JPH0258369B2 - - Google Patents

Info

Publication number
JPH0258369B2
JPH0258369B2 JP57226494A JP22649482A JPH0258369B2 JP H0258369 B2 JPH0258369 B2 JP H0258369B2 JP 57226494 A JP57226494 A JP 57226494A JP 22649482 A JP22649482 A JP 22649482A JP H0258369 B2 JPH0258369 B2 JP H0258369B2
Authority
JP
Japan
Prior art keywords
sheet
paper
weight
parts
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57226494A
Other languages
Japanese (ja)
Other versions
JPS59144625A (en
Inventor
Yasuhei Awata
Makoto Sakaino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP22649482A priority Critical patent/JPS59144625A/en
Publication of JPS59144625A publication Critical patent/JPS59144625A/en
Publication of JPH0258369B2 publication Critical patent/JPH0258369B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、炭素繊維シートの新規な製造法に関
するものである。更には、抄紙法により得られた
炭素繊維シートから直接焼成することにより、耐
薬品性、電気伝導性、強度の優れた、嵩高なシー
トを得る製造法に関するものである。 (先行技術) 従来炭素繊維シートを得る方法としては、あら
かじめ焼成された炭素繊維をパルプ、バインダー
と共に抄紙した炭素繊維混抄紙が知られている。
しかしながらこのような混抄紙は、電気抵抗値が
比較的高く、耐薬品性に欠け、燃料電池用電極基
材等の用途には不適当であつた。これらの性能の
改善方法として、上記混抄紙を熱硬化性樹脂の溶
液に含浸させ、再度、不活性雰囲気中で加熱炭化
する方法が知られている。この方法ではパルプ等
の有機物が加熱処理により炭化されるため、電気
抵抗値が低く、耐薬品性も改善された繊維紙が得
られる。しかしながら炭素繊維自身が高弾性率を
有するため繊維の接触部が充分に結合されず、そ
のため、充分な強度および低電気抵抗の炭素繊維
紙は得られにくかつた。また電極等の各種用途に
適合した嵩密度および孔径にコントロールするの
がむずかしく、しかも、2回の焼成工程が必要な
ため、非常に高価格なものになる欠点を有してお
り、安価な製造法の開発が望まれていた。 (発明の目的) 本発明は上記の欠点を改良すると共に、安価な
炭素繊維シートの製造方法を提供することを目的
とするものである。 (発明の構成) 本発明は、人造の有機繊維70〜95重量部、パル
プ3〜25重量部および抄紙用バインダー2〜15重
量部を混合抄紙して得られるシートに有機高分子
物質の溶液を含浸し、必要に応じて不融化処理を
行なつた後、不活性雰囲気中で800℃以上の温度
において、好ましくは圧力2〜50g/cm2のプレス
加圧下に、加熱炭化させることからなる炭素繊維
シートの製造法である。 本発明の構成要素について以下に詳説する。 (有機繊維) 本発明に用いる有機繊維としては、レーヨン、
ポリアクリロニトリル繊維、ピツチ繊維等、炭素
繊維を製造する場合に普通に使用される有機繊維
が適当であり、0.5〜15デニール、長さ2〜15mm、
好ましくは抄紙性等の点から0.5〜8デニール、
長さ3〜10mmのものを目的に応じて選択し、単独
であるいは2種以上を配合して使用する。 (パルプ) この発明に用いられるパルプとしては、セルロ
ースパルプのほか、各種合成パルプが適してお
り、これらのパルプは抄紙の際に有機繊維のつな
ぎとして作用する。 (抄紙用バインダー) 抄紙用バインダーとしては、例えばポリビニル
アルコール繊維、各種合成パルプ、抄紙用レーヨ
ン等の冷水中に溶解しないが熱水に溶解する繊維
で、抄紙用バインダーとして一般に市販されてい
るものを使用することができる。 合成樹脂エマルジヨンも抄紙用バインダーとし
て使用することができる。 (混合割合) 有機繊維、パルプおよび抄紙用バインダーは、
それぞれ70〜95重量部、3〜25重量部および2〜
15重量部(固形分として)の割合で混合して常法
により抄紙する。 有機繊維が70重量部以下になると、孔径、気孔
率等のコントロールがむずかしくなり、かつ強度
も低くなつて良好なシートが得られなくなり、一
方95重量部以上では抄紙の際に良好なシート形成
がむずかしい。更に湿潤強度を維持するために
も、パルプと抄紙用バインダーとを合計で5重量
部以上配合するのが好ましい。 (有機高分子物質) 含浸に用いる有機高分子物質としては、例えば
フエノール樹脂、エポキシ樹脂;不飽和ポリエス
テル樹脂、ポリジビニルベンゼンの如き熱硬化性
樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、フ
ツ化ビニル樹脂、フツ化ビニリデン樹脂、アクリ
ロニトリル樹脂等の熱可塑性樹脂、さらにはリグ
ニン、ピツチ又はタールの如きものも使用され
る。 これらの高分子化合物の好ましい性質として
は、何等かの溶剤に溶解するか又は熱処理時の高
温で融解することおより炭素含有量が30重量%以
上あり炭化後炭素質バインダーとして炭素繊維内
の結合に役立つものである。 (含浸処理) 前記の有機高分子物質の溶液または分散液によ
り混抄紙を含浸処理する。混抄紙に附着する含浸
量が少なすぎると、バインダー効果、及び炭化の
際の炭化収率が劣り、あまり過剰になると目づま
りのため気孔率の調整がむつかしく、又もろくな
る。好ましい含浸付着量としては、混抄紙の重量
の20〜200%、更に好ましくは30〜120%である。 (耐熱性向上剤の含浸) 有機繊維として再生セルロース、例えばレーヨ
ンを使用する場合には、上記有機高分子液の含浸
処理とは別に、耐熱性向上剤の含浸処理を併用す
ると、炭化収率、強度等の点によい効果をもたら
す。耐熱性向上剤としては、レーヨン炭素繊維を
製造する場合に一般に使用されるものなら何れで
も使用可能である。例えば、リン酸金属塩とし
て、第一リン酸マグネシウム、第一リン酸カルシ
ウム、第一リン酸ナトリウム、第一リン酸カリウ
ムなど、また各種酸のアンモニウム塩として、塩
化アンモニウム、硫酸アンモニウム、硫酸水素ア
ンモニウム、リン酸アンモニウム、リン酸水素ア
ンモニウム、リン酸二水素アンモニウム、ポリリ
ン酸のアンモニウム塩、ホウ酸アンモニウム等が
好適に使用できる。 (不融化処理) 有機高分子物質が付着した上記混抄紙は必要に
より不融化した後に焼成されて炭素繊維紙を形成
するが、この不融化処理は、有機繊維としてポリ
アクリロニトリル繊維を、また有機高分子物質と
してフエノール樹脂等の熱硬化性樹脂を使用した
場合に特に有効であり、炭化収率、シート強度向
上に顕著な効果がある。不融化の処理条件は、特
に特定しないが、例えば150〜350℃、数10分〜10
数時間、ガス雰囲気としては空気中又は不活性ガ
ス中が、有機高分子物質の付着した混抄紙を加熱
することにより不融化される。 (加熱炭化処理) 有機高分子物質溶液が付着せられた上記混抄紙
は必要に応じて不融化せられた後、不活性雰囲気
中で800℃以上の温度下で熱処理焼成せられて、
炭素質バインダーを含む炭素繊維紙を形成する。
熱処理温度を変えることにより最終製品の炭素繊
維紙の電気抵抗値の制御が可能である。また、上
記の熱処理焼成を2〜50g/cm2の圧力でプレス加
圧しながら行なうと、非常に強度が大きくかつ均
一な厚みを有する炭素繊維シートを得ることがで
きる。 (発明の効果) 本発明は、再生セルロース繊維、ポリアクリロ
ニトリル繊維等、通常炭素繊維を製造する際の原
料となる繊維から抄紙法によりシートを得て、一
般の炭化工程で炭素繊維シートを得る方法であ
り、従来の炭素繊維を抄紙する方法に比べて、製
造工程が容易であり、しかも非常に安価なシート
を得ることができるようになつた。 また、炭化工程の際にプレス加圧を併用するこ
とにより、従来方式に比べ、機械的強度並びに厚
み精度が非常に向上したシートが得られ、炭素繊
維のシートからの脱落も全く生ぜず、均一なシー
トが容易に得られるようになつた。更には、原料
有機繊維の太さ、長さの適当な選択及び、パル
プ、抄紙用バインダーの配合により、燃料電池用
の電極基材として使用する場合に特に問題になる
シートの孔径や、気孔率を自由にかつ容易にコン
トロールすることも可能になつた。また、本発明
は、有機繊維から抄紙法によりシートを得るた
め、炭素繊維抄紙法に比べ、シート形成が容易で
あり、均一なシートが得られ、シート坪量(g/
m2)も任意のものが得られる利点がある。 (実施例) 本発明をいつそう理解しやすくするために、以
下に実施例を示すが、下記の実施例は本発明を制
限するものではない。 なお、実施例中、部および%とあるのはそれぞ
れ重量部および重量%である。 実施例 1〜3 太さ8デニール及び1.5デニールのレーヨン短
繊維、カナデイアンフリーネス500mlのパルプ
(LUKP)、ポリビニルアルコール繊維(クラレ
製、VPB105−2×3)を第1表の割合で水を加
えてスラリーを得、丸網式抄紙機で常法により坪
量200g/m2の混抄紙を抄造した。この混抄紙を
リン酸二水素ナトリウム30%水溶液で含浸を行い
(リン酸二水素ナトリウム付着量40%/混抄紙)、
更にフエノール樹脂(住友デユレズ製PR−
51404)20%水溶液に含浸し(フエノール樹脂付
着量40%/混抄紙)、100℃の温度で乾燥後、更に
180℃で30分間加熱不融化処理を行なつた。 次いで900℃のチツ素ガス雰囲気炉で1時間7
g/cm2のプレス加圧下で加熱焼成を行ない炭素繊
維シートを得た。このシートの物性を第1表に示
す。
(Industrial Application Field) The present invention relates to a novel method for producing carbon fiber sheets. Furthermore, the present invention relates to a manufacturing method for obtaining a bulky sheet with excellent chemical resistance, electrical conductivity, and strength by directly firing a carbon fiber sheet obtained by a papermaking method. (Prior Art) As a conventional method for obtaining a carbon fiber sheet, carbon fiber mixed paper is known, in which pre-fired carbon fiber is made into paper together with pulp and a binder.
However, such mixed paper has a relatively high electrical resistance value and lacks chemical resistance, making it unsuitable for applications such as electrode base materials for fuel cells. As a method for improving these properties, a method is known in which the above-mentioned mixed paper is impregnated with a thermosetting resin solution and heated and carbonized again in an inert atmosphere. In this method, organic substances such as pulp are carbonized by heat treatment, so fiber paper with low electrical resistance and improved chemical resistance can be obtained. However, since the carbon fibers themselves have a high modulus of elasticity, the contact portions of the fibers are not sufficiently bonded, making it difficult to obtain carbon fiber paper with sufficient strength and low electrical resistance. In addition, it is difficult to control the bulk density and pore diameter to suit various uses such as electrodes, and it also requires two firing steps, making it extremely expensive. It was hoped that the law would be developed. (Objective of the Invention) The object of the present invention is to improve the above-mentioned drawbacks and to provide an inexpensive method for producing a carbon fiber sheet. (Structure of the Invention) The present invention involves applying a solution of an organic polymer substance to a sheet obtained by making paper by mixing 70 to 95 parts by weight of artificial organic fibers, 3 to 25 parts by weight of pulp, and 2 to 15 parts by weight of a papermaking binder. After impregnation and infusibility treatment if necessary, carbonization is performed by heating and carbonizing in an inert atmosphere at a temperature of 800°C or higher, preferably under press pressure of 2 to 50g/ cm2 . This is a method for manufacturing fiber sheets. Components of the present invention will be explained in detail below. (Organic fiber) As the organic fiber used in the present invention, rayon,
Organic fibers commonly used in the production of carbon fibers, such as polyacrylonitrile fibers and pitch fibers, are suitable, with a denier of 0.5 to 15 and a length of 2 to 15 mm.
Preferably 0.5 to 8 denier from the viewpoint of paper-making properties, etc.
Those with a length of 3 to 10 mm are selected depending on the purpose and used alone or in combination of two or more. (Pulp) In addition to cellulose pulp, various synthetic pulps are suitable as the pulp used in this invention, and these pulps act as a binder for organic fibers during paper making. (Binder for Paper Making) As a binder for paper making, for example, fibers that do not dissolve in cold water but dissolve in hot water, such as polyvinyl alcohol fibers, various synthetic pulps, and rayon for paper making, and are generally commercially available as binders for paper making. can be used. Synthetic resin emulsions can also be used as papermaking binders. (Mixing ratio) Organic fibers, pulp, and papermaking binders are
70-95 parts by weight, 3-25 parts by weight and 2-95 parts by weight, respectively.
They are mixed in a proportion of 15 parts by weight (as solid content) and made into paper by a conventional method. If the amount of organic fiber is less than 70 parts by weight, it becomes difficult to control the pore diameter, porosity, etc., and the strength also decreases, making it impossible to obtain a good sheet. It's difficult. Furthermore, in order to maintain wet strength, it is preferable to mix the pulp and papermaking binder in a total amount of 5 parts by weight or more. (Organic polymer substances) Examples of organic polymer substances used for impregnation include phenolic resins, epoxy resins; unsaturated polyester resins, thermosetting resins such as polydivinylbenzene, vinyl chloride resins, vinylidene chloride resins, and vinyl fluoride resins. , thermoplastic resins such as vinylidene fluoride resin, acrylonitrile resin, and even lignin, pitch, or tar. The preferable properties of these polymer compounds are that they can be dissolved in some solvent or melted at high temperatures during heat treatment, have a carbon content of 30% by weight or more, and can be bonded within carbon fibers as a carbonaceous binder after carbonization. It is useful for (Impregnation Treatment) The mixed paper is impregnated with a solution or dispersion of the organic polymer substance described above. If the amount of impregnation adhering to the mixed paper is too small, the binder effect and carbonization yield during carbonization will be poor, and if it is too excessive, it will be difficult to adjust the porosity due to clogging, and it will become brittle. The preferred amount of impregnation is 20 to 200%, more preferably 30 to 120% of the weight of the mixed paper. (Impregnation with heat resistance improver) When using regenerated cellulose, such as rayon, as the organic fiber, impregnation treatment with a heat resistance improver in addition to the impregnation treatment with the above-mentioned organic polymer liquid can improve the carbonization yield. It has a good effect on strength etc. As the heat resistance improver, any of those commonly used in producing rayon carbon fibers can be used. For example, metal phosphates include monobasic magnesium phosphate, monobasic calcium phosphate, monobasic sodium phosphate, monobasic potassium phosphate, etc., and ammonium salts of various acids include ammonium chloride, ammonium sulfate, ammonium hydrogen sulfate, phosphoric acid Ammonium, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium salt of polyphosphoric acid, ammonium borate, etc. can be suitably used. (Infusibility treatment) The above-mentioned mixed paper to which an organic polymer substance is attached is infusible if necessary and then fired to form carbon fiber paper. This method is particularly effective when a thermosetting resin such as a phenol resin is used as the molecular substance, and has a remarkable effect on improving carbonization yield and sheet strength. The processing conditions for infusibility are not particularly specified, but for example, 150 to 350°C, several tens of minutes to 10
For several hours, the mixed paper to which the organic polymer substance is attached is heated in air or an inert gas atmosphere to make it infusible. (Heat carbonization treatment) The above-mentioned mixed paper to which the organic polymer substance solution has been attached is made infusible as necessary, and then heat treated and fired at a temperature of 800°C or higher in an inert atmosphere.
A carbon fiber paper containing a carbonaceous binder is formed.
By changing the heat treatment temperature, it is possible to control the electrical resistance value of the final product carbon fiber paper. Further, when the above heat treatment and firing is performed while pressurizing at a pressure of 2 to 50 g/cm 2 , a carbon fiber sheet having extremely high strength and uniform thickness can be obtained. (Effects of the Invention) The present invention provides a method for obtaining a sheet by a papermaking method from fibers such as regenerated cellulose fibers and polyacrylonitrile fibers, which are normally used as raw materials for manufacturing carbon fibers, and obtaining a carbon fiber sheet by a general carbonization process. Compared to the conventional paper-making method using carbon fibers, the manufacturing process is easier and it is now possible to obtain sheets at a very low cost. In addition, by using press pressure during the carbonization process, a sheet with significantly improved mechanical strength and thickness accuracy can be obtained compared to conventional methods, and the carbon fibers do not fall off the sheet at all and are uniform. It has become easy to obtain sheets with Furthermore, by appropriately selecting the thickness and length of the raw organic fibers, and by blending the pulp and papermaking binder, it is possible to reduce the pore size and porosity of the sheet, which is a particular problem when used as an electrode base material for fuel cells. It has also become possible to control freely and easily. In addition, since the present invention obtains a sheet from organic fibers by a papermaking method, it is easier to form a sheet than a carbon fiber papermaking method, a uniform sheet can be obtained, and the sheet basis weight (g/
m 2 ) also has the advantage that any arbitrary value can be obtained. (Examples) In order to make it easier to understand the present invention, examples are shown below, but the following examples do not limit the present invention. In addition, parts and % in the examples are parts by weight and % by weight, respectively. Examples 1 to 3 Short rayon fibers with a thickness of 8 denier and 1.5 denier, 500 ml of Canadian Freeness pulp (LUKP), and polyvinyl alcohol fiber (manufactured by Kuraray, VPB105-2×3) were added with water in the proportions shown in Table 1. A slurry was obtained, and a mixed paper having a basis weight of 200 g/m 2 was made using a circular wire paper machine in a conventional manner. This mixed paper is impregnated with a 30% sodium dihydrogen phosphate aqueous solution (40% sodium dihydrogen phosphate adhesion amount/mixed paper),
In addition, phenolic resin (PR- manufactured by Sumitomo Durez)
51404) Impregnated with 20% aqueous solution (phenolic resin adhesion 40%/mixed paper), dried at 100℃, and further
Heat infusibility treatment was performed at 180°C for 30 minutes. Then, it was heated in a nitrogen gas atmosphere furnace at 900℃ for 1 hour.
A carbon fiber sheet was obtained by heating and firing under press pressure of g/cm 2 . The physical properties of this sheet are shown in Table 1.

【表】 り測定
抄紙シートを直接焼成する本発明の方法によれ
ば、優れた電気抵抗、強度を有する炭素繊維シー
トが得られ、しかも原料繊維の配合をかえること
により、孔径、気孔率を自由にコントロールでき
ることが第1表からわかる。 実施例 4 ポリアクリロニトリル繊維(5デニール、5
mm)85部、実施例1と同じパルプ(LUKP)7.5
部、実施例1と同じポリビニルアルコール繊維
7.5部を含むスラリーを常法により丸網抄紙機で
抄紙して坪量200g/m2の混抄紙を得た。この混
抄紙をフエノール樹脂(住友デユレズ製PR−
51404)30%水溶液に含浸し(フエノール樹脂付
着量40重量%/混抄紙)、100℃の温度で乾燥し
た。次いで、空気中で、250℃で、5時間加熱不
融化処理を行なつた後、更に900℃のチツ素雰囲
気炉で1時間7g/cm2のプレス加圧下で加熱焼成
を行ない炭素繊維シートを得た。実施例1〜3と
同様にこのシートの物性を測定した。 炭化収率44% 孔径65μm かさ密度0.30g/cm2 気孔率60% 体積固有抵抗0.10Ω−cm 実施例 5〜9 8デニール、8mmのレーヨン80部、NBKP10
部、実施例1と同じポリビニルアルコール繊維10
部の配合で実施例1〜3と同様な方法で炭素繊維
シートを得た。但し加熱焼成は1000℃で行ない、
リン酸二水素ナトリウムによる含浸処理を行なわ
ない場合についても実験を行なつた。結果を第2
表に示す。
[Table] Measurement According to the method of the present invention in which a paper sheet is directly fired, a carbon fiber sheet with excellent electrical resistance and strength can be obtained, and by changing the composition of raw material fibers, the pore size and porosity can be adjusted freely. It can be seen from Table 1 that this can be controlled. Example 4 Polyacrylonitrile fiber (5 denier, 5
mm) 85 parts, same pulp as Example 1 (LUKP) 7.5
part, the same polyvinyl alcohol fiber as in Example 1
A slurry containing 7.5 parts of the slurry was made into paper using a circular wire paper machine in a conventional manner to obtain mixed paper having a basis weight of 200 g/m 2 . This mixed paper is processed using phenolic resin (PR- manufactured by Sumitomo Durez).
51404) was impregnated with a 30% aqueous solution (phenolic resin adhesion amount: 40% by weight/mixed paper) and dried at a temperature of 100°C. Next, heat infusibility treatment was performed at 250°C in air for 5 hours, and then heating and firing was performed in a nitrogen atmosphere furnace at 900°C for 1 hour under a press pressure of 7 g/cm 2 to form a carbon fiber sheet. Obtained. The physical properties of this sheet were measured in the same manner as in Examples 1-3. Carbonization yield 44% Pore diameter 65 μm Bulk density 0.30 g/cm 2 Porosity 60% Volume resistivity 0.10 Ω-cm Examples 5 to 9 80 parts of 8 denier, 8 mm rayon, NBKP10
part, polyvinyl alcohol fiber 10 same as Example 1
Carbon fiber sheets were obtained in the same manner as in Examples 1 to 3 using the same proportions as in Examples 1 to 3. However, heating and firing is performed at 1000℃,
Experiments were also conducted without impregnation treatment with sodium dihydrogen phosphate. Second result
Shown in the table.

【表】 実施例 10〜13 実施例5〜9に用いたのと同じ配合物から得ら
れる混抄紙を実施例1〜3に用いたのと同じフエ
ノール樹脂水溶液で含浸処理し、100℃で乾燥後
180℃で30分間加熱不融化処理した。次いで1000
℃のチツ素ガス雰囲気炉で加圧条件を種々変えて
1時間焼成し、炭素繊維シートを得た。結果を第
3表に示す。
[Table] Examples 10 to 13 A mixed paper obtained from the same formulation used in Examples 5 to 9 was impregnated with the same phenolic resin aqueous solution used in Examples 1 to 3, and dried at 100°C. rear
Heat infusibility treatment was performed at 180°C for 30 minutes. then 1000
The material was fired for 1 hour in a nitrogen gas atmosphere furnace at 0.degree. C. under various pressure conditions to obtain a carbon fiber sheet. The results are shown in Table 3.

【表】 実施例14および比較例 (1) シート抄造工程 アクリル繊維、太さ3デニール・長さ5mmの
もの又は炭素繊維、太さ3デニール・長さ3mm
のものを1%水溶液中にて離解を行ない、次に
ナイヤガラビーターを用いてカナデイアンフリ
ーネス200mlに叩解したN−BKPパルプ(ノー
スウツド)とテイスインテグレーターにて離解
を行つたPVA繊維(クラレVPB−105−2−
3)を加えて混合して、更にエポキシ系紙力増
強剤(三井東圧ユーラミンp−5600を対繊維1
%添加して0.3%濃度の原料を調成した。 0.03%濃度に調成を行ない角型手抄シート
m/c(250mm角−ブロンズワイヤー60メツシ
ユ)にて坪量200g/m2のシートを手抄した、
次に抄造シートを角型プレスにて第1プレス
(圧力3.5Kg/cm2−5分間)・第2プレス(圧力
3.5Kg/cm2−2分間)行なつた、更に乾燥機を
用いてシートの乾燥(105℃)を行なつた。尚、
各繊維配合について結果表の通りである。 (2) 含浸工程 (1)の条件にて抄造したシートにフエノール樹
脂の25%水溶液にて浸漬後、40mmφのゴムロー
ル間にて絞り含浸コントロールを行なつた、こ
のシートを熱風乾燥機にて105℃で5分間乾燥
を行なつた。含浸率は、樹脂付着量60〜70%/
対シートとなつた。 (3) 加熱プレス成型・硬化処理工程 (2)の条件にて含浸したシートを以下の条件
で、プレス成型・硬化処理を行なつた。含浸シ
ートを4枚積層して、(圧力5Kg/cm2にて170℃
−5分間加熱成型・硬化処理を行なつた。(厚
さ3.1mmのスペーサーを周囲に置いて成型し
た。) (4) 酸化処理工程 (3)の条件にてプレス成型・硬化処理行なつた
各々のシートを、熱風乾燥機にて225℃−4時
間空気中にて酸化処理を行なつた。 (5) 焼成処理工程 (4)の条件にて酸化処理行なつたシートを、不
活性ガス(N2)雰囲気炉で1000℃の温度下に
て30分間、グラフアイト板にはさんで焼成処理
を行なつた。
[Table] Example 14 and Comparative Example (1) Sheet making process Acrylic fiber, thickness 3 denier, length 5 mm or carbon fiber, thickness 3 denier, length 3 mm
N-BKP pulp (North Woods) was defibrated in a 1% aqueous solution, and then beaten to 200 ml of Canadian freeness using a Niagara beater, and PVA fiber (Kuraray VPB-105) was defibrated in a taste integrator. -2-
3), mix, and then add epoxy paper strength enhancer (Mitsui Toatsu Euramin P-5600 to 1 fiber).
% was added to prepare a raw material with a concentration of 0.3%. The concentration was adjusted to 0.03%, and a sheet with a basis weight of 200 g/m 2 was hand-sheeted using a square hand-sheet m/c (250 mm square - 60 meshes of bronze wire).
Next, the paper sheet is placed in a square press using the first press (pressure 3.5Kg/cm 2 -5 minutes) and the second press (pressure
The sheet was further dried (105°C) using a dryer . still,
The results are shown in the table for each fiber combination. (2) Impregnation process The sheet made under the conditions of (1) was immersed in a 25% aqueous solution of phenolic resin, and then squeezed between 40 mm diameter rubber rolls to control impregnation. Drying was carried out for 5 minutes at °C. The impregnation rate is 60 to 70% resin adhesion
It became a counter sheet. (3) Hot press molding/hardening process The sheet impregnated under the conditions of (2) was press molded and hardened under the following conditions. Laminated 4 impregnated sheets (170℃ at 5Kg/ cm2 pressure)
- Heat molding and curing treatment was performed for 5 minutes. (Molding was performed with a 3.1 mm thick spacer placed around it.) (4) Oxidation treatment process Each sheet that had been press-molded and hardened under the conditions of (3) was dried at 225°C in a hot air dryer. Oxidation treatment was carried out in air for 4 hours. (5) Firing treatment process The sheet that has been oxidized under the conditions of (4) is baked in an inert gas (N 2 ) atmosphere furnace at a temperature of 1000℃ for 30 minutes by sandwiching it between graphite plates. I did this.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 人造の有機繊維70〜95重量部、パルプ3〜25
重量部および抄紙用バインダー2〜15重量部を混
合抄紙して得られるシートに有機高分子物質の溶
液を含浸し、必要に応じて不融化処理を行つた
後、不活性雰囲気中で800℃以上の温度で加熱炭
化させることを特徴とする炭素繊維シートの製造
法。 2 特許請求の範囲第1項に記載の製造法におい
て、加熱炭化を圧力2〜50g/cm2のプレス加圧下
で行うことを特徴とする炭素繊維シートの製造
法。
[Claims] 1. 70 to 95 parts by weight of artificial organic fiber, 3 to 25 parts by weight of pulp
A sheet obtained by mixing parts by weight and 2 to 15 parts by weight of a papermaking binder is impregnated with a solution of an organic polymer substance, and after performing an infusibility treatment as necessary, the sheet is heated at 800°C or higher in an inert atmosphere. A method for producing a carbon fiber sheet, characterized by heating and carbonizing it at a temperature of . 2. A method for manufacturing a carbon fiber sheet according to claim 1, characterized in that heating carbonization is performed under press pressure of 2 to 50 g/cm 2 .
JP22649482A 1982-12-25 1982-12-25 Production of carbon fiber sheet Granted JPS59144625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22649482A JPS59144625A (en) 1982-12-25 1982-12-25 Production of carbon fiber sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22649482A JPS59144625A (en) 1982-12-25 1982-12-25 Production of carbon fiber sheet

Publications (2)

Publication Number Publication Date
JPS59144625A JPS59144625A (en) 1984-08-18
JPH0258369B2 true JPH0258369B2 (en) 1990-12-07

Family

ID=16845980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22649482A Granted JPS59144625A (en) 1982-12-25 1982-12-25 Production of carbon fiber sheet

Country Status (1)

Country Link
JP (1) JPS59144625A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187623A (en) * 1983-04-04 1984-10-24 Oji Paper Co Ltd Preparation of carbon fiber molded sheet
JPS6112918A (en) * 1984-06-25 1986-01-21 Oji Paper Co Ltd Production of porous carbon plate
JPH081040B2 (en) * 1987-08-07 1996-01-10 新王子製紙株式会社 Method for manufacturing porous carbon plate
JPH0369615A (en) * 1989-08-08 1991-03-26 Oji Paper Co Ltd Preparation of porous carbon plate
CA2363056C (en) * 1999-02-18 2006-04-11 Showa Denko K.K. Carbon fiber woven fabric and method for production thereof
JP4518838B2 (en) * 2004-05-25 2010-08-04 財団法人ファインセラミックスセンター Strain sensor, its manufacturing method and strain detection method
FR3058166B1 (en) * 2016-10-28 2018-11-23 Arkema France PROCESS FOR PRODUCING CARBON FIBERS FROM BIOSOURCE PRECURSORS AND CARBON FIBERS OBTAINED
FR3058167B1 (en) * 2016-10-28 2019-11-22 Arkema France NEW PROCESS FOR MANUFACTURING HIGHLY CARBON MATERIALS AND HIGHLY CARBON MATERIAL OBTAINED

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025808A (en) * 1973-07-10 1975-03-18
JPS5417046A (en) * 1977-07-07 1979-02-08 Agency Of Ind Science & Technol Random phase plate for horogram recording

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025808A (en) * 1973-07-10 1975-03-18
JPS5417046A (en) * 1977-07-07 1979-02-08 Agency Of Ind Science & Technol Random phase plate for horogram recording

Also Published As

Publication number Publication date
JPS59144625A (en) 1984-08-18

Similar Documents

Publication Publication Date Title
EP0162976B1 (en) Process for preparation of porous carbon plates
JPH0544779B2 (en)
JPH0140128B2 (en)
JPH0258369B2 (en)
JPH0559867B2 (en)
JPS648091B2 (en)
JPS63222080A (en) Manufacture of carbon fiber porous body
JPS644962B2 (en)
JPH0223505B2 (en)
JPH0129891B2 (en)
JP3739819B2 (en) Method for producing porous carbon material
JPH0360478A (en) Production of porous carbon sheet
JPH01266223A (en) Production of anisotropic porous carbon formed product
JPH081040B2 (en) Method for manufacturing porous carbon plate
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JP3132098B2 (en) Manufacturing method of polarizable electrode material
JPS63222078A (en) Manufacture of carbon fiber porous body
JPH0367990B2 (en)
JP3159754B2 (en) Electric double layer capacitor
JPS62160661A (en) Production of thin carbon plate for fuel cell separator
JPH0369615A (en) Preparation of porous carbon plate
JPS60126325A (en) Manufacture of carbon fiber sheet
JP3183681B2 (en) Method for producing highly conductive porous carbon material
JPH01266222A (en) Production of porous carbon formed product
JPH02199010A (en) Production of thin sheetlike carbon material