chemical Co Ltd Fuel cell, fuel cell separator, and method of manufacture thereof

Similar Documents

Publication Publication Date Title
US4506028A (en) Process for preparing a fuel cell electrode substrate comprising carbon fibers
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JP2001126744A (en) Separator for fuel cell and fabricating method therefor
JPH0449747B2 (en)
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JPH082979A (en) Porous carbon material and its production
JPS62171908A (en) Production of carbon plate
JPH0578182A (en) Production of porous carbon formed product and electrode material
JPS5926907A (en) Thin graphite plate and its manufacture
JPH0158623B2 (en)
JPS5942781A (en) Manufacture of carbonaceous member for fuel cell
JPS62160661A (en) Production of thin carbon plate for fuel cell separator
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPH04284363A (en) Manufacture of carbon plate
JPS60239358A (en) Carbonaceous thin plate and manufacture
JPS62270412A (en) Production of carbon board
JPH01266223A (en) Production of anisotropic porous carbon formed product
JPH0131445B2 (en)
JPH09157065A (en) Production of carbonaceous porous body and porous laminated sheet
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH0644978A (en) Manufacture of fuel cell electrode plate
JPH02199010A (en) Production of thin sheetlike carbon material
JPS62252308A (en) Production of carbon plate
JPH0757741A (en) Manufacture of carbonaceous preformed body and electrode substrate
JPS6044963A (en) Manufacture of porous carbon plate