JP2009181738A - Manufacturing method of porous carbon electrode base material, and membrane-electrode assembly - Google Patents

Manufacturing method of porous carbon electrode base material, and membrane-electrode assembly Download PDF

Info

Publication number
JP2009181738A
JP2009181738A JP2008017948A JP2008017948A JP2009181738A JP 2009181738 A JP2009181738 A JP 2009181738A JP 2008017948 A JP2008017948 A JP 2008017948A JP 2008017948 A JP2008017948 A JP 2008017948A JP 2009181738 A JP2009181738 A JP 2009181738A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon electrode
electrode substrate
polymer electrolyte
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008017948A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sumioka
和宏 隅岡
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2008017948A priority Critical patent/JP2009181738A/en
Publication of JP2009181738A publication Critical patent/JP2009181738A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a porous carbon electrode base material, a membrane-electrode assembly using the same, capable of alleviating damage to a polymer electrolyte membrane used for a solid polymer fuel cell, with high gas permeability maintained. <P>SOLUTION: In the manufacturing method of the porous carbon electrode base material, at least one of the surfaces of a carbon sheet having carbon staple fiber bound with carbon with a bulk density of 0.27 g/cm<SP>3</SP>or less is brushed with a goat hair brush. The porous carbon electrode base material thus obtained is arranged in the membrane-electrode assembly with the brushed face put inward. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体高分子型燃料電池に好適に用いられる多孔質炭素電極基材の製造方法および膜−電極接合体に関するものである。   The present invention relates to a method for producing a porous carbon electrode substrate suitably used for a polymer electrolyte fuel cell and a membrane-electrode assembly.

固体高分子型燃料電池はプロトン伝導性の高分子電解質膜を用いることを特徴としており、水素等の燃料ガスと酸素等の酸化ガスを電気化学的に反応させることにより起電力を得る装置である。固体高分子型燃料電池は、自家発電装置や、自動車等の移動体用の発電装置として利用可能である。   A polymer electrolyte fuel cell is characterized by using a proton-conducting polymer electrolyte membrane, and is an apparatus for obtaining an electromotive force by electrochemically reacting a fuel gas such as hydrogen and an oxidizing gas such as oxygen. . The polymer electrolyte fuel cell can be used as a self-power generation device or a power generation device for a moving body such as an automobile.

このような固体高分子型燃料電池は、水素イオン(プロトン)を選択的に伝導する高分子電解質膜を有する。また、貴金属系触媒を担持したカーボン粉末を主成分とする触媒層と多孔質炭素電極基材とを有するガス拡散電極が、触媒層側を内側にして、高分子電解質膜の両面に接合された構造となっている。   Such a polymer electrolyte fuel cell has a polymer electrolyte membrane that selectively conducts hydrogen ions (protons). In addition, a gas diffusion electrode having a catalyst layer mainly composed of carbon powder supporting a noble metal catalyst and a porous carbon electrode substrate was bonded to both surfaces of the polymer electrolyte membrane with the catalyst layer side inside. It has a structure.

このような高分子電解質膜と2枚のガス拡散電極からなる接合体は膜―電極接合体(MEA: Membrane Electrode Assembly)と呼ばれている。またMEAの両外側には燃料ガスまたは酸化ガスを供給し、かつ生成ガスおよび過剰ガスを排出することを目的としたガス流路を形成したセパレーターが設置されている。   Such a joined body composed of a polymer electrolyte membrane and two gas diffusion electrodes is called a membrane-electrode assembly (MEA). In addition, separators are provided on both outer sides of the MEA so as to supply a fuel gas or an oxidizing gas and to form a gas flow path for the purpose of discharging generated gas and excess gas.

多孔質炭素電極基材は主に次の3つの機能を持つ。第1に多孔質炭素電極基材の外側に配置されたセパレーターに形成されたガス流路より触媒層中の貴金属系触媒に均一に燃料ガスまたは酸化ガスを供給する機能である。第2に触媒層で反応により生成した水を排出する機能である。第3に触媒層での反応に必要な電子または生成される電子をセパレーターへ導電する機能である。   The porous carbon electrode substrate mainly has the following three functions. The first function is to supply the fuel gas or the oxidizing gas uniformly to the noble metal catalyst in the catalyst layer from the gas flow path formed in the separator disposed outside the porous carbon electrode substrate. The second function is to discharge water generated by the reaction in the catalyst layer. The third function is to conduct electrons necessary for the reaction in the catalyst layer or generated electrons to the separator.

したがって、多孔質炭素電極基材には、反応ガスおよび酸化ガス透過能、水の排出性、および電子導電性が必要とされる。さらに、固体高分子型燃料電池の発電性能を向上させ、かつ低コスト化を進めるためには、高出力密度領域での運転が必要となり、多孔質炭素電極基材には嵩密度を下げ、高いガス透過性を有すること求められている。また、一般的な固体高分子型燃料電池では、多孔質炭素電極基材はMEA作製時に高分子電解質膜の両側に加圧により接合され、これを2枚のセパレーターではさみ締結されるため、多孔質炭素電極基材中の炭素材料が高分子電解質膜へ突き刺さることによる反応ガスのクロスリークや、アノード、カソード両極間での微小ショートなどを引き起こす高分子電解質膜へのダメージを低減することが求められている。   Therefore, the porous carbon electrode base material is required to have reactive gas and oxidizing gas permeability, water dischargeability, and electronic conductivity. Furthermore, in order to improve the power generation performance of the polymer electrolyte fuel cell and promote cost reduction, it is necessary to operate in a high power density region, and the porous carbon electrode base material has a low bulk density and is high. It is required to have gas permeability. Further, in a general solid polymer fuel cell, the porous carbon electrode base material is bonded to both sides of the polymer electrolyte membrane by pressure when the MEA is manufactured, and is sandwiched between two separators and fastened. It is necessary to reduce damage to the polymer electrolyte membrane that causes cross-leakage of reaction gas due to the carbon material in the porous carbon electrode base material penetrating into the polymer electrolyte membrane, and micro shorts between the anode and cathode. It has been.

反応ガスのクロスリークや、アノード、カソード両極間での微小ショートなどを抑制し、高分子電解質膜へのダメージを低減するための最も一般的な手法として、フッ素樹脂やカーボンブラックなどからなる緻密な層を多孔質炭素電極基材上へ塗布する手法が用いられている。その他の方法として、特許文献1には、合成樹脂からなる多孔質のシート状支持体、並びに導電性カーボン粒子および熱可塑性樹脂からなり、前記シート状支持体を被覆する被覆層からなることを特徴とする燃料電池用ガス拡散層が開示されている。また、特許文献2には、高分子電解質膜と、該高分子電解質膜の表面に設けられた触媒層と、該触媒層の表面に設けられた拡散層と、からなる膜−電極接合体を備えた固体高分子型燃料電池において該触媒層が、繊維状の導電材を有し、かつ該触媒層の厚さ方向の該拡散層の端部の領域の近傍の導電材の含有量が、該高分子電解質膜の端部の近傍の領域の該導電材の含有量より多いことを特徴とする固体高分子型燃料電池が開示されている。また、特許文献3には、カーボンクロスの少なくとも一方の面における繊維の毛羽立ちの一部または全部をシェーバーによって、切断処理あるいは破断処理していることが開示されている。
特開2004−152744号公報 特開2005−228601号公報 特開2007−149613号公報
The most common technique for reducing cross-leakage of reactive gases and micro-shorts between the anode and cathode electrodes, and reducing damage to the polymer electrolyte membrane, is a dense material made of fluororesin or carbon black. A technique of applying a layer onto a porous carbon electrode substrate is used. As another method, Patent Document 1 includes a porous sheet-like support made of a synthetic resin, and a coating layer made of conductive carbon particles and a thermoplastic resin that covers the sheet-like support. A gas diffusion layer for a fuel cell is disclosed. Patent Document 2 discloses a membrane-electrode assembly comprising a polymer electrolyte membrane, a catalyst layer provided on the surface of the polymer electrolyte membrane, and a diffusion layer provided on the surface of the catalyst layer. In the polymer electrolyte fuel cell provided, the catalyst layer has a fibrous conductive material, and the content of the conductive material in the vicinity of the end region of the diffusion layer in the thickness direction of the catalyst layer is A solid polymer fuel cell is disclosed in which the content of the conductive material in a region in the vicinity of the end of the polymer electrolyte membrane is greater than that of the polymer electrolyte membrane. Patent Document 3 discloses that part or all of the fiber fluff on at least one surface of the carbon cloth is cut or broken with a shaver.
JP 2004-152744 A JP 2005-228601 A JP 2007-149613 A

しかし、緻密な層を多孔質炭素電極基材上へ塗布する手法では、緻密な層を形成することにより多孔質炭素電極基材のガス透気度等の物性が変化するという問題があり、この緻密な層の組成や構造、厚みに制限が生じている。特許文献1記載の方法では、反応ガスのクロスリークや、アノード、カソード両極間での微小ショートなどを引き起こす高分子電解質膜のダメージを低減するために、多孔質炭素電極基材を用いず、合成樹脂からなる多孔質シート状に導電性カーボン粒子と熱可塑性樹脂からなる被覆層によりガス拡散電極を形成しているため、十分なガス拡散性と電気導電性を得ることが困難となる。また、特許文献2記載の方法では、触媒層中に高分子電解質膜と接する領域においても少量の繊維状の物質が含まれていることより、反応ガスのクロスリークや、アノード、カソード両極間での微小ショートなどを引き起こす高分子電解質膜のダメージを十分に低減することは困難である。
また、特許文献3記載の方法では、荷重がかかっていない状態でのカーボンクロスの毛羽立ちを取り除くことは可能であるが、燃料電池に組み込んだ際の荷重がかかり多孔質炭素電極基材が変形した状態では十分な毛羽を除去することは困難である。また、抄紙構造からなるシート状の多孔質炭素電極基材においては、炭素短繊維はほぼ2次元平面内において配向しているため、カーボンクロスの多孔質炭素電極基材と比べ、毛羽立っている繊維はほとんどなく、特許文献3記載の方法で反応ガスのクロスリークや、アノード、カソード両極間での微小ショートなどを引き起こす高分子電解質膜のダメージを十分に低減することは困難である。
However, the technique of applying a dense layer on the porous carbon electrode substrate has a problem that the physical properties such as gas permeability of the porous carbon electrode substrate change by forming the dense layer. There are limitations on the composition, structure, and thickness of the dense layer. In the method described in Patent Document 1, in order to reduce the damage of the polymer electrolyte membrane causing the cross leak of the reaction gas and the micro short circuit between the anode and the cathode, the synthesis is performed without using the porous carbon electrode substrate. Since the gas diffusion electrode is formed of a coating layer made of conductive carbon particles and a thermoplastic resin in the form of a porous sheet made of resin, it becomes difficult to obtain sufficient gas diffusibility and electrical conductivity. Further, in the method described in Patent Document 2, since a small amount of fibrous material is contained in the catalyst layer in the region in contact with the polymer electrolyte membrane, the reaction gas cross-leakage and between the anode and cathode both electrodes. It is difficult to sufficiently reduce the damage of the polymer electrolyte membrane that causes a micro short circuit.
Further, in the method described in Patent Document 3, it is possible to remove the fluff of the carbon cloth in a state where no load is applied, but the porous carbon electrode base material is deformed due to the load when incorporated in the fuel cell. It is difficult to remove sufficient fluff in the state. Further, in the sheet-like porous carbon electrode base material having a papermaking structure, the short carbon fibers are oriented in a substantially two-dimensional plane, and therefore the fibers that are fluffy compared to the carbon carbon porous carbon electrode base material. However, it is difficult to sufficiently reduce the damage of the polymer electrolyte membrane that causes cross-leakage of the reaction gas and micro short-circuit between the anode and cathode electrodes by the method described in Patent Document 3.

また、高分子電解質膜へのダメージを低減するためには、高分子電解質膜の機械的強度を上げることや膜厚を厚くすることも可能ではあるが、一般的には機械的強度を上げることや膜厚を厚くすることによりプロトン伝導抵抗が増加し、固体高分子型燃料電池に用いた場合、発電性能が低下するため、固体高分子型燃料電池に用いられる高分子電解質膜の機械的強度や膜厚には制限が生じている。   In order to reduce damage to the polymer electrolyte membrane, it is possible to increase the mechanical strength of the polymer electrolyte membrane or increase the film thickness, but in general increase the mechanical strength. The proton conduction resistance increases by increasing the film thickness, and the power generation performance decreases when used in a polymer electrolyte fuel cell. Therefore, the mechanical strength of the polymer electrolyte membrane used in the polymer electrolyte fuel cell is reduced. There is a limit to film thickness.

本発明は、高いガス透過性を保持したまま、固体高分子型燃料電池に用いられる高分子電解質膜へのダメージを低減することができる多孔質炭素電極基材の製造方法および膜−電極接合体を提供することを目的とする。   The present invention relates to a method for producing a porous carbon electrode substrate and a membrane-electrode assembly capable of reducing damage to a polymer electrolyte membrane used in a polymer electrolyte fuel cell while maintaining high gas permeability. The purpose is to provide.

本発明は以下の通りである。
(1)短素短繊維を炭素により結着した嵩密度が0.27g/cm以下の炭素シートの少なくとも一方の表面をヤギ毛の刷毛で刷く多孔質炭素電極基材の製造方法。(2)高分子電解質膜と、該高分子電解質膜の両面にそれぞれ設けられたカソード側触媒層およびアノード側触媒層と、該カソード側触媒層および該アノード側触媒層のそれぞれの外側に設けられたアノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材とを有する膜−電極接合体であって、前記アノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材の少なくとも一方として、(1)の多孔質炭素電極基材を刷毛で刷かれた面を内側に向けて配置されている膜−電極接合体にある。
The present invention is as follows.
(1) A method for producing a porous carbon electrode substrate, in which at least one surface of a carbon sheet having a bulk density of 0.27 g / cm 3 or less obtained by binding short staple fibers with carbon is printed with a goat hair brush. (2) Provided on the outer sides of the polymer electrolyte membrane, the cathode-side catalyst layer and the anode-side catalyst layer provided on both surfaces of the polymer-electrolyte membrane, and the cathode-side catalyst layer and the anode-side catalyst layer, respectively. A membrane-electrode assembly having an anode-side porous carbon electrode substrate and a cathode-side porous carbon electrode substrate, wherein at least one of the anode-side porous carbon electrode substrate and the cathode-side porous carbon electrode substrate On the other hand, there is a membrane-electrode assembly in which the porous carbon electrode substrate of (1) is arranged with the surface printed with a brush facing inward.

本発明によれば、高いガス透過性を保持したまま、固体高分子型燃料電池に用いられる高分子電解質膜へのダメージを低減することができる多孔質炭素電極基材の製造方法および膜−電極接合体を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method and membrane-electrode of the porous carbon electrode base material which can reduce the damage to the polymer electrolyte membrane used for a polymer electrolyte fuel cell, maintaining high gas permeability A joined body can be provided.

以下、本発明の実施形態について、図面を参照しながら、さらに詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.

図1は本発明に係る多孔質炭素電極基材を用いた膜−電極接合体および固体高分子型燃料電池の概略的構成図である。図1に示されるように、本実施形態に係る膜−電極接合体および固体高分子型燃料電池は、プロトン伝導性を有する高分子電解質膜1の一方の面に酸化ガス用触媒からなるカソード側触媒層2を、もう一方の面に燃料ガス用触媒からなるアノード側触媒層3を備えており、それぞれの触媒層2,3の外側には、カソード側多孔質炭素電極基材4およびアノード側多孔質炭素電極基材5が備えられている。ここで、高分子電解質膜1、触媒層2,3、および多孔質炭素電極基材4,5からなる部分が、膜−電極接合体6である。さらに、この膜−電極接合体6を挟持するように、カソード側ガス流路13が形成されたカソード側セパレーター7、およびアノード側ガス流路14が形成されたアノード側セパレーター8を備えている。また、それぞれのセパレーター7,8には、酸化ガス導入部9と酸化ガス排出部10、および燃料ガス導入部11と燃料ガス排出部12が備えられている。   FIG. 1 is a schematic configuration diagram of a membrane-electrode assembly and a polymer electrolyte fuel cell using a porous carbon electrode substrate according to the present invention. As shown in FIG. 1, the membrane-electrode assembly and the polymer electrolyte fuel cell according to this embodiment include a cathode side made of an oxidizing gas catalyst on one surface of a polymer electrolyte membrane 1 having proton conductivity. The catalyst layer 2 is provided with an anode side catalyst layer 3 made of a catalyst for fuel gas on the other side, and the cathode side porous carbon electrode substrate 4 and the anode side are provided outside the catalyst layers 2 and 3, respectively. A porous carbon electrode substrate 5 is provided. Here, the portion composed of the polymer electrolyte membrane 1, the catalyst layers 2 and 3, and the porous carbon electrode base materials 4 and 5 is the membrane-electrode assembly 6. Furthermore, a cathode-side separator 7 in which a cathode-side gas flow path 13 is formed and an anode-side separator 8 in which an anode-side gas flow path 14 is formed are provided so as to sandwich the membrane-electrode assembly 6. Each separator 7, 8 is provided with an oxidizing gas introducing part 9 and an oxidizing gas discharging part 10, and a fuel gas introducing part 11 and a fuel gas discharging part 12.

このような固体高分子型燃料電池において、燃料ガスは、燃料ガス導入部11から導入され、アノード側セパレーター8に形成されたアノード側ガス流路14からアノード側多孔質炭素電極基材5を介してアノード側触媒層3に供給され、プロトンと電子に解離される。この電子は、アノード側触媒層3からアノード側多孔質炭素電極基材5を介してアノード側セパレーター8に伝導され、外部の負荷に供給される。またプロトンは、高分子電解質膜1中を伝導し、カソード側へ移動する。一方、酸化ガスは、酸化ガス導入部9から導入され、カソード側セパレーター7に形成されたカソード側ガス流路13からカソード側多孔質炭素電極基材4を介してカソード側触媒層2に供給され、高分子電解質膜1中を伝導してきたプロトンと結合して水を生成する。このようにして所望の起電力が取り出せる。   In such a polymer electrolyte fuel cell, the fuel gas is introduced from the fuel gas introduction part 11 and from the anode side gas flow path 14 formed in the anode side separator 8 through the anode side porous carbon electrode substrate 5. Is supplied to the anode catalyst layer 3 and dissociated into protons and electrons. The electrons are conducted from the anode side catalyst layer 3 to the anode side separator 8 through the anode side porous carbon electrode base material 5 and supplied to an external load. Protons are conducted through the polymer electrolyte membrane 1 and move to the cathode side. On the other hand, the oxidizing gas is introduced from the oxidizing gas introduction part 9 and supplied to the cathode side catalyst layer 2 through the cathode side porous carbon electrode substrate 4 from the cathode side gas flow path 13 formed in the cathode side separator 7. In combination with protons conducted through the polymer electrolyte membrane 1, water is generated. In this way, a desired electromotive force can be taken out.

高分子電解質膜1としては、プロトン解離性の基、例えば−OH基、−OSO3H基、―COOH基、−SO3H基等が導入された高分子を用いることが好ましく、パーフルオロスルホン酸系の膜を用いることが、化学的安定性、プロトン伝導性の点よりさらに好ましい。   As the polymer electrolyte membrane 1, it is preferable to use a polymer into which proton dissociable groups such as —OH group, —OSO 3 H group, —COOH group, —SO 3 H group and the like are introduced. Is more preferable from the viewpoints of chemical stability and proton conductivity.

カソード側触媒層2およびアノード側触媒層3を構成する触媒としては、白金、白金合金、パラジウム、マグネシウム、バナジウム等があるが、白金または白金合金を用いることが好ましい。この触媒は、炭素粉末等の担体に担持されている状態で、各触媒層を構成していることが好ましい。   Examples of the catalyst constituting the cathode side catalyst layer 2 and the anode side catalyst layer 3 include platinum, platinum alloy, palladium, magnesium, vanadium, etc., but platinum or platinum alloy is preferably used. The catalyst preferably constitutes each catalyst layer in a state of being supported on a carrier such as carbon powder.

カソード側セパレーター7およびアノード側セパレーター8としては、従来と同様のセパレーターを用いることができる。   As the cathode-side separator 7 and the anode-side separator 8, the same separators as in the past can be used.

アノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材の少なくとも一方には、本発明に係る多孔質炭素電極基材を使用する。ここで、本発明に係る多孔質炭素電極基材は、炭素短繊維を炭素により結着した嵩密度が0.27g/cm3以下の炭素シートの少なくとも一方の表面を刷毛で刷くことで製造される。そして、アノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材の少なくとも一方として、本発明に係る多孔質炭素電極基材が、刷毛で刷かれた面を内側に向けて配置される。アノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材の両方に、本発明に係る多孔質炭素電極基材が、刷毛で刷かれた面を内側に向けて配置されていることが好ましい。アノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材の一方に本発明に係る多孔質炭素電極基材を使用する場合、他方には従来と同様の多孔質炭素電極基材を用いることもできる。   The porous carbon electrode substrate according to the present invention is used for at least one of the anode side porous carbon electrode substrate and the cathode side porous carbon electrode substrate. Here, the porous carbon electrode substrate according to the present invention is manufactured by printing at least one surface of a carbon sheet having a bulk density of 0.27 g / cm 3 or less obtained by binding carbon short fibers with carbon with a brush. The Then, as at least one of the anode side porous carbon electrode substrate and the cathode side porous carbon electrode substrate, the porous carbon electrode substrate according to the present invention is arranged with the surface printed with a brush facing inward. . The porous carbon electrode base material according to the present invention is disposed on both the anode side porous carbon electrode base material and the cathode side porous carbon electrode base material with the surface printed with a brush facing inward. preferable. When the porous carbon electrode substrate according to the present invention is used for one of the anode-side porous carbon electrode substrate and the cathode-side porous carbon electrode substrate, the same porous carbon electrode substrate as that used in the past is used for the other. You can also.

本発明に係る多孔質炭素電極基材は、炭素短繊維を炭素により結着した嵩密度が0.27g/cm3以下の炭素シートの少なくとも一方の表面をヤギ毛の刷毛で刷くことで得られる。   The porous carbon electrode substrate according to the present invention can be obtained by printing at least one surface of a carbon sheet having a bulk density of 0.27 g / cm 3 or less obtained by binding carbon short fibers with carbon with a goat hair brush. .

炭素シートとしては、表面平滑性が高く、電気的接触が良好で、かつ機械的強度が高い複数本の炭素短繊維が集合してなる抄紙体が好ましい。   The carbon sheet is preferably a paper body made up of a plurality of short carbon fibers having high surface smoothness, good electrical contact, and high mechanical strength.

炭素短繊維としては、その原料によらず用いることができるが、ポリアクリロニトリル(以後PANと略す。)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維から選ばれる1つ以上の炭素繊維を含むことが好ましく、PAN系炭素繊維を含むことがより好ましい。   The short carbon fiber can be used regardless of the raw material, but one or more selected from polyacrylonitrile (hereinafter abbreviated as PAN) carbon fiber, pitch carbon fiber, rayon carbon fiber, and phenolic carbon fiber. It is preferable that the carbon fiber is included, and it is more preferable that the PAN-based carbon fiber is included.

炭素短繊維の平均直径は、3〜30μm程度が好ましく、4〜20μmがより好ましく、4〜8μmがさらに好ましい。この範囲内であると表面平滑性と高い導電性を付与することができる。   The average diameter of the short carbon fibers is preferably about 3 to 30 μm, more preferably 4 to 20 μm, and still more preferably 4 to 8 μm. Within this range, surface smoothness and high conductivity can be imparted.

炭素短繊維の長さは、2〜12mmが好ましく、3〜9mmがさらに好ましい。この範囲内であると抄紙時の分散性および機械的強度を高めることができる。   The length of the short carbon fiber is preferably 2 to 12 mm, and more preferably 3 to 9 mm. Within this range, dispersibility and mechanical strength during papermaking can be enhanced.

炭素短繊維を互いに結着させるための炭素材としては、樹脂を加熱によって炭素化して得られる炭素材を用いることができる。このために用いる樹脂としては、炭素化した段階で多孔質炭素電極基材の炭素繊維を結着することのできる公知の樹脂から適宜選んで用いることができる。炭素化後に導電性物質として残存しやすいという観点から、フェノール樹脂、エポキシ樹脂、フラン樹脂、ピッチ等が好ましく、加熱による炭素化の際の炭化率の高いフェノール樹脂が特に好ましい。   As a carbon material for binding the short carbon fibers to each other, a carbon material obtained by carbonizing a resin by heating can be used. The resin used for this purpose can be appropriately selected from known resins that can bind the carbon fibers of the porous carbon electrode substrate at the stage of carbonization. From the viewpoint of easily remaining as a conductive substance after carbonization, a phenol resin, an epoxy resin, a furan resin, pitch, and the like are preferable, and a phenol resin having a high carbonization rate upon carbonization by heating is particularly preferable.

炭素材の炭素化は、不活性ガス中において1500〜2200℃で焼成することで行うことができる。   Carbonization of the carbon material can be performed by firing at 1500 to 2200 ° C. in an inert gas.

多孔質炭素電極基材に高いガス透過性を持たせるために、炭素シートの嵩密度は0.27g/cm以下とすることが好ましい。0.18〜0.27g/cmがより好ましく、0.20〜0.26g/cmがさらに好ましい。
この範囲内であると高いガス透過性を維持したまま、十分な機械的強度も持つという点で好ましい。
In order to give the porous carbon electrode base material high gas permeability, the bulk density of the carbon sheet is preferably 0.27 g / cm 3 or less. 0.18 to 0.27 g / cm 3 is more preferable, and 0.20 to 0.26 g / cm 3 is more preferable.
Within this range, it is preferable in that it has sufficient mechanical strength while maintaining high gas permeability.

多孔質炭素電極基材は高分子電解質膜、触媒層と接着させるためのホットプレスや、燃料電池に組み込まれる際に0.2MPa〜3.0MPa程度で加圧される。この際に、多孔質炭素電極基材から脱落する炭素短繊維や、炭素短繊維を結着している炭素が高分子電解質膜へのダメージの原因となる。したがって、多孔質炭素電極基材が加圧される前にヤギ毛の刷毛で刷くことによって、多孔質炭素電極基材から脱落する炭素短繊維や炭素短繊維を結着している炭素を取り除くことで、高分子電解質膜へのダメージを低減することができる。膜−電極接合体や固体高分子型燃料電池において、このような本発明に係る多孔質炭素電極基材を、ヤギ毛の刷毛で刷かれた面を内側に向けて配置することで、膜−電極接合体の組み立て時、固体高分子型燃料電池セルの作製時または発電時の加圧による炭素短繊維および炭素短繊維を結着している炭素による高分子電解質膜へのダメージを低減できる。   The porous carbon electrode substrate is pressed at a pressure of about 0.2 MPa to 3.0 MPa when it is incorporated into a polymer electrolyte membrane and a catalyst layer, or hot press for bonding to a fuel cell. At this time, short carbon fibers that fall off the porous carbon electrode base material and carbon binding carbon short fibers cause damage to the polymer electrolyte membrane. Therefore, carbon short fibers and carbon short fibers that fall off the porous carbon electrode substrate are removed by printing with a goat hair brush before the porous carbon electrode substrate is pressurized. As a result, damage to the polymer electrolyte membrane can be reduced. In a membrane-electrode assembly or a polymer electrolyte fuel cell, the porous carbon electrode substrate according to the present invention is arranged with the surface printed with a goat hair facing inward, When the electrode assembly is assembled, damage to the polymer electrolyte membrane due to the carbon short fibers and the carbon binding the carbon short fibers due to pressurization during production of the solid polymer fuel cell or during power generation can be reduced.

刷毛は、多孔質炭素電極基材を構成する炭素材料よりもやわらかい材質が好ましく、特にヤギ毛が好ましい。   The brush is preferably made of a material that is softer than the carbon material constituting the porous carbon electrode substrate, and goat hair is particularly preferable.

刷く方法としては、刷毛で同じ箇所を5〜35回刷くことが好ましく、10〜30回刷くことが特に好ましい。この範囲内であるとリーク電流の低減が顕著である。   As a printing method, it is preferable to print the same portion 5 to 35 times with a brush, and particularly preferably 10 to 30 times. Within this range, the leakage current is significantly reduced.

固体高分子型燃料電池では、カソード側において電極反応生成物としての水や高分子電解質膜を浸透した水が発生する。また、アノード側において高分子電解質膜の乾燥を抑制するために加湿された燃料が供給される。そこで、本発明に係る多孔質炭素電極基材は、加湿ガス雰囲気下でのガス透過性を確保するために、撥水剤として撥水性の高分子を含むこともできる。撥水性の高分子としては、化学的に安定でかつ高い撥水性を有する、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂を用いることが好ましい。   In a polymer electrolyte fuel cell, water as an electrode reaction product and water penetrating a polymer electrolyte membrane are generated on the cathode side. Further, humidified fuel is supplied on the anode side to suppress drying of the polymer electrolyte membrane. Therefore, the porous carbon electrode substrate according to the present invention can also contain a water-repellent polymer as a water-repellent agent in order to ensure gas permeability in a humidified gas atmosphere. As the water-repellent polymer, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether, which is chemically stable and has high water repellency. It is preferable to use a fluororesin such as a copolymer (PFA).

撥水性の高分子を多孔質炭素電極基材へ導入する方法としては、撥水性の高分子の微粒子が分散した分散液中に多孔質炭素電極基材を浸漬させるディップ法、分散液を噴霧するスプレー法などが好ましい。   As a method for introducing the water-repellent polymer into the porous carbon electrode substrate, a dip method in which the porous carbon electrode substrate is immersed in a dispersion in which fine particles of the water-repellent polymer are dispersed, or spraying the dispersion A spray method or the like is preferable.

〔実施例1〕
炭素短繊維として、長さ3mmにカットした平均直径7μmのPAN系炭素短繊維100質量部と、長さ3mmのポリビニルアルコール(PVA)繊維(商品名:VBP105−1、クラレ株式会社製)を11質量部とを水中で分散し、連続的に金網上に抄造した後、乾燥して炭素繊維紙を得た。
この炭素繊維紙100質量部に、フェノール樹脂(商品名:フェノライトJ−325、大日本インキ化学株式会社製)のメタノール溶液を含浸させ、室温でメタノールを十分に乾燥させ、フェノール樹脂の不揮発分を84質量部付着させたフェノール樹脂含浸炭素繊
維紙を得た。
このフェノール樹脂含浸炭素繊維紙を2枚重ねて、250℃の温度で8×104N/mの線力のロールプレスを行い、フェノール樹脂を硬化させた。その後、窒素ガス雰囲気中、1900℃の炉内で連続的に炭素化して、嵩密度が、0.26g/cmの炭素短繊維の抄紙体からなる炭素シートを得た。
この炭素シートの片方の表面を、ヤギ毛の刷毛(直径が1.8cm、長さ3.8cmの化粧用のチークブラシ 商品名:スライドチークブラシ、株式会社志々田清心堂製)で同じ箇所を10回刷いて、多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が9.9mA/cm2と低く良好な特性を示した。
[Example 1]
As carbon short fibers, 100 parts by mass of PAN-based carbon short fibers having an average diameter of 7 μm cut to a length of 3 mm and polyvinyl alcohol (PVA) fibers having a length of 3 mm (trade name: VBP105-1, manufactured by Kuraray Co., Ltd.) 11 After mass parts were dispersed in water and continuously formed on a wire mesh, they were dried to obtain carbon fiber paper.
100 parts by mass of this carbon fiber paper is impregnated with a methanol solution of a phenol resin (trade name: Phenolite J-325, manufactured by Dainippon Ink and Chemicals), and the methanol is sufficiently dried at room temperature, so that the nonvolatile content of the phenol resin 84 mass parts of phenol resin impregnated carbon fiber paper was obtained.
Two sheets of this phenol resin-impregnated carbon fiber paper were stacked and roll-pressed at a linear force of 8 × 10 4 N / m at a temperature of 250 ° C. to cure the phenol resin. Then, it carbonized continuously in a 1900 degreeC furnace in nitrogen gas atmosphere, and obtained the carbon sheet which consists of a papermaking body of the carbon short fiber whose bulk density is 0.26 g / cm < 3 >.
One surface of this carbon sheet is covered with a goat hair brush (a cosmetic cheek brush with a diameter of 1.8 cm and a length of 3.8 cm, product name: slide cheek brush, manufactured by Kiyoshi Shinda Co., Ltd.). Reprinting was performed to obtain a porous carbon electrode substrate. The obtained porous carbon electrode substrate had a low leakage current of 9.9 mA / cm @ 2 and exhibited good characteristics.

〔実施例2〕
20回刷いた以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が8.7mA/cm2と低く良好な特性を示した。
[Example 2]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that printing was performed 20 times. The obtained porous carbon electrode substrate showed a good characteristic with a low leakage current of 8.7 mA / cm @ 2.

〔実施例3〕
30回刷いた以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が10.1mA/cm2と低く良好な特性を示した。
Example 3
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that printing was performed 30 times. The obtained porous carbon electrode base material had a low leakage current of 10.1 mA / cm 2 and exhibited good characteristics.

〔実施例4〕
炭素短繊維として、長さ3mmにカットした平均直径7μmのPAN系炭素短繊維100質量部と、長さ3mmのポリビニルアルコール(PVA)繊維(商品名:VBP105−1、クラレ株式会社製)を25質量部とを水中で分散し、標準角型シートマシン(熊谷理機工業(株)製、商品名:No.2555 標準角型シートマシン)を用いてJIS P−8209法に準拠して手動で抄紙を行い、乾燥させて炭素繊維紙を得た。
この炭素繊維紙100質量部に、フェノール樹脂(商品名:フェノライトJ−325、大日本インキ化学株式会社製)のメタノール溶液を含浸させ、室温でメタノールを十分に乾燥させ、フェノール樹脂の不揮発分を100質量部付着させたフェノール樹脂含浸炭素繊維紙を得た。
このフェノール樹脂含浸炭素繊維紙を2枚重ねて、バッチプレス装置にて180℃、3MPaの条件下で3分間加熱加圧し、フェノール樹脂を硬化させた。その後、バッチ炭素化炉にて、窒素ガス雰囲気中、炉内温度2000℃で1時間炭素化処理することで、嵩密度が、0.25g/cmの炭素短繊維の抄紙体からなる炭素シートを得た。
この炭素シートの片方の表面を、ヤギ毛の刷毛で同じ箇所を10回刷いて多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が11.3mA/cm2と低く良好な特性を示した。
Example 4
As carbon short fibers, 25 parts of PAN-based carbon short fibers having an average diameter of 7 μm cut to a length of 3 mm and polyvinyl alcohol (PVA) fibers having a length of 3 mm (trade name: VBP105-1, manufactured by Kuraray Co., Ltd.) are 25. Mass parts are dispersed in water and manually using a standard square sheet machine (manufactured by Kumagai Riki Kogyo Co., Ltd., trade name: No. 2555 standard square sheet machine) according to JIS P-8209 method. Papermaking was performed and dried to obtain a carbon fiber paper.
100 parts by mass of this carbon fiber paper is impregnated with a methanol solution of a phenol resin (trade name: Phenolite J-325, manufactured by Dainippon Ink Chemical Co., Ltd.), and the methanol is sufficiently dried at room temperature. Of carbon fiber paper impregnated with 100 parts by mass of phenol resin was obtained.
Two sheets of this phenol resin-impregnated carbon fiber paper were stacked and heated and pressurized for 3 minutes at 180 ° C. and 3 MPa in a batch press apparatus to cure the phenol resin. Then, the carbon sheet which consists of a papermaking body of the carbon short fiber whose bulk density is 0.25g / cm < 3 > by performing carbonization processing in a nitrogen gas atmosphere at the furnace internal temperature of 2000 degreeC in a batch carbonization furnace for 1 hour. Got.
One surface of this carbon sheet was printed ten times with a goat hair brush to obtain a porous carbon electrode substrate. The obtained porous carbon electrode base material had a low leakage current of 11.3 mA / cm 2 and exhibited good characteristics.

〔実施例5〕
嵩密度0.23g/cmとした以外は、実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が11.4mA/cm2と低く良好な特性を示した。
Example 5
A porous carbon electrode substrate was obtained in the same manner as in Example 4 except that the bulk density was 0.23 g / cm 3 . The obtained porous carbon electrode substrate showed a good characteristic with a low leak current of 11.4 mA / cm 2 .

〔実施例6〕
嵩密度0.22g/cmとした以外は、実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が10.4mA/cm2と低く良好な特性を示した。
Example 6
A porous carbon electrode substrate was obtained in the same manner as in Example 4 except that the bulk density was 0.22 g / cm 3 . The obtained porous carbon electrode base material showed a good characteristic with a low leakage current of 10.4 mA / cm 2 .

〔実施例7〕
嵩密度0.20g/cmとした以外は、実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が11.3mA/cm2と低く良好な特性を示した。
Example 7
A porous carbon electrode substrate was obtained in the same manner as in Example 4 except that the bulk density was 0.20 g / cm 3 . The obtained porous carbon electrode base material had a low leakage current of 11.3 mA / cm 2 and exhibited good characteristics.

〔比較例1〕
刷毛で刷かなかった以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が12.7mA/cm2であり、実施例1と比較して高いリーク電流を示した。
[Comparative Example 1]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the brush was not printed. The obtained porous carbon electrode base material had a leakage current of 12.7 mA / cm 2 , which was higher than that of Example 1.

〔比較例2〕
羊毛の刷毛(直径が2.5cm、長さ5cmの化粧用の刷毛)を吸引口の周りに3本取り付け、吸引口がほとんど刷毛で覆われるように固定した吸引装置を用いて、吸引しながら羊毛の刷毛で同じ箇所を10回刷いた以外は実施例1と同様にして、多孔質炭素電極基材を得た。この吸引装置の吸引仕事率は260Wであり、吸引時間は10秒とした。得られた多孔質炭素電極基材は、リーク電流が12.8mA/cm2であり、実施例1と比較して高いリーク電流を示した。
[Comparative Example 2]
While attaching a wool brush (a cosmetic brush with a diameter of 2.5 cm and a length of 5 cm) around the suction port, using a suction device that is fixed so that the suction port is almost covered with the brush. A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the same portion was printed 10 times with a woolen brush. The suction power of this suction device was 260 W, and the suction time was 10 seconds. The obtained porous carbon electrode base material had a leakage current of 12.8 mA / cm 2 and a higher leakage current than that of Example 1.

〔比較例3〕
刷毛で刷かなかった以外は実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が12.0mA/cm2であり、実施例4と比較して高いリーク電流を示した。
[Comparative Example 3]
A porous carbon electrode substrate was obtained in the same manner as in Example 4 except that the brush was not printed. The obtained porous carbon electrode base material had a leakage current of 12.0 mA / cm 2 and showed a higher leakage current than that of Example 4.

〔比較例4〕
嵩密度0.23g/cmとし、刷毛で刷かなかった以外は実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が13.7mA/cm2であり、実施例5と比較して高いリーク電流を示した。
[Comparative Example 4]
A porous carbon electrode base material was obtained in the same manner as in Example 4 except that the bulk density was 0.23 g / cm 3 and it was not printed with a brush. The obtained porous carbon electrode base material had a leakage current of 13.7 mA / cm 2 and a higher leakage current than that of Example 5.

〔比較例5〕
嵩密度0.22g/cmとし、刷毛で刷かなかった以外は実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が14.0mA/cm2であり、実施例6と比較して高いリーク電流を示した。
[Comparative Example 5]
A porous carbon electrode substrate was obtained in the same manner as in Example 4 except that the bulk density was 0.22 g / cm 3 and the brush was not printed. The obtained porous carbon electrode base material had a leak current of 14.0 mA / cm 2 , which was higher than that of Example 6.

〔比較例6〕
嵩密度0.20g/cmとし、刷毛で刷かなかった以外は実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が14.3mA/cm2であり、実施例7と比較して高いリーク電流を示した。
[Comparative Example 6]
A porous carbon electrode substrate was obtained in the same manner as in Example 4 except that the bulk density was 0.20 g / cm 3 and the brush was not printed. The obtained porous carbon electrode base material had a leak current of 14.3 mA / cm 2 , which was higher than that of Example 7.

〔実施例8〕
嵩密度0.27g/cmとした以外は、実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が9.3mA/cm2であり、低いリーク電流を示した。
Example 8
A porous carbon electrode substrate was obtained in the same manner as in Example 4 except that the bulk density was 0.27 g / cm 3 . The obtained porous carbon electrode base material had a leakage current of 9.3 mA / cm @ 2, indicating a low leakage current.

〔比較例7〕
嵩密度0.27g/cmとし、刷毛で刷かなかった以外は実施例4と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が9.9mA/cm2であり、実施例8と比較してやや高いリーク電流を示した。
[Comparative Example 7]
A porous carbon electrode base material was obtained in the same manner as in Example 4 except that the bulk density was 0.27 g / cm 3 and it was not printed with a brush. The obtained porous carbon electrode base material had a leak current of 9.9 mA / cm 2 and showed a slightly higher leak current than that of Example 8.

測定したリーク電流及び嵩密度の結果を表1および表2に示す。   Tables 1 and 2 show the results of the measured leakage current and bulk density.

Figure 2009181738
Figure 2009181738

Figure 2009181738
Figure 2009181738

〔リーク電流の測定方法〕
パーフルオロスルホン酸系の高分子電解質膜(膜厚:30μm)の片面に、得られた多孔質炭素電極基材の表面処理した面(比較例1、3〜7の場合は、いずれか一方の面)が接するように配置し、それを金メッキした銅板電極ではさみ、2.5MPaまで加圧した後、デジタルマルチメーターTR6487(アドバンテスト社製)を使用し、高分子電解質膜へのダメージによるリーク電流を測定した。なお、このときの電極間の電位差は0.6Vで行った。
[Measurement method of leakage current]
On one side of a perfluorosulfonic acid polymer electrolyte membrane (film thickness: 30 μm), the surface treated surface of the obtained porous carbon electrode substrate (in the case of Comparative Examples 1 and 3-7, either one of them) The surface is placed in contact with each other, sandwiched between gold-plated copper plate electrodes, pressurized to 2.5 MPa, and then a digital multimeter TR6487 (manufactured by Advantest) is used to cause leakage current due to damage to the polymer electrolyte membrane. Was measured. The potential difference between the electrodes at this time was 0.6V.

〔実施例9〕
(1)膜―電極接合体の作製
実施例1で得られた多孔質炭素電極基材をカソード用、アノード用に2組用意した。両面に触媒担持カーボン(触媒:Pt、触媒担持量:50質量%)からなる触媒層(触媒層面積:25cm2、Pt付着量:0.3mg/cm2)を形成したパーフルオロスルホン酸系の高分子電解質膜(膜厚:30μm)を、この2組の多孔質炭素電極基材の刷毛で刷かれた面を内側として挟持し、これらを接合して膜―電極接合体を得た。
(2)膜―電極接合体の燃料電池特性評価
前記(1)において作製した膜―電極接合体を、蛇腹状のガス流路を有する2枚のカーボンセパレーターによってはさみ、固体高分子型燃料電池(単セル)を形成した。
この単セルについて、電流密度−電圧特性を測定することによって、燃料電池特性評価を行った。燃料ガスとしては水素ガスを用い、酸化ガスとしては空気を用いた。測定条件としては、セル温度を80℃、燃料ガス利用率を60%、酸化ガス利用率を40%とした。また、ガス加湿は、70℃のバブラーにそれぞれ燃料ガスと酸化ガスを通すことによって行った。
Example 9
(1) Production of membrane-electrode assembly Two sets of the porous carbon electrode base material obtained in Example 1 were prepared for the cathode and the anode. A perfluorosulfonic acid polymer having a catalyst layer (catalyst layer area: 25 cm 2, Pt adhesion amount: 0.3 mg / cm 2) made of catalyst-supported carbon (catalyst: Pt, catalyst support amount: 50 mass%) on both surfaces The electrolyte membrane (film thickness: 30 μm) was sandwiched with the surfaces of the two sets of porous carbon electrode base materials printed with the brush, and these were joined to obtain a membrane-electrode assembly.
(2) Evaluation of fuel cell characteristics of membrane-electrode assembly The membrane-electrode assembly produced in (1) above was sandwiched between two carbon separators having bellows-like gas flow paths, and a polymer electrolyte fuel cell ( Single cell).
This single cell was evaluated for fuel cell characteristics by measuring current density-voltage characteristics. Hydrogen gas was used as the fuel gas, and air was used as the oxidizing gas. As measurement conditions, the cell temperature was 80 ° C., the fuel gas utilization rate was 60%, and the oxidizing gas utilization rate was 40%. Gas humidification was performed by passing fuel gas and oxidizing gas through a bubbler at 70 ° C., respectively.

その結果、電流密度が0.4A/cm2のときの燃料電池セルのセル電圧は0.687Vであり、また開回路電圧が0.938Vと高く、アノード、カソード間のクロスリークおよび微少ショートが小さく良好な特性を示した。   As a result, when the current density is 0.4 A / cm 2, the cell voltage of the fuel cell is 0.687 V, the open circuit voltage is as high as 0.938 V, and the cross leak between the anode and the cathode and the micro short circuit are small. It showed good characteristics.

〔比較例8〕
比較例1で得られた多孔質炭素電極基材を用いたこと以外は、実施例9と同様にして単セルを組み立て、燃料電池特性評価を行った。
[Comparative Example 8]
A single cell was assembled in the same manner as in Example 9 except that the porous carbon electrode substrate obtained in Comparative Example 1 was used, and the fuel cell characteristics were evaluated.

その結果、電流密度が0.4A/cm2のときの燃料電池セルのセル電圧は0.687Vであったが、開回路電圧が0.911Vと実施例9より低下しており、アノード、カソード間のクロスリークおよび微少ショートが実施例9より増加した特性を示した。   As a result, the cell voltage of the fuel cell when the current density was 0.4 A / cm 2 was 0.687 V, but the open circuit voltage was 0.911 V, which is lower than that of Example 9, and between the anode and the cathode The cross-leakage and the micro short circuit showed the characteristic which increased from Example 9.

本発明の固体高分子型燃料電池の一形態を示す模式的断面図である。It is a typical sectional view showing one form of a polymer electrolyte fuel cell of the present invention.

符号の説明Explanation of symbols

1:高分子電解質膜
2:カソード側触媒層
3:アノード側触媒層
4:カソード側多孔質炭素電極基材
5:アノード側多孔質炭素電極基材
6:膜−電極接合体(MEA)
7:カソード側セパレーター
8:アノード側セパレーター
9:酸化ガス導入部
10:酸化ガス排出部
11:燃料ガス導入部
12:燃料ガス排出部
13:カソード側ガス流路
14:アノード側ガス流路
1: Polymer electrolyte membrane 2: Cathode side catalyst layer 3: Anode side catalyst layer 4: Cathode side porous carbon electrode base material 5: Anode side porous carbon electrode base material 6: Membrane-electrode assembly (MEA)
7: Cathode side separator 8: Anode side separator 9: Oxidizing gas introduction part 10: Oxidizing gas discharge part 11: Fuel gas introduction part 12: Fuel gas discharge part 13: Cathode side gas flow path 14: Anode side gas flow path

Claims (2)

炭素短繊維を炭素により結着した嵩密度が0.27g/cm以下の炭素シートの少なくとも一方の表面をヤギ毛の刷毛で刷く多孔質炭素電極基材の製造方法。 A method for producing a porous carbon electrode base material, wherein at least one surface of a carbon sheet having a bulk density of 0.27 g / cm 3 or less obtained by binding carbon short fibers with carbon is printed with a goat hair brush. 高分子電解質膜と、該高分子電解質膜の両面にそれぞれ設けられたカソード側触媒層およびアノード側触媒層と、該カソード側触媒層および該アノード側触媒層のそれぞれの外側に設けられたアノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材とを有する膜−電極接合体であって、前記アノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材の少なくとも一方として、請求項1記載の多孔質炭素電極基材を刷毛で刷かれた面を内側に向けて配置されている膜−電極接合体。   A polymer electrolyte membrane; a cathode side catalyst layer and an anode side catalyst layer provided on both sides of the polymer electrolyte membrane; and an anode side provided on the outside of each of the cathode side catalyst layer and the anode side catalyst layer A membrane-electrode assembly having a porous carbon electrode substrate and a cathode-side porous carbon electrode substrate, wherein at least one of the anode-side porous carbon electrode substrate and the cathode-side porous carbon electrode substrate, 2. A membrane-electrode assembly in which the porous carbon electrode substrate according to claim 1 is arranged with the surface printed with a brush facing inward.
JP2008017948A 2008-01-29 2008-01-29 Manufacturing method of porous carbon electrode base material, and membrane-electrode assembly Pending JP2009181738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017948A JP2009181738A (en) 2008-01-29 2008-01-29 Manufacturing method of porous carbon electrode base material, and membrane-electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017948A JP2009181738A (en) 2008-01-29 2008-01-29 Manufacturing method of porous carbon electrode base material, and membrane-electrode assembly

Publications (1)

Publication Number Publication Date
JP2009181738A true JP2009181738A (en) 2009-08-13

Family

ID=41035553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017948A Pending JP2009181738A (en) 2008-01-29 2008-01-29 Manufacturing method of porous carbon electrode base material, and membrane-electrode assembly

Country Status (1)

Country Link
JP (1) JP2009181738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204142A (en) * 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081339A1 (en) * 2004-02-23 2005-09-01 Matsushita Electric Industrial Co., Ltd. Gas diffusion layer and fuel cell using same
JP2006004858A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Porous electrode base material and its manufacturing method
JP2007103241A (en) * 2005-10-06 2007-04-19 Mitsubishi Electric Corp Fuel cell
JP2007149613A (en) * 2005-11-30 2007-06-14 Dainippon Ink & Chem Inc Gas diffusion layer, manufacturing method of same, membrane-electrode assembly, and manufacturing method of same
JP2008034295A (en) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081339A1 (en) * 2004-02-23 2005-09-01 Matsushita Electric Industrial Co., Ltd. Gas diffusion layer and fuel cell using same
JP2006004858A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Porous electrode base material and its manufacturing method
JP2007103241A (en) * 2005-10-06 2007-04-19 Mitsubishi Electric Corp Fuel cell
JP2007149613A (en) * 2005-11-30 2007-06-14 Dainippon Ink & Chem Inc Gas diffusion layer, manufacturing method of same, membrane-electrode assembly, and manufacturing method of same
JP2008034295A (en) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204142A (en) * 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5069927B2 (en) Membrane electrode assembly for fuel cell and method for producing the same
EP2461401B1 (en) Use of a gas diffusion layer member in a solid polymer fuel cell
JP2008204945A (en) Gas diffusion electrode substrate, gas diffusion electrode, its manufacturing method, and fuel cell
JP6962319B2 (en) Gas diffusion electrode substrate, laminate and fuel cell
JP5482066B2 (en) Microporous layer for fuel cell, gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer and membrane-electrode assembly, and polymer electrolyte fuel cell
US20080138683A1 (en) Laminated layer fuel cell and method for manufacturing the same
JP5106808B2 (en) Porous carbon electrode substrate and polymer electrolyte fuel cell using the same
JP5004489B2 (en) FUEL CELL CELL AND METHOD FOR PRODUCING THE SAME
JP2008311180A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP4133654B2 (en) Polymer electrolyte fuel cell
JP4959945B2 (en) Polymer electrolyte fuel cell
JP2010153222A (en) Flexible type gas diffusion electrode substrate and membrane-electrode assembly
JP2007214019A (en) Membrane electrode assembly for fuel cell and gas diffusion layer for fuel cell
JP4942362B2 (en) Membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP5311538B2 (en) Method for producing porous carbon electrode substrate
JP5601779B2 (en) Gas diffusion layer, membrane-electrode assembly and fuel cell
JP2010015908A (en) Substrate for gas diffusion electrode and method for manufacturing the same, and membrane-electrode assembly
JP7355143B2 (en) Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof
JP5391968B2 (en) Gas diffusion layer for polymer electrolyte fuel cell and method for producing the same
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP2011049179A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and gas diffusion electrode substrate
JP2008311181A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP2009181738A (en) Manufacturing method of porous carbon electrode base material, and membrane-electrode assembly
JP4872202B2 (en) Fuel cell and fuel cell manufacturing method
JP2007227009A (en) Porous carbon electrode substrate and fuel cell using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130530