JP2012204142A - Porous carbon electrode substrate and method for manufacturing the same - Google Patents
Porous carbon electrode substrate and method for manufacturing the same Download PDFInfo
- Publication number
- JP2012204142A JP2012204142A JP2011067643A JP2011067643A JP2012204142A JP 2012204142 A JP2012204142 A JP 2012204142A JP 2011067643 A JP2011067643 A JP 2011067643A JP 2011067643 A JP2011067643 A JP 2011067643A JP 2012204142 A JP2012204142 A JP 2012204142A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- sheet
- electrode substrate
- porous carbon
- carbon electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- Carbon And Carbon Compounds (AREA)
- Inert Electrodes (AREA)
Abstract
Description
本発明は、液体燃料を使用する固体高分子型燃料電池に用いられる多孔質炭素電極基材及びその製造方法に関する。 The present invention relates to a porous carbon electrode substrate used for a polymer electrolyte fuel cell using liquid fuel and a method for producing the same.
固体高分子型燃料電池のガス拡散層には、炭素繊維紙、炭素繊維クロス、炭素繊維フェルト等の炭素繊維を用いた基材が一般的に用いられる。これらの基材は炭素繊維によって高い導電性を示すだけでなく、多孔質材料であるため、燃料ガスおよび生成水などの液体の透過性が高いためガス拡散層に好適な材料である。 A base material using carbon fibers such as carbon fiber paper, carbon fiber cloth, and carbon fiber felt is generally used for the gas diffusion layer of the polymer electrolyte fuel cell. These base materials are not only highly conductive due to carbon fibers, but are porous materials, and are therefore suitable materials for gas diffusion layers because of high permeability of liquids such as fuel gas and generated water.
しかしながら、ガス拡散層として用いられる基材は、燃料電池を製造する際のガス拡散層と電解質膜の接合工程やスタックの締結工程において生じる摩擦や圧縮などにより炭素繊維の毛羽立ちや脱落・折損が生じるおそれがある。これらの脱落・折損した炭素繊維は電解質膜に比べ剛直であるため、電解質膜に突き刺さることがある。 However, the base material used as the gas diffusion layer causes fluffing, dropping, or breakage of carbon fibers due to friction or compression generated in the gas diffusion layer and electrolyte membrane joining process or stack fastening process when manufacturing the fuel cell. There is a fear. Since these dropped and broken carbon fibers are stiffer than the electrolyte membrane, they may pierce the electrolyte membrane.
電解質膜に突き刺さることにより、アノード極とカソード極との間がショートするといった不具合、アノード極側の水素ガス及び/又はカソード極側の酸素ガスがクロスリークするといった不具合を生じ、燃料電池の起電力や耐久性が著しく損なわれる傾向にあった。 By piercing the electrolyte membrane, problems such as short-circuiting between the anode and cathode, and problems such as hydrogen gas on the anode side and / or oxygen gas on the cathode side cross-leak occur, and the electromotive force of the fuel cell And the durability tended to be significantly impaired.
ところで電解質膜への炭素繊維の突き刺さりによるダメージを低減する方法として、例えば特許文献1には電解質膜や触媒層との接合工程やスタック締結工程においてガス拡散層に掛かる面圧を、あらかじめガス拡散層に付与し、生じる結着の弱い炭素繊維および炭化物の脱落や破損したものをあらかじめ取り除く方法が開示されている。また、特許文献2にはガス拡散層に気体を吹きつけ同時に吸引してやることで、ガス拡散層製造時において結着の弱い炭素短繊維を取り除く方法が開示されている。さらに、特許文献3においては、ガス拡散層に超音波処理を施すことによって、結着の弱い炭素繊維を取り除く方法が開示されている。 By the way, as a method for reducing the damage caused by the carbon fiber sticking to the electrolyte membrane, for example, Patent Document 1 discloses in advance the surface pressure applied to the gas diffusion layer in the joining step with the electrolyte membrane and the catalyst layer and the stack fastening step. And a method for removing in advance the carbon fibers and carbides that are weakly bonded and falling off or broken. Patent Document 2 discloses a method of removing short carbon fibers having weak binding during gas diffusion layer production by blowing gas into the gas diffusion layer and simultaneously sucking it. Furthermore, Patent Document 3 discloses a method of removing carbon fibers having weak binding by applying ultrasonic treatment to a gas diffusion layer.
しかしながら、特許文献1に記載の方法ではプレスにより後工程で生じる炭素粉を、予め除去することはできるが、プレス時に付与する圧力やプレス後の除去処理が不十分であるため、発生した炭素粉が十分に除去されておらず、燃料電池に用いた際に短絡電流が生じてしまうおそれがあった。
特許文献2に記載の方法では、ガス拡散層の表面はある程度清浄にできるが、電解質膜との接合工程など、ガス拡散層が圧縮された際には新たに炭素粉が発生してしまい、それらが電解質膜に突き刺さってしまって大きな短絡電流が発生してしまうという問題があった。
また、特許文献3に記載の方法を用いても同様にして、後工程の圧縮により炭素粉が発生してしまうという問題が生じる傾向にある。
本発明は、前記のような問題点を克服し、燃料電池に用いた際に短絡や反応ガスのクロスリークが生じにくい、基材表面において結着が不十分な炭素短繊維や樹脂炭化物が十分に除去された多孔質炭素電極基材およびその製造方法を提供することを目的とする。
However, in the method described in Patent Document 1, carbon powder generated in a post-process by pressing can be removed in advance, but the generated carbon powder is insufficient because the pressure applied during pressing and the post-pressing removal process are insufficient. Was not sufficiently removed, and there was a possibility that a short-circuit current would occur when used in a fuel cell.
In the method described in Patent Document 2, the surface of the gas diffusion layer can be cleaned to some extent, but carbon powder is newly generated when the gas diffusion layer is compressed, such as a bonding step with the electrolyte membrane, However, there is a problem in that a large short-circuit current is generated by being stuck into the electrolyte membrane.
Further, even if the method described in Patent Document 3 is used, there is a tendency that a problem arises in that carbon powder is generated by compression in a subsequent process.
The present invention overcomes the above-mentioned problems, and when used in a fuel cell, short-circuit and reactive gas cross-leak are unlikely to occur, and carbon short fibers and resin carbides with insufficient binding on the substrate surface are sufficient. It is an object of the present invention to provide a porous carbon electrode base material removed by the method and a method for producing the same.
前記課題は以下の発明〔1〕〜〔6〕によって解決される。
〔1〕 以下の(1)〜(3)の工程を含む、多孔質炭素電極基材の製造方法。
(1)炭素短繊維が炭素により結着された炭素シートを製造する工程。
(2)前記炭素シートを、炭素シートの少なくとも一方の面に弾性を有するシートを配置し、連続的な加圧手段を用いて線圧5kN/m〜30kN/mで加圧する工程。
(3)次いで、炭素シートに付着した炭素粉を連続的に除去する工程。
〔2〕 加圧手段を、少なくとも一対のロールを備えた連続式プレス装置とし、前記一対のロールの少なくとも一方が金属製のロールである、〔1〕記載の多孔質炭素電極基材の製造方法。
〔3〕 加圧手段を、少なくとも一対のロールを備えた連続式プレス装置とし、前記一対のロールの少なくとも一方が弾性ロールである、〔1〕又は〔2〕記載の多孔質炭素電極基材の製造方法。
〔4〕 連続式プレス装置が、少なくとも一対のエンドレスベルトを備えた連続式プレス装置である、〔3〕記載の多孔質炭素電極基材の製造方法。
〔5〕 除去が、ブラッシング及び吸引による方法、又は超音波洗浄である、〔1〕〜〔4〕のいずれかに記載の多孔質炭素電極基材の製造方法。
ポリエチレンシートと重ね50g/cm2の力で圧着した際に、剥離したポリエチレンシートに付着した炭素短繊維の数が0.1本〜10本/cm2であり、炭素短繊維の数が付着した炭化物の数よりも少ない多孔質炭素電極基材。
The above problems are solved by the following inventions [1] to [6].
[1] A method for producing a porous carbon electrode substrate, comprising the following steps (1) to (3).
(1) A step of producing a carbon sheet in which short carbon fibers are bound by carbon.
(2) A step of placing the carbon sheet with elasticity on at least one surface of the carbon sheet and pressurizing the carbon sheet with a linear pressure of 5 kN / m to 30 kN / m using a continuous pressurizing means.
(3) Next, the process of removing the carbon powder adhering to the carbon sheet continuously.
[2] The method for producing a porous carbon electrode substrate according to [1], wherein the pressurizing means is a continuous press device provided with at least a pair of rolls, and at least one of the pair of rolls is a metal roll. .
[3] The porous carbon electrode substrate according to [1] or [2], wherein the pressurizing means is a continuous press device provided with at least a pair of rolls, and at least one of the pair of rolls is an elastic roll. Production method.
[4] The method for producing a porous carbon electrode substrate according to [3], wherein the continuous press device is a continuous press device including at least a pair of endless belts.
[5] The method for producing a porous carbon electrode substrate according to any one of [1] to [4], wherein the removal is a method by brushing and suction, or ultrasonic cleaning.
Upon crimped polyethylene sheet and force lap 50 g / cm 2, the number of short carbon fibers attached to the peeled polyethylene sheet is 0.1 present 10 present / cm 2, was deposited in the number of short carbon fibers Porous carbon electrode substrate with less number of carbides.
燃料電池に用いた際に短絡や反応ガスのクロスリークが生じにくい、基材表面において結着が不十分な炭素短繊維や樹脂炭化物が十分に除去された多孔質炭素電極基材を得ることができる。 It is possible to obtain a porous carbon electrode base material in which short carbon and reactive gas cross-leakage are hardly generated when used in a fuel cell, and carbon short fibers and resin carbide insufficiently bonded on the surface of the base material are sufficiently removed. it can.
以下、本発明について詳細に示す。
本発明は、以下の(1)〜(3)の工程を含む、多孔質炭素電極基材の製造方法、である。
(1)炭素短繊維が炭素により結着された炭素シートを製造する工程。
(2)前記炭素シートを、炭素シートの少なくとも一方の面に弾性を有するシートを配置し、連続的な加圧手段を用いて線圧5kN/m〜30kN/mで加圧する工程。
(3)次いで、炭素シートに付着した炭素粉を連続的に除去する工程。
Hereinafter, the present invention will be described in detail.
The present invention is a method for producing a porous carbon electrode substrate, comprising the following steps (1) to (3).
(1) A step of producing a carbon sheet in which short carbon fibers are bound by carbon.
(2) A step of placing the carbon sheet with elasticity on at least one surface of the carbon sheet and pressurizing the carbon sheet with a linear pressure of 5 kN / m to 30 kN / m using a continuous pressurizing means.
(3) Next, the process of removing the carbon powder adhering to the carbon sheet continuously.
まず、第一の工程において、炭素短繊維が炭素により結着された炭素シートを製造する。具体的には、炭素短繊維と炭素短繊維同士を結着させるバインダーとを水中で分散、抄造した後、抄紙にフェノール樹脂等を含浸し、次いで炭素化することにより製造される。以下、製造方法に関して詳細に説明する。 First, in the first step, a carbon sheet in which short carbon fibers are bound by carbon is manufactured. Specifically, the short carbon fibers and the binder for binding the short carbon fibers are dispersed in water and made, then the paper is impregnated with a phenol resin and then carbonized. Hereinafter, the manufacturing method will be described in detail.
炭素短繊維としては、その原料によらず用いることができるが、ポリアクリロニトリル(以後PANと略す。)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維から選ばれる1つ以上の炭素繊維を含むことが好ましく、PAN系炭素繊維あるいはピッチ系炭素繊維を含むことがより好ましい。炭素短繊維の平均直径は、3〜30μm程度が好ましく、4〜20μmがより好ましく、4〜8μmがさらに好ましい。この範囲内であると多孔質炭素電極基材としての表面平滑性と導電性がよい。
炭素短繊維の平均長は、2〜12mmが好ましく、3〜9mmがさらに好ましい。この範囲内であると抄紙時の分散性と多孔質炭素電極基材としての機械的強度が高くなる。
The short carbon fiber can be used regardless of the raw material, but one or more selected from polyacrylonitrile (hereinafter abbreviated as PAN) carbon fiber, pitch carbon fiber, rayon carbon fiber, and phenolic carbon fiber. It is preferable that the carbon fiber is included, and it is more preferable to include the PAN-based carbon fiber or the pitch-based carbon fiber. The average diameter of the short carbon fibers is preferably about 3 to 30 μm, more preferably 4 to 20 μm, and still more preferably 4 to 8 μm. Within this range, the surface smoothness and conductivity as a porous carbon electrode substrate are good.
The average length of the short carbon fibers is preferably 2 to 12 mm, and more preferably 3 to 9 mm. Within this range, the dispersibility during papermaking and the mechanical strength as a porous carbon electrode substrate are increased.
ポリアクリロニトリル系炭素繊維は、原料として、アクリロニトリルを主成分とするポリマーを用いて製造されるものである。具体的には、アクリロニトリル系繊維を紡糸する製糸工程、200〜400℃の空気雰囲気中で該繊維を加熱焼成して酸化繊維に転換する耐炎化工程、窒素、アルゴン、ヘリウム等の不活性雰囲気中でさらに300〜2500℃に加熱して炭化する炭化工程を経て得ることのできる炭素繊維で、複合材料強化繊維として好適に使用される。そのため、他の炭素繊維に比べて強度が強く、機械的強度の強い炭素シートを形成することができる。 The polyacrylonitrile-based carbon fiber is manufactured using a polymer mainly composed of acrylonitrile as a raw material. Specifically, a spinning process for spinning acrylonitrile fibers, a flameproofing process for heating and firing the fibers in an air atmosphere at 200 to 400 ° C. to convert them into oxidized fibers, and in an inert atmosphere such as nitrogen, argon, helium, etc. In addition, the carbon fiber can be obtained through a carbonization step of carbonizing by heating to 300 to 2500 ° C., and is suitably used as a composite material reinforcing fiber. Therefore, it is possible to form a carbon sheet having a higher strength and a higher mechanical strength than other carbon fibers.
炭素シートを作製するための抄紙方法としては、液体の媒体中に炭素短繊維を分散させて抄造する湿式法や、空気中に炭素短繊維を分散させて降り積もらせる乾式法が適用できる。また、炭素繊維同士を結着させるバインダーとして、適当量の有機高分子物質を混ぜることが好ましい。有機高分子物質を混ぜることにより、炭素シートの強度を保持し、その製造途中で炭素シートから炭素繊維が剥離したり、炭素繊維の配向が変化したりするのを防止することができる。 As a papermaking method for producing a carbon sheet, a wet method in which short carbon fibers are dispersed in a liquid medium for papermaking, or a dry method in which short carbon fibers are dispersed in air to be deposited can be applied. Moreover, it is preferable to mix an appropriate amount of an organic polymer substance as a binder for binding carbon fibers together. By mixing the organic polymer substance, the strength of the carbon sheet can be maintained, and the carbon fiber can be prevented from peeling off from the carbon sheet during the production or the orientation of the carbon fiber can be prevented from changing.
有機高分子化合物としては、ポリビニルアルコール、あるいはアクリロニトリル系ポリマーのパルプ状物もしくは短繊維であることが好ましい。アクリロニトリル系ポリマーのパルプ状物又は短繊維は、それ自身の焼成物が導電体としての役割を果たすため、特に好ましい。また、ポリビニルアルコールは抄紙工程での結着力に優れるため、炭素短繊維の脱落が少なくバインダーとして好ましい。
また、ポリビニルアルコールは電極基材を製造する最終段階の炭素化過程で大部分が分解・揮発してしまい、空孔を形成する。この空孔の存在により、水及びガスの透過性が向上するため好ましい。
The organic polymer compound is preferably polyvinyl alcohol, or an acrylonitrile-based polymer pulp or short fiber. Acrylonitrile-based polymer pulps or short fibers are particularly preferred because their own fired product serves as a conductor. Polyvinyl alcohol is preferable as a binder because it has excellent binding power in the paper making process, and the short carbon fibers do not fall off.
Polyvinyl alcohol is mostly decomposed and volatilized in the final stage of carbonization process for producing an electrode substrate to form pores. The presence of these pores is preferable because the permeability of water and gas is improved.
パルプ状物は繊維状の幹から直径が数μm以下のフィブリルを多数分岐した構造で、このパルプ状物より作ったシ−ト状物は繊維同士の絡み合いが効率よく形成されており、薄いシ−ト状物であってもその取り扱い性に優れているという長所を有している。また、アクリロニトリル系ポリマーの短繊維は、アクリロニトリル系ポリマーからなる繊維糸、または繊維のトウを、所定の長さにカットして得ることができる。 A pulp-like material has a structure in which a large number of fibrils having a diameter of several μm or less are branched from a fibrous trunk, and a sheet-like material made from this pulp-like material has an efficient entanglement between fibers and is thin. -Even if it is a toroid, it has the advantage that it is excellent in its handleability. Moreover, the short fiber of an acrylonitrile-type polymer can be obtained by cutting the fiber yarn which consists of an acrylonitrile-type polymer, or the fiber tow into predetermined length.
炭素シートにおける有機高分子化合物の含有率は、5〜40質量%の範囲にあるのが好ましい。より好ましくは15〜30質量%の範囲である。炭素シートに樹脂含浸し、焼成して得られる電極基材の電気抵抗を低くするためには、高分子化合物の含有量は少ない方がよく、含有率は40質量%以下が好ましい。炭素シートの強度および形状を保つという観点から、含有率は5質量%以上が好ましい。 The content of the organic polymer compound in the carbon sheet is preferably in the range of 5 to 40% by mass. More preferably, it is the range of 15-30 mass%. In order to reduce the electrical resistance of the electrode base material obtained by impregnating the carbon sheet with resin and firing, it is better that the content of the polymer compound is small, and the content is preferably 40% by mass or less. From the viewpoint of maintaining the strength and shape of the carbon sheet, the content is preferably 5% by mass or more.
これらの有機高分子化合物のパルプ状物あるいは短繊維を炭素繊維に混入する方法としては、炭素繊維とともに水中で攪拌分散させる方法と、直接混ぜ込む方法があるが、均一に分散させるためには水中で拡散分散させる方法が好ましい。 There are two methods for mixing pulp fibers or short fibers of these organic polymer compounds into carbon fibers: stirring and dispersing together with carbon fibers in water and mixing directly. The method of diffusing and dispersing with is preferable.
炭素シートを抄紙した後、加熱加圧ロールでホットプレスすることにより、炭素繊維の配向および厚みをを均一化し、炭素繊維特有の毛羽を最小限におさえることができる。加熱加圧ロールの加熱温度は100℃〜150℃が好ましく、圧力は0.5MPa〜20MPaが好ましい。 After paper making a carbon sheet, hot pressing with a heating and pressing roll can make the orientation and thickness of the carbon fiber uniform and minimize the fluff peculiar to the carbon fiber. The heating temperature of the heating and pressing roll is preferably 100 ° C to 150 ° C, and the pressure is preferably 0.5 MPa to 20 MPa.
本発明においては、上述した炭素短繊維を含む炭素シートに熱硬化性樹脂を含浸し、加熱加圧により硬化し、次いで炭素化することにより燃料電池用多孔質炭素電極基材とする。 In the present invention, a carbon sheet containing short carbon fibers described above is impregnated with a thermosetting resin, cured by heating and pressing, and then carbonized to obtain a porous carbon electrode substrate for a fuel cell.
本発明に用いる熱硬化性樹脂は常温において粘着性、或いは流動性を示す物でかつ炭素化後も導電性物質として残存する物質が好ましく、フェノール樹脂、フラン樹脂等を用いることができる。前記フェノール樹脂としては、アルカリ触媒存在下においてフェノール類とアルデヒド類の反応によって得られるレゾールタイプフェノール樹脂を用いることができる。また、レゾールタイプの流動性フェノール樹脂に公知の方法によって酸性触媒下においてフェノール類とアルデヒド類の反応によって生成する、固体の熱融着性を示すノボラックタイプのフェノール樹脂を溶解混入させることもできるが、この場合は硬化剤、例えばヘキサメチレンジアミンを含有した、自己架橋タイプのものが好ましい。 The thermosetting resin used in the present invention is preferably a substance that exhibits adhesiveness or fluidity at room temperature and remains as a conductive substance even after carbonization, and a phenol resin, a furan resin, or the like can be used. As the phenol resin, a resol type phenol resin obtained by reaction of phenols and aldehydes in the presence of an alkali catalyst can be used. In addition, a novolac type phenolic resin showing solid heat-fusibility, which is produced by a reaction of phenols and aldehydes under an acidic catalyst by a known method, can be dissolved and mixed in a resol type flowable phenolic resin. In this case, a self-crosslinking type containing a curing agent such as hexamethylenediamine is preferred.
フェノール類としては、例えば、フェノール、レゾルシン、クレゾール、キシロール等が用いられる。アルデヒド類としては、例えばホルマリン、パラホルムアルデヒド、フルフラール等が用いられる。また、これらを混合物として用いることができる。これらはフェノール樹脂として市販品を利用することも可能である。 As phenols, for example, phenol, resorcin, cresol, xylol and the like are used. As aldehydes, for example, formalin, paraformaldehyde, furfural and the like are used. Moreover, these can be used as a mixture. These can also use a commercial item as a phenol resin.
本発明に用いる樹脂含浸炭素シート中の樹脂の好ましい割合は30質量%〜70質量%である。多孔質炭素電極基材の構造が密になり、得られる電極基材の強度が高いという点で、30質量%以上が好ましい。また、得られる電極基材の空孔率、ガス透過性を良好に保つという点で、70質量%以下とすることが好ましい。ここで、樹脂含浸炭素シートとは、加熱加圧前の、炭素シートに樹脂を含浸したものをいうが、樹脂含浸の際に溶媒を用いた場合には溶媒を除去したものをいう。 A desirable ratio of the resin in the resin-impregnated carbon sheet used in the present invention is 30% by mass to 70% by mass. 30 mass% or more is preferable at the point that the structure of a porous carbon electrode base material becomes dense and the intensity | strength of the electrode base material obtained is high. Moreover, it is preferable to set it as 70 mass% or less at the point of maintaining the porosity and gas permeability of the electrode base material obtained. Here, the resin-impregnated carbon sheet refers to a sheet obtained by impregnating a carbon sheet before heating and pressurization, and when a solvent is used during resin impregnation, it refers to a sheet from which the solvent has been removed.
熱硬化性樹脂の含浸工程において熱硬化性樹脂に導電性物質を混入することもできる。導電性物質としては、炭素質ミルド繊維、カーボンブラック、アセチレンブラック、等方性黒鉛粉などが挙げられる。樹脂中に導電性物質を混入する際の混入量は、樹脂に対して、1質量%〜10質量%が好ましい。混入量が1質量%未満であると導電性改善の効果が小さいという点で不利であり、10質量%を越えると導電性改善の効果が飽和する傾向にあり、またコストアップの要因となるという点で不利である。 In the thermosetting resin impregnation step, a conductive substance can be mixed into the thermosetting resin. Examples of the conductive material include carbonaceous milled fiber, carbon black, acetylene black, and isotropic graphite powder. The mixing amount when the conductive substance is mixed in the resin is preferably 1% by mass to 10% by mass with respect to the resin. If the mixing amount is less than 1% by mass, it is disadvantageous in that the effect of improving the conductivity is small, and if it exceeds 10% by mass, the effect of improving the conductivity tends to saturate, and the cost increases. It is disadvantageous in terms.
樹脂または樹脂と導電体の混合物を炭素シートに含浸する方法としては、絞り装置を用いる方法もしくは熱硬化性樹脂フィルムを炭素シートに重ねる方法が好ましい。絞り装置を用いる方法は樹脂溶液もしくは混合液中に炭素シートを含浸し、絞り装置で取り込み液が炭素シート全体に均一に塗布されるようにし、液量は絞り装置のロール間隔を変えることで調節する方法である。比較的粘度が低い場合はスプレー法等も用いることができる。 As a method of impregnating a carbon sheet with a resin or a mixture of a resin and a conductor, a method using a drawing device or a method of stacking a thermosetting resin film on a carbon sheet is preferable. In the method using a squeezing device, a carbon sheet is impregnated in a resin solution or mixed solution, and the squeezing device is used to uniformly apply the intake liquid to the entire carbon sheet. It is a method to do. If the viscosity is relatively low, a spray method or the like can also be used.
熱硬化樹脂フィルムを用いる方法は、まず熱硬化性樹脂を離型紙に一旦コーティングし、熱硬化性樹脂フィルムとする。その後、炭素シートに前記フィルムを積層して加熱加圧処理を行い、熱硬化性樹脂を転写する方法である。 In the method using a thermosetting resin film, first, a thermosetting resin is once coated on a release paper to obtain a thermosetting resin film. Thereafter, the film is laminated on a carbon sheet and subjected to heat and pressure treatment to transfer a thermosetting resin.
本発明における加熱加圧工程は、生産性の観点から、炭素シートの全長にわたって連続して行うことが好ましい。また加熱加圧に先立って予熱を行うことが好ましい。この予熱工程において、熱硬化性樹脂を軟化させ、その後に続く加熱加圧工程にて、プレスにより電極基材の厚みを良好にコントロールできる。予熱した樹脂含浸炭素シートを予熱温度より50℃以上高い温度でプレスすることで所望の厚み、密度の電極基材を得ることができる。また、所望の厚み、密度の電極基材を得るために、樹脂含浸炭素シートを複数枚重ねて、加熱加圧を行っても良い。 The heating and pressing step in the present invention is preferably performed continuously over the entire length of the carbon sheet from the viewpoint of productivity. Moreover, it is preferable to perform preheating prior to heating and pressurization. In this preheating step, the thermosetting resin is softened, and in the subsequent heating and pressing step, the thickness of the electrode base material can be well controlled by pressing. An electrode base material having a desired thickness and density can be obtained by pressing the preheated resin-impregnated carbon sheet at a temperature higher by 50 ° C. or more than the preheating temperature. Moreover, in order to obtain an electrode base material having a desired thickness and density, a plurality of resin-impregnated carbon sheets may be stacked and heated and pressurized.
前記した加熱加圧は、連続式加熱ロールプレス装置あるいは一対のエンドレスベルトを備えた連続式加熱プレス装置を用いて行うことが好ましい。後者の連続式加熱プレス装置は、ベルトで基材を送り出すことになるので、基材にはほとんど張力はかからない。したがって、製造中の基材の破壊は生じにくく、工程通過性に優れる。また、前者の連続式加熱ロールプレス装置は構造が単純であり、ランニングコストも低い。以上、2つの加熱加圧方式は連続で樹脂を硬化するのに適した方法であり、本発明の電極基材の製造に用いることが好ましい。 The heating and pressing described above is preferably performed using a continuous heating roll press apparatus or a continuous heating press apparatus having a pair of endless belts. In the latter continuous heating press apparatus, since the base material is sent out by a belt, the base material is hardly tensioned. Therefore, destruction of the base material during production hardly occurs and the process passability is excellent. Moreover, the former continuous heating roll press apparatus has a simple structure and a low running cost. As described above, the two heating and pressurizing methods are suitable methods for continuously curing the resin, and are preferably used for producing the electrode substrate of the present invention.
前記した連続式のプレス装置を用いる際の加圧圧力は1.5×104〜1×105N/mであることが好ましい。加熱加圧は繊維中に樹脂を十分にしみ込ませ、曲げ強度を上げるために必要な工程である。 The pressurizing pressure when using the above-described continuous press device is preferably 1.5 × 10 4 to 1 × 10 5 N / m. Heating and pressurization is a process necessary for sufficiently impregnating the resin in the fiber and increasing the bending strength.
樹脂を熱硬化させる時に1.5×104N/m以上で加圧することにより、十分な導電性と柔軟性を生むことができる。また、1×105N/m以下で加圧することにより、硬化の際、樹脂から発生する蒸気を十分に外に逃がすことができ、ひび割れの発生を抑えることができる。 By pressurizing at 1.5 × 10 4 N / m or more when the resin is thermally cured, sufficient conductivity and flexibility can be produced. Moreover, by pressurizing at 1 × 10 5 N / m or less, the vapor generated from the resin can be released to the outside sufficiently at the time of curing, and the generation of cracks can be suppressed.
加熱加圧処理での加熱温度は、硬化処理時間あるいは生産性の観点から140℃以上が好ましく、加熱加圧装置等の設備のためのコストの観点から320℃以下が好ましい。より好ましくは160〜300℃の範囲である。また前記予熱の温度は100〜180℃の範囲が好ましい。 The heating temperature in the heat and pressure treatment is preferably 140 ° C. or higher from the viewpoint of the curing treatment time or productivity, and is preferably 320 ° C. or lower from the viewpoint of cost for equipment such as a heat and pressure apparatus. More preferably, it is the range of 160-300 degreeC. The preheating temperature is preferably in the range of 100 to 180 ° C.
本発明において、樹脂硬化の後に続く炭素化を炭素シートの全長にわたって連続で行うことが好ましい。電極基材が長尺であれば、電極基材の生産性が高くなるだけでなく、その後工程のMEA製造も連続で行うことができ、燃料電池のコスト低減化に大きく寄与することができる。具体的には、炭素化は不活性処理雰囲気下にて1000〜3000℃の温度範囲で、炭素シートの全長にわたって連続して焼成処理することが好ましい。本発明の炭素化においては、不活性雰囲気下にて1000〜3000℃の温度範囲で焼成する炭素化処理の前に行われる、300〜800℃の程度の不活性雰囲気での焼成による前処理を行っても良い。 In the present invention, it is preferable that the carbonization following the resin curing is continuously performed over the entire length of the carbon sheet. If the electrode base material is long, not only the productivity of the electrode base material is increased, but also MEA production in the subsequent steps can be performed continuously, which can greatly contribute to cost reduction of the fuel cell. Specifically, the carbonization is preferably performed by continuous firing over the entire length of the carbon sheet in a temperature range of 1000 to 3000 ° C. in an inert treatment atmosphere. In the carbonization of the present invention, a pretreatment by firing in an inert atmosphere of about 300 to 800 ° C., which is performed before a carbonization treatment in a temperature range of 1000 to 3000 ° C. in an inert atmosphere, is performed. You can go.
次に第2の工程において、上述のごとく得られた炭素シートを、該炭素シートの少なくとも一方の面に弾性を有するシートを配置し、連続的な加圧手段を用いて線圧5kN/m〜30kN/mで加圧する。 Next, in the second step, the carbon sheet obtained as described above is arranged with an elastic sheet on at least one surface of the carbon sheet, and a linear pressure of 5 kN / m˜ Pressurize at 30 kN / m.
多孔質炭素電極基材は、通常、高分子電解質膜や触媒層と接着させる際や、燃料電池に組み込む際に加圧される。この際に、多孔質炭素電極基材から脱落する炭素短繊維や、炭素短繊維を結着している炭素粉が高分子電解質膜へのダメージの原因となる。したがって、第2の工程を経ることで、加圧によって多孔質炭素電極基材から脱落する炭素短繊維や炭素短繊維を結着している炭素を事前に取り除くことができ、高分子電解質膜へのダメージを低減することができる。 The porous carbon electrode substrate is usually pressurized when adhered to a polymer electrolyte membrane or a catalyst layer, or when incorporated into a fuel cell. At this time, the short carbon fibers that fall off the porous carbon electrode base material and the carbon powder that binds the short carbon fibers cause damage to the polymer electrolyte membrane. Therefore, by passing through the second step, carbon short fibers that fall off the porous carbon electrode substrate by pressurization and carbon binding carbon short fibers can be removed in advance, and the polymer electrolyte membrane can be obtained. Damage can be reduced.
膜−電極接合体や固体高分子型燃料電池において、このような本発明に係る多孔質炭素電極基材を配置することで、膜−電極接合体の組み立て時、固体高分子型燃料電池セルの作製時または発電時の加圧において、炭素短繊維および炭素短繊維を結着している炭素成分が高分子電解質膜へ与えるダメージを低減することができる。 In a membrane-electrode assembly or a polymer electrolyte fuel cell, by disposing such a porous carbon electrode substrate according to the present invention, when the membrane-electrode assembly is assembled, the polymer electrolyte fuel cell In pressurization during production or power generation, damage caused to the polymer electrolyte membrane by the carbon short fiber and the carbon component binding the carbon short fiber can be reduced.
ここで「連続的な加圧手段」とは、例えば連続式ロールプレスあるいは一対のエンドレスベルトを備えた連続式プレス装置を用いて、シートを搬送しながら連続的に加圧する方法をいう。このような装置し加圧することにより、炭素シートを連続的に処理可能であり、生産性が高い。バッチプレスを間欠的に行うプレス方法は、プレス盤面のエッジ部分に高い荷重がかかってしまい、プレス跡が炭素シートに転写される問題や、場合によっては炭素シートが破断してしまう問題、重複プレスによる処理時間の増加などの問題を有しており好ましい方法とはいえない。
本発明では、上記の連続式プレス装置を使用し、線圧で加圧する。具体的には線圧5kN/m〜30kN/mで加圧する。これにより均一に炭素シートに圧力を付与することができ、面圧を付与するプレス方法で生じるおそれがある炭素シートの厚みムラに起因した炭素シートにかかる圧力ムラを回避することができる。
Here, the “continuous pressurizing means” refers to a method of continuously pressurizing a sheet while transporting it using, for example, a continuous roll press or a continuous press apparatus having a pair of endless belts. By pressurizing with such an apparatus, the carbon sheet can be processed continuously, and the productivity is high. The press method that performs batch press intermittently is a problem that a high load is applied to the edge part of the press panel surface, the press mark is transferred to the carbon sheet, and the carbon sheet breaks in some cases, the duplicate press However, this method is not a preferable method.
In the present invention, the above-described continuous press apparatus is used and pressurization is performed with linear pressure. Specifically, the line pressure is increased from 5 kN / m to 30 kN / m. Thereby, pressure can be uniformly applied to the carbon sheet, and pressure unevenness applied to the carbon sheet due to thickness unevenness of the carbon sheet that may occur in the pressing method that applies surface pressure can be avoided.
また、連続的に加圧を行う際には、弾性を有するシートを炭素シートの少なくとも片面に配置し同時にプレス処理を行う。これにより炭素シートに対する面あたりが良くなり、炭素シートに対して均一に圧力を付与することができる。 Moreover, when pressurizing continuously, the sheet | seat which has elasticity is arrange | positioned on the at least single side | surface of a carbon sheet, and a press process is performed simultaneously. Thereby, the surface area with respect to a carbon sheet becomes good, and a pressure can be uniformly provided with respect to a carbon sheet.
ここで「弾性を有するシート」とは、炭素シートよりも圧縮弾性係数が低く、圧縮時にプレス面と炭素シートの間に配置されることによって、緩衝材として作用するシートをいう。弾性を有するシートとしては、表面に剥離材が塗布された離型紙やテフロン(登録商標)シート、シリコンゴム製のシートなどが挙げられる。圧縮弾性係数は、1〜50GPaの範囲にある弾性を有するシートが好ましい。圧縮弾性係数が50GPa以上のシートであると、剛性が高すぎるため緩衝作用が働かず、面あたりの改善が望めない。また、1GPa以下のシートであると、プレスの際に炭素シートと一体化してしまい、剥離不能に陥ってしまう。 Here, the “elastic sheet” refers to a sheet that has a lower compression elastic modulus than the carbon sheet and acts as a cushioning material by being disposed between the press surface and the carbon sheet during compression. Examples of the elastic sheet include a release paper having a release material applied to the surface, a Teflon (registered trademark) sheet, and a sheet made of silicon rubber. A sheet having an elastic modulus in the range of 1 to 50 GPa is preferable. If the sheet has a compression elastic modulus of 50 GPa or more, the rigidity is too high, so that the buffering action does not work and improvement per surface cannot be expected. In addition, if the sheet is 1 GPa or less, it is integrated with the carbon sheet during pressing, and the sheet cannot be peeled off.
また、連続式プレス装置として、ロールプレス機を用いる際に、一対のロールのうち、少なくとも一方を金属ロールとしておくことが好ましい。金属ロールとすることで、ロールの剛性が高いため均一な圧力を付与することが可能となるからである。また、一対のロールのうち、少なくとも一方を弾性ロールとすることもできる。ここで「弾性ロール」とは、例えばゴム、シリコンなどのような金属に比べ弾性係数の低い材料をロール外周に配してあるロールである。 Moreover, when using a roll press machine as a continuous press apparatus, it is preferable to set at least one of a pair of rolls as a metal roll. This is because the use of a metal roll makes it possible to apply a uniform pressure since the roll has high rigidity. Further, at least one of the pair of rolls can be an elastic roll. Here, the “elastic roll” is a roll in which a material having a lower elastic coefficient than a metal such as rubber or silicon is arranged on the outer periphery of the roll.
次いで第3の工程において、加圧された炭素シートに付着した炭素粉を除去する。加圧後の炭素シートは、炭素粉等が多く付着している。付着した炭素粉等を除去する方法としては、刷毛などで掃く方法、吸引する方法、超音波洗浄などの方法が挙げられる。発生した炭素粉を連続的かつ効率よく除去する観点から、ブラシ等で掃きながら炭素粉を吸引する方法、又は超音波洗浄が好ましい。いすれもプレス後から連続して多孔質炭素電極基材に付着した炭素粉等を除去できるため、ロスが生じず生産性が高い。 Next, in the third step, the carbon powder adhering to the pressurized carbon sheet is removed. The carbon sheet after pressurization has a lot of carbon powder or the like attached thereto. Examples of the method for removing the adhering carbon powder include a method of sweeping with a brush, a method of suction, a method of ultrasonic cleaning, and the like. From the viewpoint of removing the generated carbon powder continuously and efficiently, a method of sucking the carbon powder while sweeping with a brush or the like, or ultrasonic cleaning is preferable. In any case, carbon powder and the like adhering to the porous carbon electrode substrate can be removed continuously after pressing, so that no loss occurs and productivity is high.
上記のごとく得られた多孔質炭素電極基材は、以下の特徴を有する基材である。
ポリエチレンシートと重ね50g/cm2の力で圧着した際に、剥離したポリエチレンシートに付着した炭素短繊維の数が0.1本〜10本/cm2であり、炭素短繊維の数が付着した炭化物の数よりも少ない多孔質炭素電極基材。
つまり、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数が少なく、このような多孔質炭素電極基材を用いた燃料電池は短絡や反応ガスのクロスリークが生じにくく、耐久性が非常に高い。
The porous carbon electrode substrate obtained as described above is a substrate having the following characteristics.
Upon crimped polyethylene sheet and force lap 50 g / cm 2, the number of short carbon fibers attached to the peeled polyethylene sheet is 0.1 present 10 present / cm 2, was deposited in the number of short carbon fibers Porous carbon electrode substrate with less number of carbides.
In other words, the number of short carbon fibers attached after crimping / peeling to a polyethylene sheet is small, and fuel cells using such porous carbon electrode base materials are less likely to cause short circuits and cross-leakage of reactive gases, and are extremely durable. Very expensive.
以下、実施例において本発明をより具体的に説明する。
〔リーク電流の測定方法〕
パーフルオロスルホン酸系の高分子電解質膜(膜厚:30μm)の片面に、得られた多孔質炭素電極基材が接するように配置し、それを金メッキした銅板電極ではさみ、3.5MPaまで加圧した後、デジタルマルチメーターTR6487(アドバンテスト社製)を使用し、高分子電解質膜へのダメージによるリーク電流を測定した。なお、このときの電極間の電位差は0.6Vで行った。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Measurement method of leakage current]
The perforated sulfonic acid polymer electrolyte membrane (thickness: 30 μm) is placed so that the obtained porous carbon electrode substrate is in contact with it, and it is sandwiched between gold-plated copper plate electrodes and heated to 3.5 MPa. After pressurization, a digital multimeter TR6487 (manufactured by Advantest) was used to measure leakage current due to damage to the polymer electrolyte membrane. The potential difference between the electrodes at this time was 0.6V.
〔ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数の測定方法〕
多孔質炭素電極基材の上面にPE膜を配置し、さらにPE膜の上におもりを乗せることで、多孔質炭素電極基材に対し50g/cm2の圧力を付与した。1分間圧力をかけた後、おもり、PE膜を多孔質炭素電極基材上からはずして、PE膜に付着した炭素短繊維の数をマイクロスコープにより観察した。観察は各サンプルごとに5回行い、1cm2あたりのその平均値を炭素短繊維の付着本数とした。
[Measurement method of the number of short carbon fibers attached after pressure bonding / peeling with polyethylene sheet]
A PE film was disposed on the upper surface of the porous carbon electrode substrate, and a weight was placed on the PE film, whereby a pressure of 50 g / cm 2 was applied to the porous carbon electrode substrate. After applying pressure for 1 minute, the weight, the PE film was removed from the porous carbon electrode substrate, and the number of short carbon fibers attached to the PE film was observed with a microscope. Observation was performed 5 times for each sample, and the average value per 1 cm 2 was defined as the number of carbon short fibers attached.
〔用いた弾性シートの圧縮弾性係数測定〕
実施例で使用した弾性を有するシートである離型紙およびテフロン(登録商標)
シートの圧縮弾性係数を測定した。圧縮試験機として島津マイクロオートMST−I((株)島津製作所製)を用いた。直径25mmのサンプルに試験力を加え、圧縮ひずみに対する応力の挙動を測定した。応力範囲0〜3.0MPaにおける圧縮ひずみに対する応力変化を圧縮弾性係数として記録した。正確な弾性係数を決定するため、圧縮試験を5回行い、その平均値を各サンプルの弾性係数とした。本発明に用いた離型紙の弾性係数は1.59GPa、テフロン(登録商標)シートの弾性係数は2.79GPaであった。
[Measurement of compression modulus of elastic sheet used]
Release paper and Teflon (registered trademark), which are elastic sheets used in the examples
The compression modulus of the sheet was measured. Shimadzu Micro Auto MST-I (manufactured by Shimadzu Corporation) was used as a compression tester. A test force was applied to a sample having a diameter of 25 mm, and the behavior of stress against compressive strain was measured. The change in stress relative to the compressive strain in the stress range of 0 to 3.0 MPa was recorded as the compressive elastic modulus. In order to determine an accurate elastic modulus, the compression test was performed 5 times, and the average value was used as the elastic modulus of each sample. The elastic modulus of the release paper used in the present invention was 1.59 GPa, and the elastic modulus of the Teflon (registered trademark) sheet was 2.79 GPa.
〔実施例1〕
炭素短繊維として、長さ3mmにカットした平均直径7μmのPAN系炭素短繊維100質量部と、長さ3mmのポリビニルアルコール(PVA)繊維(商品名:VBP105−1、クラレ株式会社製)を11質量部とを水中で分散し、連続的に金網上に抄造した後、乾燥して炭素繊維紙を得た。
この炭素繊維紙100質量部に、フェノール樹脂(商品名:フェノライトJ−325、大日本インキ化学株式会社製)のメタノール溶液を含浸させ、室温でメタノールを十分に乾燥させ、フェノール樹脂の不揮発分を84質量部付着させたフェノール樹脂含浸炭素シートを得た。
このフェノール樹脂含浸炭素シートを2枚重ねて、250℃の温度で8×104N/mの線力のロールプレスを行い、フェノール樹脂を硬化させた。その後、不活性ガス(窒素)雰囲気中、1900℃で連続的に炭素化して、厚みが220μm、嵩密度が、0.26g/cm2の炭素短繊維の抄紙体からなる炭素シートを得た。
[Example 1]
As carbon short fibers, 100 parts by mass of PAN-based carbon short fibers having an average diameter of 7 μm cut to a length of 3 mm and polyvinyl alcohol (PVA) fibers having a length of 3 mm (trade name: VBP105-1, manufactured by Kuraray Co., Ltd.) 11 After mass parts were dispersed in water and continuously formed on a wire mesh, they were dried to obtain carbon fiber paper.
100 parts by mass of this carbon fiber paper is impregnated with a methanol solution of a phenol resin (trade name: Phenolite J-325, manufactured by Dainippon Ink and Chemicals), and the methanol is sufficiently dried at room temperature, so that the nonvolatile content of the phenol resin A phenol resin-impregnated carbon sheet with 84 parts by mass of was obtained.
Two of the phenol resin-impregnated carbon sheets were stacked and roll-pressed with a linear force of 8 × 10 4 N / m at a temperature of 250 ° C. to cure the phenol resin. Then, it carbonized continuously at 1900 degreeC in inert gas (nitrogen) atmosphere, and obtained the carbon sheet which consists of a paper body of the carbon short fiber whose thickness is 220 micrometers and whose bulk density is 0.26 g / cm < 2 >.
この炭素シートの両面から離型紙(リンテック株式会社製コウテイシWBE90R−DT)を重ね合わせて、一対の金属ロールからなるロールプレス装置にて連続的に17.5kN/mの線圧で加圧することによって多孔質炭素電極基材を得た。得られた多孔質炭素電極基材を、イオン交換水を満たした処理槽を通すことで連続的に1分間超音波洗浄を行い、除去を行った。超音波洗浄後、乾燥したのち、多孔質炭素電極基材をロール状に巻き取った。多孔質炭素電極基材のリーク電流を評価した。得られた多孔質炭素電極基材のリーク電流は4.3mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り2.2本と少なかった。 By releasing release paper (Koutei WBE90R-DT manufactured by Lintec Corporation) from both sides of this carbon sheet and continuously applying pressure at a linear pressure of 17.5 kN / m with a roll press device comprising a pair of metal rolls. A porous carbon electrode substrate was obtained. The obtained porous carbon electrode base material was continuously subjected to ultrasonic cleaning for 1 minute by passing through a treatment tank filled with ion-exchanged water, and then removed. After ultrasonic cleaning and drying, the porous carbon electrode substrate was wound up in a roll shape. The leakage current of the porous carbon electrode substrate was evaluated. The obtained porous carbon electrode substrate had a leakage current as low as 4.3 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 2.2 per 1 cm 2 .
〔実施例2〕
超音波洗浄処理の時間を3分間とした以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が2.5mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り2.6本と少なかった。
[Example 2]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the ultrasonic cleaning time was 3 minutes. The obtained porous carbon electrode substrate had a low leakage current of 2.5 mA / cm 2 and exhibited good characteristics. The number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 2.6 per 1 cm 2 .
〔実施例3〕
超音波洗浄処理の時間を5分間とした以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が4.8mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り3.1本と少なかった。
Example 3
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the ultrasonic cleaning time was changed to 5 minutes. The obtained porous carbon electrode substrate had a low leakage current of 4.8 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhered after pressure bonding / peeling with the polyethylene sheet was as small as 3.1 per 1 cm 2 .
〔実施例4〕
超音波洗浄を行う代わりに多孔質炭素電極基材の両面から回転ブラシと70Wの吸引仕事率で集塵することで除去を行ったこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が2.0mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り3.2本と少なかった。
Example 4
Porous carbon electrode substrate in the same manner as in Example 1 except that it was removed by collecting dust from both sides of the porous carbon electrode substrate with a rotary brush and a suction power of 70 W instead of performing ultrasonic cleaning. Got. The obtained porous carbon electrode substrate had a low leakage current of 2.0 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 3.2 per 1 cm 2 .
〔実施例5〕
超音波洗浄を行う代わりに多孔質炭素電極基材の両面から回転ブラシと300Wの吸引仕事率で集塵することで除去を行ったこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が2.2mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り1.8本と少なかった。
Example 5
Porous carbon electrode substrate in the same manner as in Example 1 except that it was removed by collecting dust from both sides of the porous carbon electrode substrate at a suction power of 300 W instead of ultrasonic cleaning. Got. The obtained porous carbon electrode substrate had a leakage current as low as 2.2 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 1.8 per 1 cm 2 .
〔実施例6〕
超音波洗浄を行う代わりに多孔質炭素電極基材の両面から回転ブラシと500Wの吸引仕事率で集塵することで除去を行ったこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が3.8mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り2.2本と少なかった。
Example 6
Porous carbon electrode substrate in the same manner as in Example 1 except that it was removed by collecting dust from both sides of the porous carbon electrode substrate with a rotary brush and a suction power of 500 W instead of performing ultrasonic cleaning. Got. The obtained porous carbon electrode substrate had a low leakage current of 3.8 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 2.2 per 1 cm 2 .
〔実施例7〕
炭素シートのプレスに用いる1対のプレスロールのうち、一方をゴム製のロール、もう一方を金属ロールとしたことおよび、離型紙の代わりにテフロン(登録商標)シートを用いたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が3.0mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り1.7本と少なかった。
Example 7
Of the pair of press rolls used for pressing the carbon sheet, one was a rubber roll, the other was a metal roll, and a Teflon (registered trademark) sheet was used instead of the release paper. In the same manner as in Example 1, a porous carbon electrode substrate was obtained. The obtained porous carbon electrode substrate had a low leakage current of 3.0 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 1.7 per 1 cm 2 .
〔実施例8〕
炭素シートのプレスに用いる1対のプレスロールのうち、一方をゴム製のロール、もう一方を金属ロールとしたこと以外は実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が3.0mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り0.6本と少なかった。
Example 8
A porous carbon electrode substrate was obtained in the same manner as in Example 4 except that one of the pair of press rolls used for pressing the carbon sheet was a rubber roll and the other was a metal roll. The obtained porous carbon electrode substrate had a low leakage current of 3.0 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 0.6 per 1 cm 2 .
〔実施例9〕
炭素シートのプレスを1対のステンレスベルトを備えた連続プレス装置によりおこなったことおよび、離型紙の代わりにテフロン(登録商標)シート(商品名:スカイブドテープ、中興化成工業株式会社製)を用いたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が2.3mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り2.6本と少なかった。
Example 9
The carbon sheet was pressed by a continuous press machine equipped with a pair of stainless steel belts, and a Teflon (registered trademark) sheet (trade name: Skyved Tape, manufactured by Chukoh Chemical Industry Co., Ltd.) was used instead of the release paper. A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that it was. The obtained porous carbon electrode base material had a leakage current as low as 2.3 mA / cm 2 and exhibited good characteristics. The number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 2.6 per 1 cm 2 .
〔実施例10〕
炭素シートのプレスを1対のステンレスベルトを備えた連続プレス装置によりおこなったこと以外は実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が2.0mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り3.4本と少なかった。
Example 10
A porous carbon electrode substrate was obtained in the same manner as in Example 4 except that the carbon sheet was pressed by a continuous press apparatus equipped with a pair of stainless steel belts. The obtained porous carbon electrode substrate had a low leakage current of 2.0 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 3.4 per 1 cm 2 .
〔実施例11〕
プレス時の線圧を5.8kN/mとしたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が4.4mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り3.3本と少なかった。
Example 11
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the linear pressure during pressing was 5.8 kN / m. The obtained porous carbon electrode substrate had a low leakage current of 4.4 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 3.3 per 1 cm 2 .
〔実施例12〕
プレス時の線圧を11.7kN/mとしたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が4.3mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り3.9本と少なかった。
Example 12
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the linear pressure during pressing was 11.7 kN / m. The obtained porous carbon electrode substrate had a low leakage current of 4.3 mA / cm 2 and exhibited good characteristics. The number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 3.9 per 1 cm 2 .
〔実施例13〕
プレス時の線圧を20.4kN/mとしたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が4.5mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り3.6本と少なかった。
Example 13
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the linear pressure during pressing was 20.4 kN / m. The obtained porous carbon electrode substrate had a low leakage current of 4.5 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 3.6 per 1 cm 2 .
〔実施例14〕
プレス処理において炭素シートの片面のみに離型紙を用いたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が8.9mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り8.8本と少なかった。
Example 14
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that release paper was used only on one side of the carbon sheet in the press treatment. The obtained porous carbon electrode substrate had a low leakage current of 8.9 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 8.8 per 1 cm 2 .
〔実施例15〕
プレス処理において炭素シートの片面のみに離型紙を用いたこと以外は実施例8と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が6.3mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り5.6本と少なかった。
Example 15
A porous carbon electrode substrate was obtained in the same manner as in Example 8 except that the release paper was used only on one side of the carbon sheet in the press treatment. The obtained porous carbon electrode substrate had a low leakage current of 6.3 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 5.6 per 1 cm 2 .
〔実施例16〕
プレス処理において炭素シートの片面のみに離型紙を用いたこと以外は実施例9と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が8.2mA/cm2と低く、良好な特性を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り8.1本と少なかった。
Example 16
A porous carbon electrode substrate was obtained in the same manner as in Example 9 except that the release paper was used only on one side of the carbon sheet in the press treatment. The obtained porous carbon electrode substrate had a low leakage current of 8.2 mA / cm 2 and exhibited good characteristics. Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as small as 8.1 per 1 cm 2 .
〔比較例1〕
プレス処理および除去を施さなかったこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が13.8mA/cm2高い値を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り13.2本と多かった。
[Comparative Example 1]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the press treatment and removal were not performed. The obtained porous carbon electrode base material showed a high leakage current of 13.8 mA / cm 2 . Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as large as 13.2 per 1 cm 2 .
〔比較例2〕
プレス処理を施さなかったこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が11.3mA/cm2と高い値を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り11.2本と多かった。
[Comparative Example 2]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the press treatment was not performed. The obtained porous carbon electrode substrate showed a high leak current of 11.3 mA / cm 2 . Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as large as 11.2 per 1 cm 2 .
〔比較例3〕
プレス処理を施さなかったこと以外は実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が10.5mA/cm2と高い値を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り11.5本と多かった。
[Comparative Example 3]
A porous carbon electrode substrate was obtained in the same manner as in Example 4 except that the press treatment was not performed. The obtained porous carbon electrode substrate showed a high leak current of 10.5 mA / cm 2 . Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as large as 11.5 per 1 cm 2 .
〔比較例4〕
除去を施さなかったこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が10.8mA/cm2と高い値を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り11.8本と多かった。
[Comparative Example 4]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the removal was not performed. The obtained porous carbon electrode substrate showed a high leak current of 10.8 mA / cm 2 . Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as large as 11.8 per 1 cm 2 .
〔比較例5〕
プレス処理において離型紙を用いなかったこと以外は実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が10.3mA/cm2と高い値を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り12.6本と多かった。
[Comparative Example 5]
A porous carbon electrode substrate was obtained in the same manner as in Example 4 except that the release paper was not used in the press treatment. The obtained porous carbon electrode base material showed a high leak current of 10.3 mA / cm 2 . Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as large as 12.6 per 1 cm 2 .
〔比較例6〕
プレス処理において離型紙を用いなかったこと以外は実施例10と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が10.1mA/cm2と高い値を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り11.2本と多かった。
[Comparative Example 6]
A porous carbon electrode substrate was obtained in the same manner as in Example 10 except that the release paper was not used in the press treatment. The obtained porous carbon electrode base material showed a high leak current of 10.1 mA / cm 2 . Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as large as 11.2 per 1 cm 2 .
〔比較例7〕
炭素シートを1対の平板を備えるバッチプレス装置を通過させ、間欠的にプレス処理をおこなったこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が10.2mA/cm2と高い値を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り12.6本と多かった。
[Comparative Example 7]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the carbon sheet was passed through a batch press apparatus having a pair of flat plates and intermittently pressed. The obtained porous carbon electrode base material showed a high leak current of 10.2 mA / cm 2 . Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as large as 12.6 per 1 cm 2 .
〔比較例8〕
炭素シートを1対の平板を備えるバッチプレス装置を通過させ、間欠的にプレス処理をおこなったことおよび除去方法として気体の吹き付け処理をしながら吸引処理を行ったこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が10.3mA/cm2と高い値を示した。また、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数は1cm2当り11.6本と多かった。
[Comparative Example 8]
The carbon sheet was passed through a batch press apparatus having a pair of flat plates, and the press process was intermittently performed, and the suction process was performed while performing a gas blowing process as a removal method, as in Example 1. Thus, a porous carbon electrode substrate was obtained. The obtained porous carbon electrode base material showed a high leak current of 10.3 mA / cm 2 . Further, the number of short carbon fibers adhering after pressure bonding / peeling with the polyethylene sheet was as large as 11.6 per cm 2 .
測定したリーク電流等の結果を表1に示す。
表1の結果から、炭素シートを離型紙やテフロン(登録商標)シート等の弾性を有するシートと同時に線圧でプレスを行うことで、表面にある程度粗さを有する炭素シートであっても均一に圧力が付与されるため、炭素シートの弱い結着部分が均一に破壊・除去される。また、破壊・除去によって生じた炭素短繊維および樹脂炭化物の破片・粉は超音波洗浄処理または吸引処理により、連続的かつ効率的に除去されていることは、実施例1〜16で得られた多孔質炭素電極基材がいずれも低いリーク電流を示すことおよび、ポリエチレンシートとの圧着・剥離後に付着した炭素短繊維の数が少ないことからも明白である。本発明の多孔質炭素電極基材は連続品であることから、ロールトゥロールの後加工が容易であるだけでなく、多孔質炭素電極基材を用いた燃料電池は短絡や反応ガスのクロスリークが生じにくく、耐久性が非常に高い。 From the results shown in Table 1, even if the carbon sheet has a certain degree of roughness on the surface, the carbon sheet is pressed with linear pressure at the same time as the release sheet, Teflon (registered trademark) sheet or the like. Since pressure is applied, the weak binding portion of the carbon sheet is uniformly destroyed and removed. Moreover, it was obtained in Examples 1 to 16 that the carbon short fibers and resin carbide fragments / powder produced by destruction / removal were continuously and efficiently removed by ultrasonic cleaning or suction treatment. It is clear from the fact that all the porous carbon electrode base materials show a low leakage current and that the number of short carbon fibers attached after the pressure bonding / peeling with the polyethylene sheet is small. Since the porous carbon electrode base material of the present invention is a continuous product, not only is post-roll roll post-processing easy, but the fuel cell using the porous carbon electrode base material is short-circuited or cross leaks of the reaction gas. Is less likely to occur and is extremely durable.
Claims (6)
(1)炭素短繊維が炭素により結着された炭素シートを製造する工程。
(2)前記炭素シートを、炭素シートの少なくとも一方の面に弾性を有するシートを配置し、連続的な加圧手段を用いて線圧5kN/m〜30kN/mで加圧する工程。
(3)次いで、炭素シートに付着した炭素粉を連続的に除去する工程。 The manufacturing method of the porous carbon electrode base material including the process of the following (1)-(3).
(1) A step of producing a carbon sheet in which short carbon fibers are bound by carbon.
(2) A step of placing the carbon sheet with elasticity on at least one surface of the carbon sheet and pressurizing the carbon sheet with a linear pressure of 5 kN / m to 30 kN / m using a continuous pressurizing means.
(3) Next, the process of removing the carbon powder adhering to the carbon sheet continuously.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011067643A JP5485212B2 (en) | 2011-03-25 | 2011-03-25 | Porous carbon electrode substrate and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011067643A JP5485212B2 (en) | 2011-03-25 | 2011-03-25 | Porous carbon electrode substrate and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012204142A true JP2012204142A (en) | 2012-10-22 |
JP5485212B2 JP5485212B2 (en) | 2014-05-07 |
Family
ID=47184926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011067643A Active JP5485212B2 (en) | 2011-03-25 | 2011-03-25 | Porous carbon electrode substrate and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5485212B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015071508A (en) * | 2013-10-03 | 2015-04-16 | 三菱レイヨン株式会社 | Method of producing porous electrode substrate |
KR20170059995A (en) * | 2014-09-18 | 2017-05-31 | 도레이 카부시키가이샤 | Particulate porous carbon material, particulate carbon material aggregate, and production method for particulate porous carbon material |
WO2017110691A1 (en) | 2015-12-24 | 2017-06-29 | 東レ株式会社 | Gas diffusion electrode and method for manufacturing same |
JP2017171550A (en) * | 2016-03-25 | 2017-09-28 | 東レ株式会社 | Conductive porous substrate, gas diffusion electrode, and fuel cell |
KR20170130460A (en) | 2015-03-25 | 2017-11-28 | 도레이 카부시키가이샤 | Porous carbon electrode substrate, production method thereof, gas diffusion layer and membrane-electrode assembly for fuel cell |
JP2018040099A (en) * | 2016-09-01 | 2018-03-15 | 東レ株式会社 | Method for producing carbon fiber sheet |
JP2018085333A (en) * | 2016-11-11 | 2018-05-31 | 三菱ケミカル株式会社 | Porous electrode substrate, gas diffusion layer, gas diffusion electrode, and method of manufacturing the same |
WO2019092904A1 (en) * | 2016-11-11 | 2019-05-16 | 三菱ケミカル株式会社 | Porous electrode substrate and production method therefor |
JP2020098685A (en) * | 2018-12-17 | 2020-06-25 | トヨタ自動車株式会社 | Manufacturing apparatus of fuel cell separator |
US10818934B2 (en) | 2015-12-24 | 2020-10-27 | Toray Industries, Inc. | Gas diffusion electrode |
US10950868B2 (en) | 2015-12-24 | 2021-03-16 | Toray Industries, Inc. | Gas diffusion electrode and fuel cell |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06263558A (en) * | 1993-03-10 | 1994-09-20 | Dainippon Ink & Chem Inc | Production of porous carbon plate and porous carbon electrode material |
WO2001056103A1 (en) * | 2000-01-27 | 2001-08-02 | Mitsubishi Rayon Co., Ltd. | Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper |
JP2007103241A (en) * | 2005-10-06 | 2007-04-19 | Mitsubishi Electric Corp | Fuel cell |
JP2008034295A (en) * | 2006-07-31 | 2008-02-14 | Mitsubishi Rayon Co Ltd | Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it |
JP2009043484A (en) * | 2007-08-07 | 2009-02-26 | Toyota Motor Corp | Manufacturing method of gas diffusion layer, manufacturing method of membrane electrode assembly, manufacturing method of fuel cell, and gas diffusion layer |
JP2009181738A (en) * | 2008-01-29 | 2009-08-13 | Mitsubishi Rayon Co Ltd | Manufacturing method of porous carbon electrode base material, and membrane-electrode assembly |
JP2010061964A (en) * | 2008-09-03 | 2010-03-18 | Toyota Motor Corp | Method for manufacturing carbon fiber base material used for diffusion layer of fuel cell |
-
2011
- 2011-03-25 JP JP2011067643A patent/JP5485212B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06263558A (en) * | 1993-03-10 | 1994-09-20 | Dainippon Ink & Chem Inc | Production of porous carbon plate and porous carbon electrode material |
WO2001056103A1 (en) * | 2000-01-27 | 2001-08-02 | Mitsubishi Rayon Co., Ltd. | Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper |
JP2007103241A (en) * | 2005-10-06 | 2007-04-19 | Mitsubishi Electric Corp | Fuel cell |
JP2008034295A (en) * | 2006-07-31 | 2008-02-14 | Mitsubishi Rayon Co Ltd | Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it |
JP2009043484A (en) * | 2007-08-07 | 2009-02-26 | Toyota Motor Corp | Manufacturing method of gas diffusion layer, manufacturing method of membrane electrode assembly, manufacturing method of fuel cell, and gas diffusion layer |
JP2009181738A (en) * | 2008-01-29 | 2009-08-13 | Mitsubishi Rayon Co Ltd | Manufacturing method of porous carbon electrode base material, and membrane-electrode assembly |
JP2010061964A (en) * | 2008-09-03 | 2010-03-18 | Toyota Motor Corp | Method for manufacturing carbon fiber base material used for diffusion layer of fuel cell |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015071508A (en) * | 2013-10-03 | 2015-04-16 | 三菱レイヨン株式会社 | Method of producing porous electrode substrate |
KR20170059995A (en) * | 2014-09-18 | 2017-05-31 | 도레이 카부시키가이샤 | Particulate porous carbon material, particulate carbon material aggregate, and production method for particulate porous carbon material |
KR102393606B1 (en) | 2014-09-18 | 2022-05-03 | 도레이 카부시키가이샤 | Particulate porous carbon material, particulate carbon material aggregate, and production method for particulate porous carbon material |
US10651477B2 (en) | 2015-03-25 | 2020-05-12 | Toray Industries, Inc. | Porous carbon electrode substrate, method of manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell |
KR20170130460A (en) | 2015-03-25 | 2017-11-28 | 도레이 카부시키가이샤 | Porous carbon electrode substrate, production method thereof, gas diffusion layer and membrane-electrode assembly for fuel cell |
CN107408706A (en) * | 2015-03-25 | 2017-11-28 | 东丽株式会社 | Porous carbon electrodes base material, its manufacture method, gas diffusion layers and fuel battery membrane electrode assembly |
CN107408706B (en) * | 2015-03-25 | 2020-10-27 | 东丽株式会社 | Porous carbon electrode substrate, method for producing same, gas diffusion layer, and membrane-electrode assembly for fuel cell |
EP3276718A4 (en) * | 2015-03-25 | 2018-11-21 | Toray Industries, Inc. | Porous carbon electrode base material, method for manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell |
WO2017110691A1 (en) | 2015-12-24 | 2017-06-29 | 東レ株式会社 | Gas diffusion electrode and method for manufacturing same |
US10790516B2 (en) | 2015-12-24 | 2020-09-29 | Toray Industries, Inc. | Gas diffusion electrode and method for manufacturing same |
US10818934B2 (en) | 2015-12-24 | 2020-10-27 | Toray Industries, Inc. | Gas diffusion electrode |
US10950868B2 (en) | 2015-12-24 | 2021-03-16 | Toray Industries, Inc. | Gas diffusion electrode and fuel cell |
JP2017171550A (en) * | 2016-03-25 | 2017-09-28 | 東レ株式会社 | Conductive porous substrate, gas diffusion electrode, and fuel cell |
JP7017042B2 (en) | 2016-09-01 | 2022-02-08 | 東レ株式会社 | Manufacturing method of carbon fiber sheet |
JP2018040099A (en) * | 2016-09-01 | 2018-03-15 | 東レ株式会社 | Method for producing carbon fiber sheet |
JP7052301B2 (en) | 2016-11-11 | 2022-04-12 | 三菱ケミカル株式会社 | Porous electrode base material, gas diffusion layer, gas diffusion electrode and its manufacturing method |
JP2018085333A (en) * | 2016-11-11 | 2018-05-31 | 三菱ケミカル株式会社 | Porous electrode substrate, gas diffusion layer, gas diffusion electrode, and method of manufacturing the same |
CN111316487A (en) * | 2016-11-11 | 2020-06-19 | 三菱化学株式会社 | Porous electrode base material and method for producing same |
EP3709412A4 (en) * | 2016-11-11 | 2020-12-30 | Mitsubishi Chemical Corporation | Porous electrode substrate and production method therefor |
JP2020038844A (en) * | 2016-11-11 | 2020-03-12 | 三菱ケミカル株式会社 | Porous electrode substrate and method for manufacturing the same |
JPWO2019092904A1 (en) * | 2016-11-11 | 2019-11-14 | 三菱ケミカル株式会社 | Porous electrode substrate and method for producing the same |
WO2019092904A1 (en) * | 2016-11-11 | 2019-05-16 | 三菱ケミカル株式会社 | Porous electrode substrate and production method therefor |
JP7355143B2 (en) | 2016-11-11 | 2023-10-03 | 三菱ケミカル株式会社 | Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof |
JP7078027B2 (en) | 2016-11-11 | 2022-05-31 | 三菱ケミカル株式会社 | Porous electrode base material and its manufacturing method |
JP2022082646A (en) * | 2016-11-11 | 2022-06-02 | 三菱ケミカル株式会社 | Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof |
CN111316487B (en) * | 2016-11-11 | 2023-02-21 | 三菱化学株式会社 | Porous electrode base material and method for producing same |
US11515541B2 (en) * | 2016-11-11 | 2022-11-29 | Mitsubishi Chemical Corporation | Porous electrode substrate and production method therefor |
JP7119976B2 (en) | 2018-12-17 | 2022-08-17 | トヨタ自動車株式会社 | Fuel cell separator manufacturing equipment |
JP2020098685A (en) * | 2018-12-17 | 2020-06-25 | トヨタ自動車株式会社 | Manufacturing apparatus of fuel cell separator |
Also Published As
Publication number | Publication date |
---|---|
JP5485212B2 (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5485212B2 (en) | Porous carbon electrode substrate and method for producing the same | |
JP3612518B2 (en) | Porous carbon electrode substrate, method for producing the same, and carbon fiber paper | |
JP5260581B2 (en) | Porous electrode substrate and method for producing the same | |
KR20040111523A (en) | Carbon fiber paper and porous carbon electrode substrate for fuel cell therefrom | |
JP6624290B2 (en) | Porous electrode substrate and method for producing the same | |
WO2005124907A1 (en) | Porous electrode base material and process for producing the same | |
JP5433147B2 (en) | Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell | |
JP2003183994A (en) | Carbon fiber paper, and porous carbon electrode material for fuel battery using the same | |
JP2018018665A (en) | Gas diffusion layer base material and method of manufacturing the same | |
JP2009283259A (en) | Porous carbon electrode base material | |
JP4187683B2 (en) | Porous carbon electrode substrate for fuel cells | |
JP2004235134A (en) | Porous electrode substrate for polymer electrolyte fuel cell and its manufacturing method | |
JP4730888B2 (en) | Porous electrode substrate and method for producing the same | |
JP5398297B2 (en) | Method for producing porous carbon electrode substrate | |
JP5484777B2 (en) | Porous electrode substrate and method for producing the same | |
JP5728802B2 (en) | Porous carbon electrode substrate and method for producing the same | |
JP6172131B2 (en) | Porous carbon electrode substrate | |
JP5297701B2 (en) | Method for producing electrode substrate for polymer electrolyte fuel cell | |
JP2001240477A (en) | Carbonaceous porous body and its manufacturing method | |
JP5250328B2 (en) | Method for producing carbonaceous electrode substrate | |
JP6497179B2 (en) | Gas diffusion layer and gas diffusion layer roll | |
JP6596886B2 (en) | Method for producing gas diffusion layer | |
JP2009280437A (en) | Method for producing porous carbon sheet | |
JP5394426B2 (en) | Porous carbon electrode substrate | |
JP2006004858A (en) | Porous electrode base material and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120820 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131010 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140219 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5485212 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |