JPH06263558A - Production of porous carbon plate and porous carbon electrode material - Google Patents

Production of porous carbon plate and porous carbon electrode material

Info

Publication number
JPH06263558A
JPH06263558A JP5049263A JP4926393A JPH06263558A JP H06263558 A JPH06263558 A JP H06263558A JP 5049263 A JP5049263 A JP 5049263A JP 4926393 A JP4926393 A JP 4926393A JP H06263558 A JPH06263558 A JP H06263558A
Authority
JP
Japan
Prior art keywords
porous carbon
plate
diameter
carbon fiber
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5049263A
Other languages
Japanese (ja)
Inventor
Kazutoshi Haraguchi
和敏 原口
Masaru Furukawa
勝 古河
Tatsuya Noumoto
龍也 能本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP5049263A priority Critical patent/JPH06263558A/en
Publication of JPH06263558A publication Critical patent/JPH06263558A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a porous carbon plate having a prescribed gas permeability and a higher heat conductivity, electric conductivity and mechanical strength than those of a conventional plate by mixing carbon fiber having respective specific values of diameter and aspect ratio with a binder, forming and hardening the resultant mixture and then burning the hardened mixture. CONSTITUTION:A porous carbon plate molding material containing carbon fiber having 15-30mum diameter and preferably 3-30 aspect ratio (L/D) and a binder is formed, hardened and then burned to produce a porous carbon plate. The gas permeability at a constant bulk density is remarkably improved by using the carbon fiber as compared with that of a porous carbon plate using conventional carbon fiber (having 6-14mum diameter). As a result, the porous carbon plate holding higher physical properties such as heat conductivity, electric conductivity or mechanical strength than those of the porous carbon plate having the same gas permeability is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特定範囲の炭素繊維を用
いた多孔質炭素板の製法に関するものであり、得られた
多孔質炭素板は燐酸型燃料電池等の電極材や耐熱材、耐
蝕性フィルター等に用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous carbon plate using carbon fibers in a specific range. Used for sex filters.

【0002】[0002]

【従来の技術】省エネルギ−、無公害型の次世代型発電
方式として注目されている各種燃料電池の内、電解質と
して燐酸を用いる燐酸型燃料電池は、第一世代の燃料電
池として最も実用化に近く、実証テストを行う段階まで
開発が進められている。燐酸型燃料電池において、電池
本体は電極板、セパレ−タ−、冷却板等を積層したもの
で構成されているがその殆どに炭素材が用いられてい
る。これは、力学強度が高く取扱い性に優れていること
のほか、約200℃という反応温度での電解質(燐酸)
に対する耐久性に優れていることや、熱伝導性に優れて
いること、また多孔質性(電極板の場合)やガス不透過
性(セパレ−タ−の場合)に優れていると言った特徴を
炭素材が併せ持っていることによる。
2. Description of the Related Art Among various fuel cells attracting attention as an energy-saving and pollution-free next-generation power generation system, a phosphoric acid fuel cell using phosphoric acid as an electrolyte is most practically used as a first generation fuel cell. The development is being advanced to the stage of conducting a verification test. In a phosphoric acid fuel cell, the cell body is composed of a stack of electrode plates, a separator, a cooling plate, etc., and most of them use carbon materials. In addition to having high mechanical strength and excellent handleability, this is an electrolyte (phosphoric acid) at a reaction temperature of about 200 ° C.
It is characterized by excellent durability against heat, excellent thermal conductivity, and excellent porosity (for electrode plates) and gas impermeability (for separators). Because the carbon material also has.

【0003】この内炭素電極板としては、燐酸を保持し
たり、ガスを透過したりするために多孔質性であり、か
つ厚み方向の熱伝導、電気伝導に優れ、また取扱い性が
容易な力学強度を有していることが必要であり、これら
の性質を併せ持つ多孔質炭素板が用いられている。
The inner carbon electrode plate is porous in order to retain phosphoric acid and to permeate gas, is excellent in heat conduction and electric conduction in the thickness direction, and is easy to handle. It is necessary to have strength, and a porous carbon plate having these properties is used.

【0004】従来、多孔質炭素板の製法としては、繊維
状物質を主材とし、これを樹脂等のバインダーにて板状
に成形後、次いで焼成して得る方法が一般的である。こ
の方法に於いて、繊維状物質にはパルプ、ポリアクリル
ニトリル、フェノ−ル樹脂等の有機繊維、あるいは炭素
質繊維、黒鉛質繊維等の炭素繊維が、各々単独あるいは
それらを複合して用いられる。有機繊維使用の場合に
は、焼成工程に於ける素材の収縮を防ぐために、繊維表
面に酸化皮膜を形成する等、何らかの不融化処理を施す
か、焼成工程での収縮の無い炭素繊維との複合にする等
の方策を講じる必要がある。
Conventionally, as a method for producing a porous carbon plate, a method in which a fibrous substance as a main material is formed into a plate shape with a binder such as a resin and then fired is generally used. In this method, organic fibers such as pulp, polyacrylonitrile and phenol resin, or carbon fibers such as carbonaceous fibers and graphite fibers are used alone or in combination as the fibrous substance. . When using organic fibers, in order to prevent shrinkage of the material during the firing process, some infusibilization treatment such as forming an oxide film on the fiber surface is performed, or the composite with carbon fiber that does not shrink during the firing process It is necessary to take measures such as

【0005】従って、多孔質炭素板の製造に於いては、
炭素繊維を主材とする方法が最も容易な方法である。炭
素繊維としては光学的等方性ピッチからの汎用炭素繊維
や光学的異方性ピッチからの高性能炭素繊維及びポリア
クリロニトリルやレ−ヨン等の有機繊維を出発物質とし
た炭素繊維などが用いられる。炭素繊維の繊維直径とし
ては、通常有機繊維を出発物質とするもので6〜8μ
m、高性能ピッチ系炭素繊維で10μm前後、汎用炭素
繊維で11〜13μmのものが使用されている。これら
は主に力学強度を始めとする物性を出来るだけ高め、且
つコスト高にならないことを考慮して決定されている。
Therefore, in the production of the porous carbon plate,
The method using carbon fiber as the main material is the easiest method. As the carbon fiber, a general-purpose carbon fiber from an optically isotropic pitch, a high-performance carbon fiber from an optically anisotropic pitch, or a carbon fiber starting from an organic fiber such as polyacrylonitrile or rayon is used. . The fiber diameter of carbon fiber is usually 6 to 8 μm when starting material is organic fiber.
m, high-performance pitch-based carbon fibers of about 10 μm, and general-purpose carbon fibers of 11 to 13 μm are used. These are mainly determined in consideration of increasing physical properties such as mechanical strength as much as possible and not increasing cost.

【0006】一般に炭素電極板に於いて必要とされる物
性のうち、多孔質性に基ずく気孔率(嵩密度)やガス透
過度の物性と、緻密性に比例する熱伝導、電気抵抗、力
学強度等の物性は相反するものであることから、炭素電
極板の製造に於いてはこれら多孔質性と緻密性のいずれ
か一方に片寄らず、各物性を必要に応じてバランス良く
保持するような適切な多孔質程度(緻密程度)に制御さ
れている。例えば原料組成では、用いる炭素繊維の物
性、炭素繊維やバインダ−の比率、添加黒鉛粉の混入比
率などが、また製造条件では成形方法や焼成温度などが
検討され、バランス良い物性を目指した炭素電極板が製
造されている。
Among the physical properties generally required for a carbon electrode plate, the physical properties such as porosity (bulk density) and gas permeability, which are based on porosity, and the heat conduction, electric resistance, and dynamics, which are proportional to the compactness. Since physical properties such as strength are contradictory to each other, in manufacturing a carbon electrode plate, it is possible to maintain each physical property in a well-balanced manner without depending on either the porosity or the denseness. It is controlled to have an appropriate degree of porosity (fineness). For example, in the raw material composition, the physical properties of the carbon fiber to be used, the ratio of the carbon fiber and the binder, the mixing ratio of the added graphite powder, etc., and the molding conditions, the molding method, the firing temperature, etc. were examined, and the carbon electrode aimed at a good balance of physical properties. The board is manufactured.

【0007】[0007]

【発明が解決しようとする課題】多孔質炭素板の製造に
おいては、従来、以上のように相反する多孔質性と緻密
性をバランスさせた条件での最適化はなされているが、
例えば高効率の燐酸型燃料電池の性能としてはまだ充分
でなく、物性バランスを取る以外のより優れた多孔質炭
素板の開発が望まれている。即ち、例えば所定のガス透
過性を従来より高い嵩密度で達成できるならば、得られ
る多孔質炭素板は所定のガス透過性を有し且つ(緻密性
が高いことより)高い熱伝導や電気伝導また力学強度等
の物性を保持することとなり優れた多孔質炭素電極材の
開発に至ることが期待される。
In the production of a porous carbon plate, optimization has been hitherto carried out under the condition of balancing the contradictory porosity and denseness as described above.
For example, the performance of a highly efficient phosphoric acid fuel cell is not yet sufficient, and development of a more excellent porous carbon plate other than balancing physical properties is desired. That is, for example, if a predetermined gas permeability can be achieved with a bulk density higher than that of the conventional one, the obtained porous carbon plate has a predetermined gas permeability and high heat conductivity and electric conductivity (because of high density). In addition, it is expected to lead to the development of an excellent porous carbon electrode material because it retains physical properties such as mechanical strength.

【0008】[0008]

【課題を解決するための手段】本発明者らは、これらの
課題を解決すべく鋭意研究した結果、従来一般的に用い
られている炭素繊維の代わりに、直径15〜30μmの
炭素繊維を用いること好ましくはアスペクト比(L/
D)が3〜30である上記炭素繊維を用いることで、一
定嵩密度でのガス透過性が従来より大きく向上するこ
と、即ちガス透過性を一定に保持する条件下で嵩密度を
従来より上げることが出来ることを見い出し、本発明を
完成するに至った。このようにして得られた多孔質炭素
板は所定のガス透過性を持ち、且つ熱伝導、電気伝導、
力学強度等の緻密性に比例した物性が大幅に向上したも
のであり、燃料電池用電極材として好適であった。
As a result of intensive studies to solve these problems, the present inventors have used carbon fibers having a diameter of 15 to 30 μm instead of the carbon fibers generally used conventionally. It is preferable that the aspect ratio (L /
By using the carbon fiber having D) of 3 to 30, the gas permeability at a constant bulk density is significantly improved as compared with the conventional one, that is, the bulk density is increased as compared with the conventional one under the condition of keeping the gas permeability constant. The inventors have found that they can do so and have completed the present invention. The porous carbon plate thus obtained has a predetermined gas permeability, and also has heat conduction, electric conduction,
The physical properties proportional to the compactness such as mechanical strength were significantly improved, and they were suitable as an electrode material for fuel cells.

【0009】即ち、本発明は、直径15〜30μmであ
る、好ましくはアスペクト比(L/D)が3〜30でも
ある炭素繊維とバインダーとを含有する材料からなる成
形体を硬化させた後、焼成することを特徴とする多孔質
炭素板の製法、およびこの製法で得た多孔質炭素電極材
を提供するものである。
That is, according to the present invention, after curing a molded body made of a material containing a carbon fiber having a diameter of 15 to 30 μm, preferably having an aspect ratio (L / D) of 3 to 30 and a binder, The present invention provides a method for producing a porous carbon plate, which is characterized by firing, and a porous carbon electrode material obtained by this method.

【0010】本発明は、多孔質炭素板の物性制御に関し
て、多孔質性を示す気孔率(=(1-嵩密度/1.
6))とガス透過度の関係を支配する因子を詳細に検討
する過程でそれらの関係が一義的に決定されるものでな
く、素材の形状因子によって大きく異なること、つまり
同一嵩密度の炭素板においてガス透過率の大きく異なる
ものを得ることが可能であることを見い出したことを基
本とし、所定のガス透過度を有し且つ従来より高い熱伝
導、電気伝導、力学強度を有するものを発現することが
出来たことに基ずいている。
The present invention relates to the control of the physical properties of the porous carbon plate by the porosity (= (1-bulk density / 1.
6)) and the factors governing the relationship between gas permeability and the relationship between these factors are not uniquely determined in the process of detailed examination, and differ greatly depending on the shape factor of the material, that is, carbon plates of the same bulk density. In principle, we found that it is possible to obtain materials with greatly different gas permeability, and develop a material with a prescribed gas permeability and higher thermal conductivity, electrical conductivity, and mechanical strength than before. It is based on what was possible.

【0011】図1に従来用いられている炭素繊維を用い
た場合の多孔質炭素板の嵩密度とガス透過度の関係を示
す。この関係には炭素繊維とバインダ−の比率を変えた
ものや圧縮成形条件を変えたもの及び同程度の直径を有
する炭素繊維の種類を変えたもの等が含まれている。図
1に示すように多くの場合基本的には、多孔質炭素板の
ガス透過度はその板の嵩密度によって決定され、大きく
その関係から逸脱したものを得ることは困難であった。
但し、一定嵩密度のものでもバインダ−の中にウッドパ
ルプを含ませた場合はより低いガス透過度を示すことが
図1より判る。一方、一定嵩密度でより高いガス透過度
のものを得ることは従来の知見からも図1のデ−タから
も得られなかった。本発明者らは広範囲の添加材、バイ
ンダ−、および炭素繊維の種類を検討する中から、図2
に示すように直径として15〜30μmの炭素繊維でを
用いた場合従来のデ−タから大きく逸脱し改良された多
孔質炭素板が得られることを明かにし本発明に至った。
FIG. 1 shows the relationship between the bulk density of a porous carbon plate and the gas permeability when the conventionally used carbon fiber is used. This relationship includes one in which the ratio of the carbon fiber and the binder is changed, one in which the compression molding condition is changed, and one in which the kind of carbon fiber having the same diameter is changed. As shown in FIG. 1, in many cases, basically, the gas permeability of a porous carbon plate is determined by the bulk density of the plate, and it is difficult to obtain a gas that largely deviates from the relationship.
However, it can be seen from FIG. 1 that even when the bulk density is constant, the gas permeability is lower when the wood pulp is included in the binder. On the other hand, it was not possible to obtain a material having a higher gas permeability with a constant bulk density from the conventional knowledge and the data of FIG. The present inventors have studied a wide range of additives, binders, and types of carbon fibers, and as shown in FIG.
The present invention has revealed that when carbon fibers having a diameter of 15 to 30 μm are used as shown in FIG. 1, an improved porous carbon plate can be obtained which largely deviates from the conventional data.

【0012】本発明で用いる炭素繊維としては、直径1
5〜30μmのもの、好ましくは直径が15〜30μm
でアスペクト比(L/D)が3〜30のものが良く、そ
の出発原料、製法等に特に限定されない。一般には炭化
収率が高い、また大直径のものが製造し易いと言った理
由からピッチ系炭素繊維を使用するほうが好ましい。直
径が15μm未満では、一定気孔率におけるガス透過度
の値が従来用いれているものと変わりない。一方直径が
30μm以上では炭素繊維の製造が難しいほか、力学強
度等の物性が低いものとなり、それより得られる多孔質
炭素板も力学強度が低いものしか得られない。またアス
ペクト比が3未満のものは製造が困難でコスト高となる
ほか力学強度において劣る。アスペクト比は30を越え
ると乾式成形の場合均一分散が難しくなる傾向を有す
る。
The carbon fiber used in the present invention has a diameter of 1
5 to 30 μm, preferably 15 to 30 μm in diameter
It is preferable that the aspect ratio (L / D) is 3 to 30, and there is no particular limitation on the starting material, manufacturing method, or the like. In general, it is preferable to use pitch-based carbon fibers because the carbonization yield is high and that those having a large diameter are easy to produce. When the diameter is less than 15 μm, the value of gas permeability at a constant porosity is the same as that used conventionally. On the other hand, if the diameter is 30 μm or more, it is difficult to produce carbon fibers, and the physical properties such as mechanical strength are low, and the porous carbon plate obtained from them can only have low mechanical strength. If the aspect ratio is less than 3, the production is difficult and the cost is high, and the mechanical strength is poor. If the aspect ratio exceeds 30, in the case of dry molding, uniform dispersion tends to be difficult.

【0013】本発明で用いるバインダーとしては、有機
質バインダー、無機質バインダー、又はこれらを組み合
わせたもののいずれでもで良く、なかでも400℃以上
で炭化するものが好ましい。これらバインダーの具体例
としては、エポキシ樹脂、フェノール樹脂、不飽和ポリ
エステル樹脂、フラン樹脂、ポリイミド樹脂及びピッチ
類等が挙げられ、なかでも残炭率が高い点でフェノール
樹脂が好ましい。
The binder used in the present invention may be an organic binder, an inorganic binder, or a combination thereof, and is preferably a carbonized one at 400 ° C. or higher. Specific examples of these binders include epoxy resins, phenol resins, unsaturated polyester resins, furan resins, polyimide resins and pitches, and among them, phenol resins are preferable from the viewpoint of high residual carbon rate.

【0014】又、本発明で用いる炭素繊維とバインダー
とを含有する材料中には、価格低下、物性向上等を目的
として各種繊維、例えば炭化珪素繊維、窒化珪素繊維等
無機繊維、ケブラー、ポリプロ、セルロース、ポリアク
リルニトリル等有機繊維、あるいは各種粉末、例えばカ
ーボンブラック、グラファイト等を添加することも可能
である。特に黒鉛粉末の添加は、電気特性、熱特性、力
学物性の向上に効果がある。
In the material containing the carbon fiber and the binder used in the present invention, various fibers such as silicon carbide fiber, inorganic fiber such as silicon nitride fiber, Kevlar, polypropylene, etc. are used for the purpose of price reduction and improvement of physical properties. It is also possible to add organic fibers such as cellulose and polyacrylonitrile, or various powders such as carbon black and graphite. In particular, the addition of graphite powder is effective in improving electrical properties, thermal properties, and mechanical properties.

【0015】本発明において、炭素繊維とバインダーと
を含有する材料を各種形状に成形する方法は、種々考え
られるが、目的から外れない方法であればいずれでも良
く、特に限定するものではない。例えば、板状に成形す
る場合、(1)炭素繊維を湿式抄紙法によってあらかじ
めシート状と成した後、該シートに加熱溶融させたバイ
ンダーを含浸させて、又は該シートに溶剤に分散若しく
は溶解したバインダーを含浸させた後、乾燥させて、い
わゆるプリプレグシートを得、次いで圧縮成形する方
法、(2)該シートに粉末状バインダーを均一に散布し
た後、圧縮成形する方法、(3)炭素繊維を粉末状バイ
ンダーと共に湿式抄紙法によってシ−ト状となし、この
あらかじめ必要なバインダ−を含んだシ−トを圧縮成形
する方法、(4)炭素繊維と粉末状バインダーとを均一
に混合した粉末組成物を圧縮成形する方法等があり、い
ずれの方法に於いても最初から所定の厚みに成形する場
合と、はじめにブロック状に成形した後、ブロックを所
定の厚みにスライスして板を得る方法がある。ここにお
いて炭素繊維の使用量は、炭素繊維とバインダーの合計
100重量部に対して、50〜80重量部の範囲が好ま
しい。
In the present invention, various methods of forming the material containing the carbon fiber and the binder into various shapes are conceivable, but any method can be used as long as it does not deviate from the purpose, and the method is not particularly limited. For example, in the case of molding into a plate shape, (1) carbon fiber is formed into a sheet shape in advance by a wet papermaking method, then the sheet is impregnated with a binder which is heated and melted, or the sheet is dispersed or dissolved in a solvent. A method of impregnating with a binder and then drying to obtain a so-called prepreg sheet, and then compression molding, (2) a method of uniformly dispersing a powdery binder on the sheet, and then compression molding, (3) a carbon fiber A method of forming a sheet with a powdery binder by a wet papermaking method, and compression-molding the sheet containing the necessary binder in advance. (4) A powder composition in which carbon fibers and a powdery binder are uniformly mixed There are methods such as compression molding of objects, and in any of the methods, when molding to a predetermined thickness from the beginning, or after first molding into a block shape, the block is A method of obtaining a plate-sliced to a constant thickness. Here, the amount of the carbon fiber used is preferably in the range of 50 to 80 parts by weight with respect to 100 parts by weight of the total of the carbon fiber and the binder.

【0016】このようにして得られた成形板は、窒素、
アルゴン等の不活性ガス雰囲気中や真空中等で1000
℃以上の温度で焼成することにより目的の多孔質炭素板
を得ることができる。
The molded plate thus obtained is
1000 in an inert gas atmosphere such as argon or in a vacuum
The target porous carbon plate can be obtained by firing at a temperature of ℃ or higher.

【0017】[0017]

【実施例】次いで本発明を実施例によって更に説明す
る。尚、例中の%は特に断りの無い限り重量基準であ
る。
EXAMPLES Next, the present invention will be further described with reference to examples. In the examples,% is based on weight unless otherwise specified.

【0018】実施例1〜3及び比較例1,2 軟化点250℃の等方性ピッチを溶融紡糸して直径1
1.0μm、15.1μm、20.2μm、25.6μ
m、28.8μmのピッチ繊維を得、次いで空気中30
0℃で30分不融化処理した後、窒素ガス雰囲気中で1
000℃まで昇温し焼成して、それぞれ平均直径9.8
μm(比較例1)、13.2μm(比較例2)、18.
0μm(実施例1)、22.3μm(実施例2)、2
7.0μm(実施例3)の汎用ピッチ系炭素繊維を得た
(直径の変動率はいずれも約15%)。得られた各炭素
繊維を平均長さ160μmになるようにミルド化後ふる
いにかけ以下の試験に用いた(長さの変動率はいずれも
約50%)。各炭素繊維のアスペクト比(L/D)は1
6.3、12.3、8.9、7.2、5.9であった。
Examples 1 to 3 and Comparative Examples 1 and 2 isotropic pitch having a softening point of 250 ° C. was melt-spun to have a diameter of 1
1.0 μm, 15.1 μm, 20.2 μm, 25.6 μ
m, 28.8 μm pitch fiber, then 30 in air
After infusibilizing treatment at 0 ° C for 30 minutes, 1 in a nitrogen gas atmosphere
The average diameter is 9.8 each by heating up to 000 ° C and firing.
μm (Comparative example 1), 13.2 μm (Comparative example 2), 18.
0 μm (Example 1), 22.3 μm (Example 2), 2
A general-purpose pitch-based carbon fiber having a size of 7.0 μm (Example 3) was obtained (the variation rate of the diameter is about 15% in each case). Each of the obtained carbon fibers was milled so as to have an average length of 160 μm, and then sieved and used in the following test (variation in length is about 50% in all cases). The aspect ratio (L / D) of each carbon fiber is 1
The values were 6.3, 12.3, 8.9, 7.2 and 5.9.

【0019】各炭素繊維(70%)とバインダ−(30
%)(ノボラックフェノール樹脂(大日本インキ化学工
業(株)製セラディック4331S))の粉末組成物を
平金型の中に設置し150℃、10分の条件で板状に圧
縮成形した後、更に真空中、2000℃で1時間焼成
し、厚みが2.0mm、嵩密度がほぼ0.55g/cm
3 の多孔質炭素板を得た。
Each carbon fiber (70%) and binder (30
%) (Novolak phenolic resin (Dainippon Ink and Chemicals
(Ceradic 4331S) manufactured by Sangyo Co., Ltd.)
It is installed in a flat mold and pressed into a plate at 150 ° C for 10 minutes.
After compression molding, further calcination in vacuum at 2000 ℃ for 1 hour
And has a thickness of 2.0 mm and a bulk density of approximately 0.55 g / cm.
3 To obtain a porous carbon plate.

【0020】得られた多孔質炭素板の嵩密度とガス透過
度の測定結果を表1及び図2に示す。表1及び図2に示
すように直径15〜30μmの炭素繊維を用いた多孔質
炭素板のガス透過度は、比較例1、2及び3〜5までの
炭素繊維を用いた多孔質炭素板のそれと比較して、一定
嵩密度での比較において著しく改良され高い値となって
いる。
The measurement results of the bulk density and gas permeability of the obtained porous carbon plate are shown in Table 1 and FIG. As shown in Table 1 and FIG. 2, the gas permeability of the porous carbon plate using the carbon fibers having a diameter of 15 to 30 μm was the same as that of the porous carbon plates using the carbon fibers of Comparative Examples 1, 2 and 3 to 5. In comparison, it is significantly improved and has a high value in comparison at a constant bulk density.

【0021】[0021]

【表1】 [Table 1]

【0022】比較例3〜5 炭素繊維として異方性ピッチ系炭素繊維(大日本インキ
化学工業(株)製ドナカ−ボF:直径12.2μm,L
/D=12(比較例3)および直径8μm,L/D=1
8(比較例4)、PAN系炭素繊維(東邦レ−ヨン
(株)製ベスファイト:直径7μm、L/D=25(比
較例5)を用いる以外は実施例1〜3と同様の方法によ
り多孔質炭素板を製造した。得られた各多孔質炭素板の
嵩密度とガス透過度の値を表2及び図2に示した。
Comparative Examples 3 to 5 Anisotropic pitch-based carbon fiber as carbon fiber (Donakabo F manufactured by Dainippon Ink and Chemicals, Inc .: diameter 12.2 μm, L
/ D = 12 (Comparative Example 3) and diameter 8 μm, L / D = 1
8 (Comparative Example 4), PAN-based carbon fiber (Vephite manufactured by Toho Rayon Co., Ltd .: diameter 7 μm, L / D = 25 (Comparative Example 5) A porous carbon plate was produced, and the bulk density and gas permeability of each of the obtained porous carbon plates are shown in Table 2 and FIG.

【0023】[0023]

【表2】 [Table 2]

【0024】実施例4 実施例2の炭素繊維を用い、炭素繊維とバインダ−との
比率を約80/20とし、ガス透過度の値として比較例
2とほぼ同じ値を持つような多孔質炭素板を実施例2と
同じ方法で調製した。得られた多孔質炭素板の物性を比
較例2と比較して表3に示す。同等のガス透過度を持つ
ものにおいて、厚み方向の熱伝導率や電気抵抗および曲
げ弾性率が大きく改良されていることが判る。
Example 4 The carbon fiber of Example 2 was used, the ratio of the carbon fiber to the binder was about 80/20, and the porous carbon had a gas permeability value substantially the same as that of Comparative Example 2. Plates were prepared in the same way as in Example 2. The physical properties of the obtained porous carbon plate are shown in Table 3 in comparison with Comparative Example 2. It can be seen that the thermal conductivity in the thickness direction, the electrical resistance, and the flexural modulus are greatly improved in those having the same gas permeability.

【0025】[0025]

【表3】 [Table 3]

【0026】比較例6 実施例4と同じ方法で調製した繊維直径が33μmの等
方性ピッチ系炭素繊維を用い、実施例4と同じ方法で嵩
密度0.55g/cm3の多孔質炭素板を製造した。得
られた多孔質炭素板の曲げ強度は100kg/cm2
取扱いにおいてやや劣った。
Comparative Example 6 A porous carbon plate having a bulk density of 0.55 g / cm 3 was prepared in the same manner as in Example 4, except that isotropic pitch carbon fibers having a fiber diameter of 33 μm prepared in the same manner as in Example 4 were used. Was manufactured. The bending strength of the obtained porous carbon plate was 100 kg / cm 2 , which was slightly inferior in handling.

【0027】[0027]

【発明の効果】本発明の製法で得られた多孔質炭素板
は、直径が15〜30μmでアスペクト比が3〜30の
炭素繊維を使うことにより、従来の炭素繊維(直径6〜
14μm)を使用した多孔質炭素板と比較して一定嵩密
度におけるガス透過度が著しく改良されており、結果と
して同一ガス透過度の多孔質炭素板で比較して厚み方向
の熱伝導率や電気伝導また曲げ強度等の特性の大きな板
が得られる。
The porous carbon plate obtained by the production method of the present invention has a diameter of 15 to 30 μm and an aspect ratio of 3 to 30.
14 μm), the gas permeability at a constant bulk density is significantly improved compared to the porous carbon plate using 14 μm). It is possible to obtain a plate having large properties such as conduction and bending strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、従来品及びパルプ含有の炭素板を含む
多孔質炭素板の嵩密度とガス透過度の関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the bulk density and the gas permeability of conventional carbon plates and porous carbon plates including pulp-containing carbon plates.

【図2】図2は、本発明で得られた炭素板を含む多孔質
炭素板の嵩密度とガス透過度の関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the bulk density and the gas permeability of the porous carbon plate containing the carbon plate obtained in the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 直径15〜30μmの炭素繊維とバイン
ダーとを含有する多孔質炭素板成形材料を成形硬化させ
た後、焼成することを特徴とする多孔質炭素板の製法。
1. A method for producing a porous carbon plate, which comprises molding and curing a porous carbon plate molding material containing a carbon fiber having a diameter of 15 to 30 μm and a binder, and then calcining the material.
【請求項2】 炭素繊維のアスペクト比(L/D)が、
3〜30である請求項1記載の製法。
2. The aspect ratio (L / D) of carbon fiber is
The method according to claim 1, which is 3 to 30.
【請求項3】 直径15〜30μm、アスペクト比(L
/D)3〜30の炭素繊維と、直径5〜14μm、アス
ペクト比(L/D)5〜50の炭素繊維を併用する請求
項1記載の製法。
3. A diameter of 15 to 30 μm and an aspect ratio (L
The method according to claim 1, wherein the carbon fiber having a diameter of 5 to 14 μm and the aspect ratio (L / D) of 5 to 50 is used in combination.
【請求項4】 多孔質炭素板成形材料中の炭素繊維の含
有率が、50〜80重量%である請求項1、2または3
記載の製法。
4. The content ratio of carbon fiber in the porous carbon plate molding material is 50 to 80% by weight.
The manufacturing method described.
【請求項5】 直径15〜30μmの炭素繊維とバイン
ダーとを含有する材料を板状に成形し、硬化させた後、
焼成してなることを特徴とする多孔質炭素電極材。
5. A material containing carbon fibers having a diameter of 15 to 30 μm and a binder is formed into a plate shape, and after curing,
A porous carbon electrode material characterized by being fired.
【請求項6】 炭素繊維のアスペクト比(L/D)が、
3〜30である請求項5記載の多孔質炭素電極材。
6. The aspect ratio (L / D) of carbon fiber is
It is 3-30, The porous carbon electrode material of Claim 5.
【請求項7】 直径15〜30μm、アスペクト比(L
/D)3〜30の炭素繊維と、直径5〜15μm、アス
ペクト比(L/D)5〜50の炭素繊維を併用する請求
項5記載の多孔質炭素電極材。
7. A diameter of 15 to 30 μm and an aspect ratio (L
The porous carbon electrode material according to claim 5, wherein carbon fibers having a diameter of 5 to 15 μm and an aspect ratio (L / D) of 5 to 50 are used in combination.
【請求項8】 多孔質炭素板成形材料中の炭素繊維の含
有率が、50〜80重量%である請求項5、6または7
記載の多孔質炭素電極材。
8. The content ratio of carbon fiber in the porous carbon plate molding material is 50 to 80% by weight.
The porous carbon electrode material described.
【請求項9】 バインダー中に黒鉛粉末を含む請求項
1、2、3又は4記載の製法、及び請求項5、6、7又
は8記載の多孔質炭素電極材。
9. The production method according to claim 1, 2, 3 or 4, wherein the binder contains graphite powder, and the porous carbon electrode material according to claim 5, 6, 7 or 8.
JP5049263A 1993-03-10 1993-03-10 Production of porous carbon plate and porous carbon electrode material Pending JPH06263558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5049263A JPH06263558A (en) 1993-03-10 1993-03-10 Production of porous carbon plate and porous carbon electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5049263A JPH06263558A (en) 1993-03-10 1993-03-10 Production of porous carbon plate and porous carbon electrode material

Publications (1)

Publication Number Publication Date
JPH06263558A true JPH06263558A (en) 1994-09-20

Family

ID=12825948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5049263A Pending JPH06263558A (en) 1993-03-10 1993-03-10 Production of porous carbon plate and porous carbon electrode material

Country Status (1)

Country Link
JP (1) JPH06263558A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311431A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Porous carbon board and its manufacturing method
JP2008204823A (en) * 2007-02-20 2008-09-04 Toho Tenax Co Ltd Carbon fiber sheet and its manufacturing method
JP2012204142A (en) * 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and method for manufacturing the same
JP2015005525A (en) * 2014-08-25 2015-01-08 大日本印刷株式会社 Gas diffusion layer for fuel battery, manufacturing method therefor, gas diffusion electrode for fuel battery using the same, membrane-electrode junction for fuel battery, and fuel battery
CN115231936A (en) * 2022-07-12 2022-10-25 山东工业陶瓷研究设计院有限公司 Composite heat insulation material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311431A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Porous carbon board and its manufacturing method
JP2008204823A (en) * 2007-02-20 2008-09-04 Toho Tenax Co Ltd Carbon fiber sheet and its manufacturing method
JP2012204142A (en) * 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and method for manufacturing the same
JP2015005525A (en) * 2014-08-25 2015-01-08 大日本印刷株式会社 Gas diffusion layer for fuel battery, manufacturing method therefor, gas diffusion electrode for fuel battery using the same, membrane-electrode junction for fuel battery, and fuel battery
CN115231936A (en) * 2022-07-12 2022-10-25 山东工业陶瓷研究设计院有限公司 Composite heat insulation material and preparation method thereof
CN115231936B (en) * 2022-07-12 2023-11-17 山东工业陶瓷研究设计院有限公司 Composite heat insulation material and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2001056103A1 (en) Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP4051714B2 (en) Electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP2007184224A (en) Porous carbon electrode base material and method for preparing it
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPH0578182A (en) Production of porous carbon formed product and electrode material
JPH05251088A (en) Manufacture of porous carbon electrode plate for fuel cell
JPH07105955A (en) Electrode base material and its manufacture
JPS63222080A (en) Manufacture of carbon fiber porous body
JPH0258369B2 (en)
JP2780987B2 (en) Manufacturing method of carbon plate
JPS62171908A (en) Production of carbon plate
JP3437862B2 (en) Porous electrode substrate and method for producing the same
JPH0520386B2 (en)
JPH05194056A (en) Production of porous carbon plate having high compression resistance
JPH01266223A (en) Production of anisotropic porous carbon formed product
JPH04284363A (en) Manufacture of carbon plate
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH0131445B2 (en)
JPH0517260A (en) Production of carbonaceous porous body
JP3574831B2 (en) Porous carbon material for phosphoric acid type fuel cell and method for producing the same
JPH0859360A (en) Production of porous carbon material
JPS62160661A (en) Production of thin carbon plate for fuel cell separator
JPH081040B2 (en) Method for manufacturing porous carbon plate