JP2010015908A - Substrate for gas diffusion electrode and method for manufacturing the same, and membrane-electrode assembly - Google Patents

Substrate for gas diffusion electrode and method for manufacturing the same, and membrane-electrode assembly Download PDF

Info

Publication number
JP2010015908A
JP2010015908A JP2008176351A JP2008176351A JP2010015908A JP 2010015908 A JP2010015908 A JP 2010015908A JP 2008176351 A JP2008176351 A JP 2008176351A JP 2008176351 A JP2008176351 A JP 2008176351A JP 2010015908 A JP2010015908 A JP 2010015908A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion electrode
carbon
base material
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008176351A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshikawa
大士 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2008176351A priority Critical patent/JP2010015908A/en
Publication of JP2010015908A publication Critical patent/JP2010015908A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for a gas diffusion electrode, which can be manufactured at low temperature and has both high electroconductivity and high permeability to gases; to provide a method for forming the substrate; and to provide an MEA including the substrate. <P>SOLUTION: The substrate for the gas diffusion electrode is configured to mutually assemble a lot of carbon fibers 22 with a thermosetting resin 26 in a state in which a lot of carbon fine particles 24 exist between them. Since the carbon fibers 22 having sizes of fiber length/film thicknesses which are in the range of 0.1 to 1 and the carbon fine particles 24 having particle diameters which are smaller than the fiber diameters are used, both high electroconductivity and high permeability to gases are obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体高分子形燃料電池を構成するためのガス拡散電極用基材、その製造方法、およびこれを備えた膜−電極接合体に関する。   The present invention relates to a gas diffusion electrode substrate for constituting a polymer electrolyte fuel cell, a method for producing the same, and a membrane-electrode assembly provided with the same.

燃料電池は、燃料として水素、メタノール、化石燃料からの改質水素等の還元剤を用い、空気や酸素を酸化剤として、電池内で燃料を電気化学的に酸化することにより、燃料の化学エネルギーを直接電気エネルギーに変換して取り出すものである。そのため、内燃機関に比較して効率が高く、静粛性に優れると共に、大気汚染の原因となるNOx、SOx、粒子状物質(PM)等の排出量が少ないことから、近年、クリーンな電気エネルギー供給源として注目されている。例えば、自動車用エンジンの代替、住宅用等の分散型電源や熱電供給システムとしての利用が期待されている。 A fuel cell uses a reducing agent such as hydrogen, methanol, or reformed hydrogen from fossil fuels as a fuel, and electrochemically oxidizes the fuel in the cell using air or oxygen as an oxidant, thereby chemical energy of the fuel. Is directly converted into electrical energy and extracted. As a result, it has higher efficiency and quietness compared to internal combustion engines, and has low emissions of NO x , SO x , particulate matter (PM), etc. that cause air pollution. It is attracting attention as an energy supply source. For example, it is expected to be used as a distributed power source or a thermoelectric supply system for automobile engines, residential use, etc.

このような燃料電池は、用いる電解質の種類によって、アルカリ形、リン酸形、溶融炭酸塩形、固体酸化物形、固体高分子形等に分類される。これらのうちプロトン伝導性の電解質を用いるリン酸形および固体高分子形は、熱力学におけるカルノーサイクルの制限を受けることなく高い効率で運転できるものであり、その理論効率は、25(℃)において83(%)にも達する。特に、固体高分子形燃料電池は、近年電解質膜や触媒技術の発展により性能の向上が著しくなり、低公害自動車用電源や高効率発電方法として注目を集めている。   Such fuel cells are classified into alkali type, phosphoric acid type, molten carbonate type, solid oxide type, solid polymer type, and the like depending on the type of electrolyte used. Among these, the phosphoric acid form and the solid polymer form using a proton-conducting electrolyte can be operated with high efficiency without being restricted by the Carnot cycle in thermodynamics, and the theoretical efficiency is 25 (° C). It reaches 83 (%). In particular, solid polymer fuel cells have been remarkably improved in performance in recent years due to the development of electrolyte membranes and catalyst technology, and are attracting attention as a low-pollution automobile power source and high-efficiency power generation method.

ところで、固体高分子形燃料電池は、例えば薄板状の高分子電解質層の両面に一対の触媒層を介してガス拡散電極を設けた構造を備えるものであり、通常は、このような膜−電極接合体(Membrane Electrode Assembly:以下、MEA)を、燃料ガスまたは酸化ガスを供給し且つ生成ガスおよび過剰ガスを排出するためのガス流路を形成するセパレータを介して積層したスタック構造で用いられる。上記ガス拡散電極は、触媒層および電解質層表面に燃料ガスや空気を導くと共に、発生した電流を取り出すために、高いガス拡散性能と高い導電性とが共に要求される。従来、このようなガス拡散電極としては、炭素繊維等を樹脂炭化物で結着したものが一般に用いられてきた(例えば特許文献1〜6を参照。)。   By the way, a solid polymer fuel cell has a structure in which a gas diffusion electrode is provided on both sides of a thin polymer electrolyte layer, for example, via a pair of catalyst layers. Usually, such a membrane-electrode is used. The assembly (Membrane Electrode Assembly: hereinafter referred to as MEA) is used in a stack structure in which fuel gas or oxidizing gas is supplied and stacked through a separator that forms a gas flow path for discharging generated gas and excess gas. The gas diffusion electrode is required to have both high gas diffusion performance and high conductivity in order to introduce fuel gas and air to the catalyst layer and electrolyte layer surfaces and to take out the generated current. Conventionally, as such a gas diffusion electrode, a carbon fiber or the like bonded with a resin carbide has been generally used (see, for example, Patent Documents 1 to 6).

特開2007−080742号公報JP 2007-080742 A 特開2007−012440号公報JP 2007-012440 A 特開2006−222025号公報JP 2006-222025 A 特開2006−236992号公報JP 2006-233692 A 特開2004−311431号公報JP 2004-311431 A 特開2002−327355号公報JP 2002-327355 A 特開2003−323897号公報JP 2003-323897 A 特開2006−012569号公報JP 2006-012569 A 特開2004−079406号公報JP 2004-079406 A 特開2005−149745号公報JP 2005-149745 A 特開2005−190701号公報JP 2005-190701 A 特開2005−310660号公報JP 2005-310660 A 特許3778506号公報Japanese Patent No. 3778506 特開2007−157736号公報JP 2007-157736 A

しかしながら、上記のように炭素繊維等を樹脂炭化物で結着した構造では、炭素繊維等を熱硬化性樹脂で結着した後、その樹脂を不活性雰囲気或いは還元雰囲気において1700(℃)以上の高温で炭化させる。そのため、製造コストが高くなると共に、塗布積層型のMEAには適用できない問題があった。   However, in the structure in which carbon fibers and the like are bound with resin carbide as described above, after binding the carbon fibers and the like with a thermosetting resin, the resin is heated to a high temperature of 1700 (° C.) or higher in an inert atmosphere or a reducing atmosphere. Carbonize with. For this reason, there are problems in that the manufacturing cost is high and the method cannot be applied to the coating laminated MEA.

これに対して、製造コストや構造上の制限の問題を解消することを目的として、400(℃)以下の低温で製膜することが提案されているが(例えば特許文献7〜10を参照。)、それぞれ以下のような問題がある。特許文献7に記載されたものは、熱硬化性樹脂に代えて導電性高分子であるポリアニリンを用いたものである。しかし、ポリアニリンが水溶性であるため燃料電池の使用時に溶出して導電性を著しく低下させる危険性があり、一般的な撥水層の製膜温度である300(℃)付近ではポリアニリンが分解し、更に、ポリアニリンが高価であるから製造コストが比較的高くなるといった問題がある。   On the other hand, it has been proposed to form a film at a low temperature of 400 (° C.) or less for the purpose of solving the problem of manufacturing cost and structural limitations (see, for example, Patent Documents 7 to 10). ), Each has the following problems. What is described in Patent Document 7 uses polyaniline, which is a conductive polymer, instead of a thermosetting resin. However, since polyaniline is water-soluble, there is a risk of elution during use of the fuel cell and the conductivity may be significantly reduced. Polyaniline decomposes at around 300 (° C), which is the film-forming temperature of a general water-repellent layer. Furthermore, since polyaniline is expensive, there is a problem that the manufacturing cost is relatively high.

また、特許文献8に記載されたものは、フェノール樹脂、パルプ、炭素繊維から抄造した基材に、炭素微粒子をフッ素樹脂分散液中に分散したペーストをロールコートで塗布して含浸し、パルプを焼失させるものである。しかし、含浸面表面と裏面とで導電性が異なるので、厚み方向において導電性のムラが生ずると共に含浸した成分が厚み方向に均一に機能し難い問題がある。   In addition, what is described in Patent Document 8 is a substrate made from phenol resin, pulp, and carbon fiber, impregnated by applying a paste in which carbon fine particles are dispersed in a fluororesin dispersion by roll coating. It is to be burned out. However, since the conductivity differs between the impregnated surface and the back surface, there is a problem that uneven conductivity occurs in the thickness direction and the impregnated component does not function uniformly in the thickness direction.

また、特許文献9に記載されたものは、膨張黒鉛等の導電性粉末、炭素繊維、有機繊維、および樹脂を含むスラリーを抄紙し、乾燥処理を施すものである。しかし、炭素繊維相互間の導電性を付与するために混合される導電性粉末が比較的粗大であるため、ガス透過が阻害されると共に導電性も低い問題がある。   Moreover, what was described in patent document 9 makes papermaking the slurry containing electroconductive powders, such as expanded graphite, carbon fiber, organic fiber, and resin, and performs a drying process. However, since the conductive powder mixed to impart conductivity between the carbon fibers is relatively coarse, there is a problem that gas permeation is hindered and conductivity is low.

また、特許文献10に記載されたものは、カーボンナノファイバーまたはカーボンナノホーンを含むスラリーを抄紙し、乾燥処理を施すものである。しかし、カーボンナノファイバー等の接触点に導電成分が無いため導電性が低く、成形体の機械的強度も低い問題がある。また、カーボンナノファイバーやカーボンナノホーンは高価であるから、製造コストが比較的高くなる問題もある。   Moreover, what was described in patent document 10 papermaking the slurry containing carbon nanofiber or carbon nanohorn, and performs a drying process. However, since there is no conductive component at the contact point of carbon nanofiber or the like, there is a problem that the conductivity is low and the mechanical strength of the molded body is also low. In addition, since carbon nanofibers and carbon nanohorns are expensive, there is a problem that the manufacturing cost is relatively high.

本発明は、以上の事情を背景として為されたものであって、その目的は、低温で製造可能で、導電性およびガス透過性が共に高いガス拡散電極用基材、その形成方法、およびこれを備えたMEAを提供することにある。   The present invention has been made in the background of the above circumstances, and its object is to produce a base material for a gas diffusion electrode that can be manufactured at a low temperature and has both high conductivity and high gas permeability, a method for forming the same, and the same. It is providing the MEA provided with.

斯かる目的を達成するため、第1発明の要旨とするところは、固体高分子形燃料電池のガス拡散電極を構成するために固体高分子電解質上に気体を導き得る状態で設けられる多孔質のガス拡散電極用基材であって、(a)ガス拡散電極用基材の膜厚に対する繊維長の比(=繊維長/膜厚)が0.1〜1の範囲内の多数の炭素繊維と、粒径がそれら炭素繊維の繊維径よりも小さい多数の炭素微粒子と、それら多数の炭素繊維を相互間にそれら多数の炭素微粒子が介在させられた状態で相互に接合する樹脂とを含むことにある。   In order to achieve such an object, the gist of the first invention is that a porous gas provided in a state in which a gas can be guided on a solid polymer electrolyte in order to constitute a gas diffusion electrode of a solid polymer fuel cell. A gas diffusion electrode base material, wherein (a) the ratio of the fiber length to the film thickness of the gas diffusion electrode base material (= fiber length / film thickness) is in the range of 0.1 to 1 The present invention includes a large number of carbon fine particles having a diameter smaller than the fiber diameter of the carbon fibers and a resin that joins the large number of carbon fibers to each other with the many carbon fine particles interposed therebetween.

また、第2発明の要旨とするところは、固体高分子型燃料電池を構成するために固体高分子電解質上に気体を導き得る状態で設けられる多孔質のガス拡散電極用基材の製造方法であって、(a)製造しようとするガス拡散電極用基材の膜厚に対する繊維長の比(=繊維長/膜厚)が0.1〜1の範囲内の多数の炭素繊維と、粒径がそれら炭素繊維の繊維径よりも小さい多数の炭素微粒子と、樹脂と、溶媒とを含む電極基材用スラリーを調製するスラリー調製工程と、(b)前記電極基材用スラリーを用いてシート状成形体を製造する成形工程とを、含むことにある。   Further, the gist of the second invention is a method for producing a porous substrate for a gas diffusion electrode provided in a state in which gas can be guided onto a solid polymer electrolyte in order to constitute a solid polymer fuel cell. And (a) the ratio of the fiber length to the film thickness of the base material for gas diffusion electrode to be manufactured (= fiber length / film thickness) within a range of 0.1 to 1, and the particle diameter A slurry preparation step of preparing a slurry for an electrode base material containing a large number of carbon fine particles smaller than the fiber diameter of the carbon fiber, a resin, and a solvent; and (b) a sheet-like molded body using the slurry for an electrode base material And a molding process for manufacturing.

また、第3発明の膜−電極接合体の要旨とするところは、(a)固体高分子電解質層と、その一面および他面にそれぞれ設けられた触媒層と、(b)それら触媒層の各々の表面に設けられた前記第1発明のガス拡散電極用基材とを含むことにある。   Further, the gist of the membrane-electrode assembly of the third invention is that (a) a solid polymer electrolyte layer, a catalyst layer provided on one side and the other side thereof, and (b) each of the catalyst layers. And the base material for a gas diffusion electrode according to the first aspect of the present invention provided on the surface.

前記第1発明によれば、ガス拡散電極用基材は、多数の炭素繊維がその相互間に多数の炭素微粒子が介在した状態で相互に樹脂で接合されることによって構成される。このとき、炭素繊維として繊維長/膜厚が0.1〜1の範囲内の大きさのものが用いられると共に、炭素微粒子としてその繊維径よりも小さい粒径を有するものが用いられるので、高い導電性および高いガス透過性が共に得られる。しかも、上記構成によれば、樹脂を炭化しなくとも十分に高い導電性が得られることから、これを炭化するために不活性雰囲気等において高温で焼成する必要がない。したがって、低温で製造可能で、導電性およびガス透過性が共に高いガス拡散電極用基材が得られる。   According to the first aspect of the present invention, the base material for the gas diffusion electrode is configured by joining a large number of carbon fibers to each other with a resin in a state where a large number of carbon fine particles are interposed therebetween. At this time, carbon fibers having a fiber length / film thickness in the range of 0.1 to 1 are used, and carbon fine particles having a particle diameter smaller than the fiber diameter are used, so that high conductivity is obtained. And high gas permeability are both obtained. In addition, according to the above configuration, sufficiently high conductivity can be obtained without carbonizing the resin, so that it is not necessary to fire at high temperature in an inert atmosphere or the like in order to carbonize the resin. Therefore, it is possible to obtain a gas diffusion electrode substrate that can be manufactured at a low temperature and has both high conductivity and high gas permeability.

因みに、炭素繊維と炭素粒子とを共に用いたガス拡散電極用基材は、例えば、前記特許文献9においても提案されているが、前述したように、導電性およびガス透過性共に不十分な特性に留まっていた。しかしながら、ガス拡散電極用基材の製造コストを低下させると共に、構造上の制限を緩和するためには、上記特許文献9等に示されるような低温製膜を用いて高い特性を実現することが必須である。   Incidentally, a gas diffusion electrode base material using both carbon fibers and carbon particles has been proposed in, for example, Patent Document 9, but as described above, both the conductivity and gas permeability are insufficient. Stayed in. However, in order to reduce the manufacturing cost of the base material for the gas diffusion electrode and relax the structural limitation, it is possible to realize high characteristics by using low-temperature film formation as described in Patent Document 9 and the like. It is essential.

本発明者は、上記の課題の下、鋭意研究を重ねた結果、炭素繊維の繊維長とガス拡散電極用基材の膜厚との関係、および、その炭素繊維の繊維径と炭素微粒子の粒径との関係を前記の範囲に定めることによって、低温製膜でありながら導電性(特に膜厚方向の導電性)およびガス透過性を共に高くできることを見出した。第1発明はこのような知見に基づいて為されたものである。   As a result of intensive studies under the above-mentioned problems, the present inventor has found that the relationship between the fiber length of the carbon fiber and the film thickness of the base material for the gas diffusion electrode, and the fiber diameter of the carbon fiber and the particles of the carbon fine particles. It has been found that by defining the relationship with the diameter within the above range, both the conductivity (particularly the conductivity in the film thickness direction) and the gas permeability can be enhanced while the film is formed at a low temperature. The first invention has been made based on such knowledge.

なお、第1発明においては、炭素繊維の相互間の全てに炭素微粒子が介在することが理想的ではあるが、炭素繊維相互が直接に接している部分が存在しても差し支えない。また、炭素繊維相互間に樹脂が介在する部分が存在しても差し支えない。   In the first invention, it is ideal that the carbon fine particles intervene between the carbon fibers, but there may be a portion where the carbon fibers are in direct contact with each other. Further, there may be a portion where the resin is interposed between the carbon fibers.

なお、第1発明において、「電解質上に」とは、固体高分子電解質の上にガス拡散電極が直接設けられている場合の他、触媒層等の他の層を介してガス拡散電極が設けられている場合が含まれる。   In the first invention, “on the electrolyte” means that the gas diffusion electrode is provided via another layer such as a catalyst layer in addition to the case where the gas diffusion electrode is directly provided on the solid polymer electrolyte. Is included.

また、前記第2発明によれば、スラリー調製工程において炭素繊維、炭素微粒子、樹脂、および溶媒を含む電極基材用スラリーが調製され、成形工程において、このスラリーからシート状成形体が成形されることで、シート状のガス拡散電極用基材が得られる。すなわち、樹脂を炭化させる焼成処理を施すことなく、ガス拡散電極用基材が得られる。このとき、炭素繊維として繊維長/膜厚が0.1〜1の範囲内の大きさのものが用いられると共に、炭素微粒子としてその繊維径よりも小さい粒径を有するものが用いられるので、高い導電性および高いガス透過性が共に得られる。したがって、低温で、導電性およびガス透過性が共に高いガス拡散電極用基材を製造することができる。すなわち、前記第1発明のガス拡散電極を容易に得ることができる。   According to the second aspect of the invention, the electrode substrate slurry containing carbon fibers, carbon fine particles, resin, and solvent is prepared in the slurry preparation step, and a sheet-like molded body is formed from this slurry in the molding step. Thus, a sheet-like base material for gas diffusion electrode is obtained. That is, the base material for a gas diffusion electrode can be obtained without performing a baking treatment for carbonizing the resin. At this time, carbon fibers having a fiber length / film thickness in the range of 0.1 to 1 are used, and carbon fine particles having a particle diameter smaller than the fiber diameter are used, so that high conductivity is obtained. And high gas permeability are both obtained. Therefore, it is possible to manufacture a gas diffusion electrode base material that is both low in conductivity and high in gas permeability. That is, the gas diffusion electrode of the first invention can be easily obtained.

また、前記第3発明によれば、固体高分子電解質層の一面および他面に触媒層を介して前記第1発明のガス拡散電極用基材が設けられることによってMEAが構成されることから、高い導電性、高い機械的強度、および高いガス透過性を有するガス拡散電極を備えたMEAが得られる。   Further, according to the third invention, the MEA is configured by providing the gas diffusion electrode base material of the first invention via the catalyst layer on one surface and the other surface of the solid polymer electrolyte layer, An MEA having a gas diffusion electrode having high conductivity, high mechanical strength, and high gas permeability is obtained.

ここで、好適には、前記第1発明、第2発明、第3発明において、前記炭素繊維のアスペクト比(=繊維長/繊維径)が4.5〜25の範囲内である。このようにすれば、炭素繊維が比較的太く且つ短いので、炭素繊維相互に炭素微粒子を介して或いは直接的に接触し易く、しかも、炭素繊維相互の隙間が適度な大きさになるので、高い導電性および高いガス透過性が得られる。アスペクト比が4.5未満では、炭素繊維が短いので密度が高くなり延いてはガス透過性が低くなる。また、アスペクト比が25を超えると、炭素繊維が長いのでガス拡散電極用基材の面に沿った横向きになるため、厚み方向における導電性が低下すると共に、炭素繊維相互間に空隙の多い組織になって撥水剤が染み込み過ぎるようになる。   Here, preferably, in the first invention, the second invention, and the third invention, the aspect ratio (= fiber length / fiber diameter) of the carbon fiber is in the range of 4.5 to 25. In this way, since the carbon fibers are relatively thick and short, it is easy to contact the carbon fibers with each other via carbon fine particles or directly, and the gap between the carbon fibers becomes an appropriate size. Conductivity and high gas permeability are obtained. If the aspect ratio is less than 4.5, the carbon fiber is short, so the density increases and the gas permeability decreases. In addition, when the aspect ratio exceeds 25, the carbon fibers are long, so that the carbon fibers are oriented sideways along the surface of the gas diffusion electrode base material, so that the conductivity in the thickness direction is reduced and the structure has many voids between the carbon fibers. The water repellent becomes soaked too much.

また、好適には、前記炭素微粒子はクラスター構造を成すものである。このようにすれば、複数本の炭素繊維は、クラスター構造の炭素微粒子との間の無数の接点を通して相互に接触させられるため、高い導電性およびガス透過性を得ることができる。   Preferably, the carbon fine particles have a cluster structure. In this way, the plurality of carbon fibers can be brought into contact with each other through an infinite number of contacts with the cluster-structured carbon fine particles, so that high conductivity and gas permeability can be obtained.

また、好適には、前記炭素微粒子は一次粒径が100(nm)以下である。このようにすれば、炭素繊維相互の接点で導電経路が十分に確保されることから、一層高い導電性が得られる。   Preferably, the carbon fine particles have a primary particle size of 100 (nm) or less. In this way, since a conductive path is sufficiently secured at the contact points between the carbon fibers, higher conductivity can be obtained.

また、好適には、前記樹脂は熱硬化性樹脂である。このようにすれば、炭素繊維および炭素微粒子が熱硬化性樹脂で結着されることから、撥水膜を設ける際にも、その製膜温度に曝されても結着状態が変化し難く、延いては導電性の低下が生じ難い利点がある。   Preferably, the resin is a thermosetting resin. In this way, since the carbon fibers and the carbon fine particles are bound by the thermosetting resin, even when the water-repellent film is provided, the binding state hardly changes even when exposed to the film forming temperature. As a result, there is an advantage that the conductivity is hardly lowered.

また、好適には、前記第2発明において、前記樹脂は熱硬化性樹脂であり、前記シート状成形体に乾燥処理を施して前記熱硬化性樹脂を硬化させる乾燥工程を含むものである。このようにすれば、シート状成形体に乾燥処理を施すだけでガス拡散電極用基材を得ることができる。しかも、撥水膜を設ける際に、その製膜温度に曝されても結着状態が変化し難く延いては導電性の低下が生じ難い利点がある。   Preferably, in the second invention, the resin is a thermosetting resin, and includes a drying step of drying the sheet-like molded body to cure the thermosetting resin. If it does in this way, the base material for gas diffusion electrodes can be obtained only by performing a drying process to a sheet-like molded object. In addition, when the water repellent film is provided, there is an advantage that even if it is exposed to the film forming temperature, the binding state hardly changes and the conductivity is not easily lowered.

また、上記のように前記樹脂が熱硬化性樹脂である場合において、その種類は特に限定されず、フェノール系樹脂、エポキシ系樹脂、メラミン系樹脂、シリコーン系樹脂、ポリエステル系樹脂等の適宜のものを用い得る。これらの樹脂は、所望する特性等を考慮して用途に応じて選択されるが、例えば、機械的強度および耐熱性の点では特にフェノール樹脂が好ましい。   In addition, when the resin is a thermosetting resin as described above, the kind thereof is not particularly limited, and an appropriate one such as a phenol resin, an epoxy resin, a melamine resin, a silicone resin, a polyester resin, or the like. Can be used. These resins are selected according to the intended use in consideration of desired properties and the like, and for example, a phenol resin is particularly preferable in terms of mechanical strength and heat resistance.

また、前記固体高分子形燃料電池には反応の生じる三相界面に触媒が備えられていることが望ましい。触媒は、例えば、固体高分子電解質層とガス拡散電極との間に層状に備えられる。また、触媒は、ガス拡散電極中に炭素繊維や炭素粒子に担持された状態で備えられていても良い。ガス拡散電極中に備えられている態様は、例えば、ガス拡散電極の形成後に触媒を含むスラリーを含浸させる方法や、電極用スラリー中に触媒を混合してガス拡散電極を形成すると同時に触媒を担持させる方法等で実施し得る。   The polymer electrolyte fuel cell preferably has a catalyst at the three-phase interface where the reaction occurs. For example, the catalyst is provided in a layer form between the solid polymer electrolyte layer and the gas diffusion electrode. Further, the catalyst may be provided in a state supported on carbon fibers or carbon particles in the gas diffusion electrode. The mode provided in the gas diffusion electrode is, for example, a method of impregnating a slurry containing a catalyst after the gas diffusion electrode is formed, or a catalyst is loaded simultaneously with the formation of the gas diffusion electrode by mixing the catalyst in the electrode slurry. Or the like.

また、前記炭素繊維は特に限定されず、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維等の適宜のものを用い得る。ポリアクリロニトリル系炭素繊維を用いた場合には、炭素繊維の強度が高いため機械的強度の特に高いガス拡散電極が得られる。また、ピッチ系炭素繊維を用いた場合には、電気伝導性の特に高いガス拡散電極が得られる。   Further, the carbon fiber is not particularly limited, and appropriate ones such as polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, and rayon-based carbon fiber can be used. When polyacrylonitrile-based carbon fiber is used, a gas diffusion electrode with particularly high mechanical strength can be obtained because the strength of the carbon fiber is high. In addition, when pitch-based carbon fibers are used, a gas diffusion electrode having particularly high electrical conductivity can be obtained.

また、前記炭素繊維は、平均径が1〜30(μm)の範囲内のものが好ましい。平均径が5(μm)以上であれば、繊維が十分に太く、折れ難いことから十分に高い機械的強度が得られる。また、平均径が20(μm)以下であれば、炭素微粒子、熱硬化性樹脂や溶剤との混合が容易である。   The carbon fibers preferably have an average diameter in the range of 1 to 30 (μm). If the average diameter is 5 (μm) or more, sufficiently high mechanical strength can be obtained because the fibers are sufficiently thick and difficult to break. Further, when the average diameter is 20 (μm) or less, mixing with carbon fine particles, a thermosetting resin or a solvent is easy.

また、前記炭素繊維は、平均繊維長が50〜250(μm)の範囲内のものが好ましい。平均繊維長が50(μm)以上であれば、炭素繊維相互の絡み合いが十分に多くなって機械的強度が十分に高くなる。また、平均繊維長が250(μm)以下であれば、炭素繊維の分散性が十分に高められ、ガス拡散電極の組織の均質性が十分に高くなる。   The carbon fibers preferably have an average fiber length in the range of 50 to 250 (μm). When the average fiber length is 50 (μm) or more, the entanglement between the carbon fibers is sufficiently increased and the mechanical strength is sufficiently increased. Further, when the average fiber length is 250 (μm) or less, the dispersibility of the carbon fibers is sufficiently enhanced, and the homogeneity of the structure of the gas diffusion electrode is sufficiently increased.

また、固体高分子形燃料電池には、燃料極側および空気極側のそれぞれにガス拡散電極が備えられるが、本発明は、それら燃料極側および空気極側の何れの電極にも適用され得る。但し、両極で同一構成の電極が設けられることが必須ではなく、所望する特性や製造上の都合等に応じて、適宜の電極構成を採用することができ、本発明を適用されるのが両極のうちの一方のみであってもよい。   Further, the polymer electrolyte fuel cell is provided with gas diffusion electrodes on the fuel electrode side and the air electrode side, respectively, but the present invention can be applied to any electrode on the fuel electrode side and the air electrode side. . However, it is not essential that electrodes having the same configuration are provided in both electrodes, and an appropriate electrode configuration can be adopted according to desired characteristics and manufacturing convenience, and the present invention is applied to both electrodes. Only one of them may be used.

また、本発明は、種々の固体高分子電解質が用いられた固体高分子形燃料電池に適用され、固体高分子電解質の材質は特に限定されない。例えば、イオン交換基(-SO3H基等)を有するモノマーの単独重合体または共重合体、イオン交換基を有するモノマーとそのモノマーと共重合可能な他のモノマーとの共重合体、加水分解等の後処理によりイオン交換基に転換し得る官能基(すなわちイオン交換基の前駆的官能基)を有するモノマーの単独重合体、または共重合体(プロトン伝導性高分子前駆体)に同様な後処理を施したもの等が挙げられる。 Further, the present invention is applied to a solid polymer fuel cell using various solid polymer electrolytes, and the material of the solid polymer electrolyte is not particularly limited. For example, a homopolymer or copolymer of a monomer having an ion exchange group (such as —SO 3 H group), a copolymer of a monomer having an ion exchange group and another monomer copolymerizable with the monomer, hydrolysis Similar to the homopolymer or copolymer (proton conductive polymer precursor) of a monomer having a functional group (that is, a precursor functional group of an ion exchange group) that can be converted into an ion exchange group by a post-treatment such as The thing etc. which processed are mentioned.

上記高分子電解質の具体例としては、例えば、パーフルオロカーボンスルホン酸樹脂等のパーフルオロ型のプロトン伝導性高分子、パーフルオロカーボンカルボン酸樹脂膜、スルホン酸型ポリスチレン−グラフト−エチレンテトラフルオロエチレン(ETFE)共重合体膜、スルホン酸型ポリ(トリフルオロスチレン)−グラフト−ETFE共重合体膜、ポリエーテルエーテルケトン(PEEK)スルホン酸膜、2−アクリルアミド−2−メチルプロパンスルホン酸(ATBS)膜、炭化水素系膜等が例示される。   Specific examples of the polymer electrolyte include, for example, perfluoro proton conductive polymer such as perfluorocarbon sulfonic acid resin, perfluorocarbon carboxylic acid resin film, sulfonic acid type polystyrene-graft-ethylenetetrafluoroethylene (ETFE). Copolymer membrane, sulfonic acid type poly (trifluorostyrene) -graft-ETFE copolymer membrane, polyetheretherketone (PEEK) sulfonic acid membrane, 2-acrylamido-2-methylpropanesulfonic acid (ATBS) membrane, carbonized Examples include hydrogen-based films.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一実施例である平板型のMEA10の断面構造を示す図である。図1において、MEA10は、薄い平板層状の電解質膜12と、その両面に備えられた触媒層14,16と、触媒層14,16の各々の表面に設けられたガス拡散電極18,20とから構成されている。   FIG. 1 is a diagram showing a cross-sectional structure of a flat plate MEA 10 according to an embodiment of the present invention. In FIG. 1, an MEA 10 includes a thin flat layer electrolyte membrane 12, catalyst layers 14 and 16 provided on both surfaces thereof, and gas diffusion electrodes 18 and 20 provided on the surfaces of the catalyst layers 14 and 16, respectively. It is configured.

上記の電解質膜12は、例えばNafion(デュポン社の登録商標) DE520等のプロトン導電性電解質から成るもので、例えば50(μm)程度の厚さ寸法を備えている。   The electrolyte membrane 12 is made of a proton conductive electrolyte such as Nafion (registered trademark of DuPont) DE520, and has a thickness of about 50 (μm), for example.

また、上記の触媒層14,16は、例えば球状の炭素粉末に白金等の触媒を担持させたPt担持カーボンブラックから成るものである。これは、例えば田中貴金属工業(株)から市販されているもの(例えばTEC10E70TPM等)を用い得る。触媒層14,16の厚さ寸法は、例えば50(μm)程度である。   The catalyst layers 14 and 16 are made of, for example, Pt-supported carbon black in which a catalyst such as platinum is supported on spherical carbon powder. For example, those commercially available from Tanaka Kikinzoku Kogyo Co., Ltd. (for example, TEC10E70TPM) can be used. The thickness dimension of the catalyst layers 14 and 16 is, for example, about 50 (μm).

また、上記のガス拡散電極18,20は、例えばそれぞれ300(μm)程度の厚さ寸法を備え、その表面と裏面(すなわち触媒層14,16側の一面)との間で容易に気体が流通し得るように構成された多孔質層である。   Further, each of the gas diffusion electrodes 18 and 20 has a thickness dimension of about 300 (μm), for example, and gas easily flows between the front surface and the back surface (that is, one surface on the catalyst layers 14 and 16 side). It is a porous layer comprised so that it can do.

上記のガス拡散電極18,20は、例えば、炭素繊維と、炭素微粒子と、熱硬化性樹脂とから構成されている。炭素繊維は、例えば、ポリアクリルニトリル繊維を炭化したPAN系ファイバーと称されるもので、直径10(μm)程度、繊維長が50〜250(μm)程度、例えば250(μm)程度のものである。すなわち、ガス拡散電極18,20を構成する炭素繊維は、その膜厚の1/6〜5/6の繊維長を有している。また、熱硬化性樹脂は、例えば、レゾール樹脂から成るものである。   The gas diffusion electrodes 18 and 20 are made of, for example, carbon fibers, carbon fine particles, and a thermosetting resin. The carbon fiber is, for example, a so-called PAN-based fiber obtained by carbonizing polyacrylonitrile fiber, and has a diameter of about 10 (μm) and a fiber length of about 50 to 250 (μm), for example, about 250 (μm). is there. That is, the carbon fibers constituting the gas diffusion electrodes 18 and 20 have a fiber length of 1/6 to 5/6 of the film thickness. The thermosetting resin is made of, for example, a resole resin.

また、ガス拡散電極18,20は、その炭素繊維が上記のように膜厚よりも小さい繊維長を有していることから、図2に模式的に示すように、炭素繊維22は、ガス拡散電極18,20の厚み方向或いはこれに傾斜した方向に伸びる向きでそのガス拡散電極18,20内に存在する。また、各炭素繊維22は相互に絡み合い、それらの接触点において、図3に模式的に示すように、炭素微粒子24が介在させられた状態で熱硬化性樹脂26によって結着されている。炭素微粒子24は、例えば30(nm)程度の極めて微小な一次粒子径を備えたもので、多数個が凝集してクラスター構造を成しており、無数の接点を通して炭素繊維22相互を接触させている。このような構造を備えていることから、ガス拡散電極18,20は、断面加圧抵抗値が300(mΩ・cm)以下の十分に高い導電性と、10000(ml・mm/cm2/min)以上の高いガス透過性とを有している。 Further, since the carbon fibers of the gas diffusion electrodes 18 and 20 have a fiber length smaller than the film thickness as described above, the carbon fibers 22 are gas diffusion as schematically shown in FIG. The electrodes 18 and 20 exist in the gas diffusion electrodes 18 and 20 in the direction extending in the thickness direction or the direction inclined thereto. Further, the carbon fibers 22 are entangled with each other, and are bound by a thermosetting resin 26 with carbon fine particles 24 interposed at their contact points as schematically shown in FIG. The carbon fine particles 24 have a very small primary particle diameter of, for example, about 30 (nm), and a large number of them are aggregated to form a cluster structure. The carbon fibers 22 are brought into contact with each other through an infinite number of contacts. Yes. Because of such a structure, the gas diffusion electrodes 18 and 20 have a sufficiently high conductivity with a cross-sectional pressure resistance of 300 (mΩ · cm) or less and 10000 (ml · mm / cm 2 / min). ) High gas permeability as described above.

なお、上記図3は、本実施例のガス拡散電極18,20における典型的な構造例を模式的に示したもので、この図3に示されるような構造は必ずしも炭素繊維22の全ての接触点で形成されていない。すなわち、炭素繊維22が相互に直に接していたり、炭素微粒子24が介在させられず熱硬化性樹脂26のみで接合されている部分も存在する。   3 schematically shows a typical structural example of the gas diffusion electrodes 18 and 20 of the present embodiment, and the structure as shown in FIG. Not formed with dots. That is, there are also portions where the carbon fibers 22 are in direct contact with each other or are joined only by the thermosetting resin 26 without the carbon fine particles 24 interposed.

上記平板型のガス拡散電極18,20は、例えば以下のようにして製造される。以下、図4を参照して製造方法を説明する。まず、前記炭素繊維と、前記炭素微粒子と、レゾール樹脂等の前記熱硬化性樹脂と、1−プロパノール等の溶媒とを用意する。これらの調合割合は適宜定められるが、一例を挙げると、例えば、炭素繊維を3(g)、熱硬化性樹脂を1.5(g)、溶剤を20(g)、炭素微粒子を0.5(g)である。   The flat gas diffusion electrodes 18 and 20 are manufactured, for example, as follows. Hereinafter, the manufacturing method will be described with reference to FIG. First, the carbon fiber, the carbon fine particles, the thermosetting resin such as a resol resin, and a solvent such as 1-propanol are prepared. These mixing ratios are determined as appropriate. For example, carbon fiber is 3 (g), thermosetting resin is 1.5 (g), solvent is 20 (g), and carbon fine particles are 0.5 (g). is there.

次いで、混合工程1において、炭素繊維、レゾール樹脂、溶剤、炭素微粒子を順次に適当な混合容器に入れつつ混合を行う。この混合処理は、例えば300(rpm)程度の回転数で1日程度行う。これにより、電極基材用スラリーが得られる。   Next, in the mixing step 1, the carbon fiber, the resol resin, the solvent, and the carbon fine particles are mixed while being sequentially put in a suitable mixing container. This mixing process is performed for about one day at a rotational speed of about 300 (rpm), for example. Thereby, the slurry for electrode base materials is obtained.

次いで、成形工程2においては、調製した電極基材用スラリーを、スリップキャスティング等の良く知られた適宜のシート成型法を用い、或いは、適当なプレート上に塗布することにより、シート成形を行う。   Next, in the forming step 2, the prepared electrode substrate slurry is formed by using a well-known appropriate sheet forming method such as slip casting, or by applying it on an appropriate plate.

次いで、乾燥工程3においては、例えば室温で4時間程度の乾燥処理を施し、更に、熱処理工程4においては、例えば150(℃)で3時間程度の熱処理を施す。これにより、スラリーから溶剤が除去され、炭素繊維が相互に絡み合い且つクラスター構造の炭素微粒子を介して熱硬化性樹脂で結着させられたシート状物が得られる。すなわち、前記MEA10のガス拡散電極18,20を構成するためのガス拡散電極用基材が得られる。乾燥・熱処理後の厚さ寸法は、例えば320(μm)程度である。   Next, in the drying step 3, for example, a drying treatment is performed at room temperature for about 4 hours, and in the heat treatment step 4, for example, a heat treatment is performed at 150 (° C.) for about 3 hours. Thereby, the solvent is removed from the slurry, and a sheet-like material in which the carbon fibers are entangled with each other and bonded with the thermosetting resin through the carbon fine particles having the cluster structure is obtained. That is, the base material for gas diffusion electrodes for constituting the gas diffusion electrodes 18 and 20 of the MEA 10 is obtained. The thickness dimension after drying and heat treatment is, for example, about 320 (μm).

前記MEA10は、上記のようにして製造されたガス拡散電極用基材に触媒スラリーを塗布して電極シートを作製し、シート状の電解質を触媒層14,16が内側になるように2枚の電極シートで挟み、ホットプレスを施すことで得られる。なお、触媒スラリーおよび電解質の詳細については、本実施例を理解するために必要ではないので省略する。   The MEA 10 is prepared by applying a catalyst slurry to the gas diffusion electrode base material manufactured as described above to produce an electrode sheet, and the sheet-like electrolyte is formed of two sheets so that the catalyst layers 14 and 16 are inside. It is obtained by sandwiching between electrode sheets and applying hot pressing. The details of the catalyst slurry and the electrolyte are omitted because they are not necessary for understanding this example.

ここで、前記ガス拡散電極18,20の断面加圧抵抗およびガス透過率を、繊維長の異なる7種の炭素繊維を用いて、レゾール樹脂、溶剤、炭素微粒子の添加量を種々変更して評価した結果を説明する。断面加圧抵抗は、厚み方向に加圧した状態で測定した表面と裏面との間の抵抗値で、例えばアズワン(株)製小型熱プレス機AH-2003を用いて測定した。また、ガス透過率は、例えばPMI社製キャピラリーフローポロメータ1200AELを用いて測定した。評価した各試験体の仕様および結果を下記の表1に示す。また、評価結果を図5にまとめた。棒グラフが断面加圧抵抗を、折れ線グラフがガス透過率をそれぞれ表している。   Here, the cross-sectional pressure resistance and gas permeability of the gas diffusion electrodes 18 and 20 are evaluated by using various kinds of carbon fibers having different fiber lengths and various addition amounts of resole resin, solvent, and carbon fine particles. The results will be described. The cross-sectional pressure resistance is a resistance value between the front surface and the back surface measured in a state of being pressurized in the thickness direction, and was measured using, for example, a small hot press machine AH-2003 manufactured by AS ONE Corporation. The gas permeability was measured using, for example, a capillary flow porometer 1200AEL manufactured by PMI. The specifications and results of each evaluated specimen are shown in Table 1 below. The evaluation results are summarized in FIG. The bar graph represents the cross-sectional pressure resistance, and the line graph represents the gas permeability.

Figure 2010015908
Figure 2010015908

上記の表1に示すように、評価には、繊維長が12(mm)、9(mm)、6(mm)、3(mm)、250(μm)、150(μm)、50(μm)の炭素繊維を用いた。これら炭素繊維は、繊維長50(μm)のもの(No.14,15に使用)が三菱化学産資(株)製、他のものが日本グラファイトファイバー製である。何れもピッチ系カーボンファイバーである。繊維径は日本グラファイトファイバー製のものが10(μm)で、三菱化学産資(株)製のものが11(μm)である。それぞれのアスペクト比および繊維長/膜厚比を各サンプル番号のすぐ下に示した。また、炭素繊維の欄には、上段に繊維長を、下段に調合量をそれぞれ記したが、調合量は全て3(g)である。   As shown in Table 1 above, the fiber length is 12 (mm), 9 (mm), 6 (mm), 3 (mm), 250 (μm), 150 (μm), 50 (μm) for evaluation. The carbon fiber was used. Among these carbon fibers, those having a fiber length of 50 (μm) (used for Nos. 14 and 15) are manufactured by Mitsubishi Chemical Corporation, and others are manufactured by Nippon Graphite Fiber. Both are pitch-based carbon fibers. The fiber diameter is 10 (μm) manufactured by Nippon Graphite Fiber and 11 (μm) manufactured by Mitsubishi Chemical Corporation. The respective aspect ratio and fiber length / film thickness ratio are shown directly below each sample number. Further, in the column of carbon fiber, the fiber length is shown in the upper part and the preparation amount is shown in the lower part, respectively, and the preparation amount is all 3 (g).

また、熱硬化性樹脂は、例えば住友ベークライト製レゾール樹脂で、調合量は0.5(g)〜3.1(g)の範囲とした。また、溶剤は和光純薬製1−プロパノールで、調合量は15(g)または20(g)とした。また、炭素微粒子は例えば一次粒子径が30(nm)のキャボット製ケッチェンブラックで、調合量は0.3(g)〜0.6(g)とした。   Moreover, the thermosetting resin is, for example, a resol resin made by Sumitomo Bakelite, and the preparation amount is in the range of 0.5 (g) to 3.1 (g). In addition, the solvent was 1-propanol manufactured by Wako Pure Chemical Industries, and the preparation amount was 15 (g) or 20 (g). The carbon fine particles are, for example, Cabot ketjen black having a primary particle size of 30 (nm), and the blending amount is 0.3 (g) to 0.6 (g).

なお、上記の表1において、比較例1は、従来からガス拡散電極用基材に一般に用いられている東レ製カーボンペーパーTGP-H-090である。   In Table 1 above, Comparative Example 1 is carbon paper TGP-H-090 manufactured by Toray that has been conventionally used as a base material for gas diffusion electrodes.

断面加圧抵抗の目標値は300(mΩ・cm)以下、ガス透過率の目標値は10000(ml・mm/cm2/min)以上であるが、上記表1の結果欄に示すように、サンプルNo.1〜15全てにおいて、断面加圧抵抗およびガス透過率の目標値を満足している。評価結果の代表的なものを図6、図7に示す。これらの結果によれば、断面加圧抵抗は、繊維長/膜厚比が0.1〜20の範囲でカーボンペーパー(比較例1)よりも低くなることが判る。また、ガス透過率は、繊維長/膜厚比が大きくなると大きくなる傾向にある。 The target value of the cross-sectional pressure resistance is 300 (mΩ · cm) or less, and the target value of the gas permeability is 10000 (ml · mm / cm 2 / min) or more. As shown in the result column of Table 1 above, All sample Nos. 1 to 15 satisfy the target values of the cross-sectional pressure resistance and gas permeability. A typical evaluation result is shown in FIGS. According to these results, it is understood that the cross-sectional pressure resistance is lower than that of carbon paper (Comparative Example 1) when the fiber length / film thickness ratio is in the range of 0.1-20. Further, the gas permeability tends to increase as the fiber length / film thickness ratio increases.

繊維長/膜厚比が小さくなると、すなわち、繊維長が短く、繊維同士の接点が多くなると、電子が移動する際により多くの接点を通ることになる。そのため、断面加圧抵抗が増大する。因みに、炭素繊維を添加せず、熱硬化性樹脂と炭素微粒子とを同量混合した基材を評価したところ、断面加圧抵抗は1〜2(Ω・cm)と極めて高い値であった。炭素繊維の抵抗値は例えば0.15(mΩ・cm)程度であるから、上記のような炭素繊維を含まないものではこの1万倍もの高抵抗であることが判る。この評価結果によれば、接点は導通を著しく低下するものとなっており、導通経路の接点はできるだけ少ないことが望ましいと考えられる。   When the fiber length / film thickness ratio is small, that is, when the fiber length is short and the number of contact points between fibers increases, more contacts pass through when electrons move. As a result, the cross-sectional pressure resistance increases. Incidentally, when a substrate in which the same amount of a thermosetting resin and carbon fine particles was mixed without adding carbon fiber was evaluated, the cross-sectional pressure resistance was an extremely high value of 1 to 2 (Ω · cm). Since the resistance value of the carbon fiber is, for example, about 0.15 (mΩ · cm), it can be seen that a material not including the carbon fiber as described above has a resistance as high as 10,000 times. According to this evaluation result, the contact point significantly reduces conduction, and it is desirable that the number of contacts on the conduction path be as small as possible.

一方、繊維長/膜厚比が1よりも大きくなると、炭素繊維は、前記図2に示した模式図のような膜厚方向に向かうものとはならず、面に沿った方向に寝ることになる。この結果、少なくとも膜厚方向においては、繊維長が長いにも拘わらず通過する接点数が多くなるため、抵抗値が高くなるものと考えられる。   On the other hand, when the fiber length / thickness ratio is larger than 1, the carbon fiber does not go in the film thickness direction as shown in the schematic diagram shown in FIG. 2, but lies in the direction along the surface. Become. As a result, at least in the film thickness direction, the number of contacts that pass though the fiber length is long increases, so that the resistance value is considered to increase.

これらのことから、断面加圧抵抗が低くなるのは、適度な繊維長の範囲に限られることになり、前記の通り、抵抗値に関しては、繊維長/膜厚比が0.1〜20の範囲が好ましいことになる。これに対して、ガス透過率は、繊維長が長くなるほど空隙が増加するので大きくなる傾向にある。   From these facts, the cross-sectional pressure resistance is lowered only in an appropriate fiber length range. As described above, the resistance value has a fiber length / film thickness ratio in the range of 0.1 to 20. Would be preferable. On the other hand, the gas permeability tends to increase because the voids increase as the fiber length increases.

図8、図9は、繊維長/膜厚比と表面粗さRa、Rmaxとの関係を示す図である。表面粗さの目標値は、Raで3未満、Rmaxで50未満である。これら図8、図9によれば、繊維長/膜厚比が1以下で目標値を満足することが判る。これらの目標値のうち、平均粗さRaは、ガス拡散電極用基材の表面に撥水層や触媒層を設ける際の塗布の容易性を考慮したものである。また、最大粗さRmaxは、電解質膜が通常は50(μm)程度の厚さ寸法で設けられることから、これに突き刺さったとしても膜が完全に破損しない大きさとして定めたものである。   8 and 9 are diagrams showing the relationship between the fiber length / film thickness ratio and the surface roughness Ra and Rmax. The target values of the surface roughness are less than 3 for Ra and less than 50 for Rmax. 8 and 9, it can be seen that the target value is satisfied when the fiber length / film thickness ratio is 1 or less. Among these target values, the average roughness Ra takes into consideration the ease of application when a water repellent layer or a catalyst layer is provided on the surface of the gas diffusion electrode substrate. Further, the maximum roughness Rmax is determined so that the membrane is not completely damaged even if the electrolyte membrane is pierced because the electrolyte membrane is usually provided with a thickness of about 50 (μm).

前記表1の比較例2〜5は、断面加圧抵抗およびガス透過率共に目標値を満足しているが、表面状態が悪く、MEAを作製すると電解質膜を傷つける結果となった。これらは、繊維長が長すぎることに起因する。したがって、上記図6〜図9によれば、断面加圧抵抗、ガス透過率、表面粗さを何れも満足させるためには、繊維長/膜厚比を0.1〜1の範囲内とすればよいことが判る。   In Comparative Examples 2 to 5 in Table 1, both the cross-sectional pressure resistance and the gas permeability satisfied the target values, but the surface condition was poor, and when the MEA was produced, the electrolyte membrane was damaged. These are due to the fiber length being too long. Therefore, according to FIGS. 6 to 9, the fiber length / film thickness ratio should be within the range of 0.1 to 1 in order to satisfy the cross-sectional pressure resistance, gas permeability, and surface roughness. I understand that.

なお、特にデータは示さないが、前記MEA10を作製するに際して、表面に撥水膜を設ける目的で空気中において300(℃)で1時間の加熱を行ったところ、このような熱処理を加えてもガス拡散電極18,20の抵抗値およびガス透過性に特に変化が認められなかった。これは、レゾール樹脂を結着剤として用いていることによるものと考えられる。しかも、レゾール樹脂が含まれていることにより、十分な機械的強度が付与されているので、ガス拡散電極用基材はハンドリング性も優れている利点がある。   Although no particular data is shown, when the MEA 10 was manufactured, heating was performed in air (300 ° C.) for 1 hour for the purpose of providing a water repellent film on the surface. No particular changes were observed in the resistance values and gas permeability of the gas diffusion electrodes 18 and 20. This is considered to be due to the use of resole resin as a binder. And since sufficient mechanical strength is provided by containing resole resin, the base material for gas diffusion electrodes has the advantage that it is excellent also in handling property.

上述したように、本実施例によれば、ガス拡散電極用基材は、多数の炭素繊維22がその相互間に多数の炭素微粒子24が介在した状態で相互に熱硬化性樹脂26で接合されることによって構成されるが、炭素繊維22として繊維長/膜厚が0.1〜1の範囲内の大きさのものが用いられると共に、炭素微粒子24としてその繊維径よりも小さい粒径を有するものが用いられるので、高い導電性および高いガス透過性が共に得られる。しかも、熱硬化性樹脂26を炭化しなくとも十分に高い導電性が得られることから、これを炭化するために不活性雰囲気等において高温で焼成する必要がない。また、炭素繊維22および炭素微粒子24を結着する樹脂として熱硬化性樹脂26が用いられていることから、撥水膜を設ける際にも、その製膜温度に曝されることによる導電性の低下が無い。したがって、低温で製造可能で、導電性およびガス透過性が共に高いガス拡散電極用基材が得られる。   As described above, according to the present embodiment, the gas diffusion electrode base material is bonded to each other by the thermosetting resin 26 in a state where a large number of carbon fibers 22 are interposed between the carbon fibers 22. The carbon fiber 22 having a fiber length / film thickness in the range of 0.1 to 1 is used, and the carbon fine particle 24 has a particle diameter smaller than the fiber diameter. Since it is used, both high conductivity and high gas permeability can be obtained. In addition, since sufficiently high conductivity can be obtained without carbonizing the thermosetting resin 26, it is not necessary to fire at a high temperature in an inert atmosphere or the like in order to carbonize it. In addition, since the thermosetting resin 26 is used as the resin for binding the carbon fibers 22 and the carbon fine particles 24, when the water repellent film is provided, the conductive property due to exposure to the film forming temperature is also provided. There is no decline. Therefore, it is possible to obtain a gas diffusion electrode substrate that can be manufactured at a low temperature and has both high conductivity and high gas permeability.

以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。   As mentioned above, although this invention was demonstrated in detail with reference to drawings, this invention can be implemented also in another aspect, A various change can be added in the range which does not deviate from the main point.

本発明の一実施例である平板型のMEAを示す図である。It is a figure which shows the flat plate type MEA which is one Example of this invention. 図1のMEAに備えられたガス拡散電極の構成を模式的に示す図である。It is a figure which shows typically the structure of the gas diffusion electrode with which MEA of FIG. 1 was equipped. 図2のガス拡散電極における炭素繊維の結着状態を説明するための模式図である。It is a schematic diagram for demonstrating the binding state of the carbon fiber in the gas diffusion electrode of FIG. 図2のガス拡散電極の製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of the gas diffusion electrode of FIG. 実施例および比較例の特性評価結果をまとめた図である。It is the figure which put together the characteristic evaluation result of the Example and the comparative example. 繊維長/膜厚比と断面加圧抵抗との関係を示す図である。It is a figure which shows the relationship between fiber length / film thickness ratio and cross-sectional pressing resistance. 繊維長/膜厚比とガス透過性との関係を示す図である。It is a figure which shows the relationship between fiber length / film thickness ratio and gas permeability. 繊維長/膜厚比と表面粗さRaとの関係を示す図である。It is a figure which shows the relationship between fiber length / film thickness ratio and surface roughness Ra. 繊維長/膜厚比と表面粗さRmaxとの関係を示す図である。It is a figure which shows the relationship between fiber length / film thickness ratio and surface roughness Rmax.

符号の説明Explanation of symbols

10:MEA、12:電解質膜、14,16:触媒層、18,20:ガス拡散電極、22:炭素繊維、24:炭素微粒子、26:熱硬化性樹脂 10: MEA, 12: electrolyte membrane, 14, 16: catalyst layer, 18, 20: gas diffusion electrode, 22: carbon fiber, 24: carbon fine particle, 26: thermosetting resin

Claims (7)

固体高分子形燃料電池のガス拡散電極を構成するために固体高分子電解質上に気体を導き得る状態で設けられる多孔質のガス拡散電極用基材であって、
ガス拡散電極用基材の膜厚に対する繊維長の比(=繊維長/膜厚)が0.1〜1の範囲内の多数の炭素繊維と、粒径がそれら炭素繊維の繊維径よりも小さい多数の炭素微粒子と、それら多数の炭素繊維を相互間にそれら多数の炭素微粒子が介在させられた状態で相互に接合する樹脂とを含むことを特徴とするガス拡散電極用基材。
A porous base material for a gas diffusion electrode provided in a state in which a gas can be guided onto a solid polymer electrolyte in order to constitute a gas diffusion electrode of a polymer electrolyte fuel cell,
The ratio of the fiber length to the film thickness of the base material for gas diffusion electrode (= fiber length / film thickness) is a large number of carbon fibers in the range of 0.1 to 1, and a large number of particle diameters smaller than the fiber diameter of the carbon fibers. A base material for a gas diffusion electrode, comprising: carbon fine particles; and a resin that joins the multiple carbon fibers to each other in a state where the multiple carbon fine particles are interposed therebetween.
前記炭素繊維のアスペクト比(=繊維長/繊維径)が4.5〜25の範囲内である請求項1のガス拡散電極用基材。   The base material for a gas diffusion electrode according to claim 1, wherein an aspect ratio (= fiber length / fiber diameter) of the carbon fiber is within a range of 4.5 to 25. 前記炭素微粒子はクラスター構造を成すものである請求項1または請求項2のガス拡散電極用基材。   The gas diffusion electrode substrate according to claim 1 or 2, wherein the carbon fine particles have a cluster structure. 前記炭素微粒子は一次粒径が100(nm)以下である請求項1乃至請求項3の何れか1項に記載のガス拡散電極用基材。   The base material for a gas diffusion electrode according to any one of claims 1 to 3, wherein the carbon fine particles have a primary particle size of 100 (nm) or less. 前記樹脂は熱硬化性樹脂である請求項1乃至請求項4の何れか1項に記載のガス拡散電極用基材。   The base material for a gas diffusion electrode according to any one of claims 1 to 4, wherein the resin is a thermosetting resin. 固体高分子型燃料電池を構成するために固体高分子電解質上に気体を導き得る状態で設けられる多孔質のガス拡散電極用基材の製造方法であって、
製造しようとするガス拡散電極用基材の膜厚に対する繊維長の比(=繊維長/膜厚)が0.1〜1の範囲内の多数の炭素繊維と、粒径がそれら炭素繊維の繊維径よりも小さい多数の炭素微粒子と、樹脂と、溶媒とを含む電極基材用スラリーを調製するスラリー調製工程と、
前記電極基材用スラリーを用いてシート状成形体を製造する成形工程と
を、含むことを特徴とするガス拡散電極用基材の製造方法。
A method for producing a porous base material for a gas diffusion electrode provided in a state in which a gas can be guided on a solid polymer electrolyte to constitute a solid polymer fuel cell,
The ratio of the fiber length to the film thickness of the base material for gas diffusion electrode to be manufactured (= fiber length / film thickness) is within a range of 0.1 to 1, and the particle diameter is larger than the fiber diameter of the carbon fibers. A slurry preparation step of preparing a slurry for an electrode substrate including a large number of carbon fine particles, a resin, and a solvent,
And a molding step of producing a sheet-like molded body using the electrode substrate slurry. A method for producing a gas diffusion electrode substrate.
固体高分子電解質層と、その一面および他面にそれぞれ設けられた触媒層と、それら触媒層の各々の表面に設けられた請求項1乃至請求項5の何れか1項に記載のガス拡散電極用基材とを含むことを特徴とする膜−電極接合体。   The gas diffusion electrode according to any one of claims 1 to 5, wherein the solid polymer electrolyte layer, a catalyst layer provided on one surface and the other surface thereof, and a gas diffusion electrode provided on each surface of the catalyst layer are provided. A membrane-electrode assembly comprising a substrate for use.
JP2008176351A 2008-07-04 2008-07-04 Substrate for gas diffusion electrode and method for manufacturing the same, and membrane-electrode assembly Pending JP2010015908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176351A JP2010015908A (en) 2008-07-04 2008-07-04 Substrate for gas diffusion electrode and method for manufacturing the same, and membrane-electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176351A JP2010015908A (en) 2008-07-04 2008-07-04 Substrate for gas diffusion electrode and method for manufacturing the same, and membrane-electrode assembly

Publications (1)

Publication Number Publication Date
JP2010015908A true JP2010015908A (en) 2010-01-21

Family

ID=41701829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176351A Pending JP2010015908A (en) 2008-07-04 2008-07-04 Substrate for gas diffusion electrode and method for manufacturing the same, and membrane-electrode assembly

Country Status (1)

Country Link
JP (1) JP2010015908A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054449A (en) * 2009-09-02 2011-03-17 Noritake Co Ltd Base material for gas diffusion electrode, method for manufacturing the same, and membrane-electrode assembly
JP2011165525A (en) * 2010-02-10 2011-08-25 Noritake Co Ltd Method of manufacturing base material for gas diffusion electrode and powder-shaped material for forming base material for gas diffusion electrode used therefor
JP2012155862A (en) * 2011-01-21 2012-08-16 Noritake Co Ltd Gas diffusion layer of solid polymer fuel cell, film-electrode assembly including the gas diffusion layer, manufacturing method for the gas diffusion layer and slurry used in manufacturing the gas diffusion layer
JP2012190619A (en) * 2011-03-09 2012-10-04 Noritake Co Ltd Gas diffusion layer of solid polymer fuel cell, membrane-electrode assembly of solid polymer fuel cell including gas diffusion layer, and slurry used for manufacturing gas diffusion layer
JP2015005525A (en) * 2014-08-25 2015-01-08 大日本印刷株式会社 Gas diffusion layer for fuel battery, manufacturing method therefor, gas diffusion electrode for fuel battery using the same, membrane-electrode junction for fuel battery, and fuel battery
WO2015088472A1 (en) * 2013-12-09 2015-06-18 Audi Ag Method of manufacturing a dry-laid fuel cell precursor substrate and a substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299113A (en) * 1999-02-10 2000-10-24 Toray Ind Inc Conductive sheet and electrode base material for fuel cell using it
WO2005043656A1 (en) * 2003-10-30 2005-05-12 Mitsubishi Corporation Solid polymeric electrolyte type gas diffusion layer for fuel cell
JP2007141783A (en) * 2005-11-22 2007-06-07 Nitto Denko Corp Gas diffusion layer for fuel cell, its manufacturing method, and fuel cell using it
JP2008066151A (en) * 2006-09-07 2008-03-21 Noritake Co Ltd Gas diffusion electrode, its forming method, and membrane-electrode junction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299113A (en) * 1999-02-10 2000-10-24 Toray Ind Inc Conductive sheet and electrode base material for fuel cell using it
WO2005043656A1 (en) * 2003-10-30 2005-05-12 Mitsubishi Corporation Solid polymeric electrolyte type gas diffusion layer for fuel cell
JP2007141783A (en) * 2005-11-22 2007-06-07 Nitto Denko Corp Gas diffusion layer for fuel cell, its manufacturing method, and fuel cell using it
JP2008066151A (en) * 2006-09-07 2008-03-21 Noritake Co Ltd Gas diffusion electrode, its forming method, and membrane-electrode junction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054449A (en) * 2009-09-02 2011-03-17 Noritake Co Ltd Base material for gas diffusion electrode, method for manufacturing the same, and membrane-electrode assembly
JP2011165525A (en) * 2010-02-10 2011-08-25 Noritake Co Ltd Method of manufacturing base material for gas diffusion electrode and powder-shaped material for forming base material for gas diffusion electrode used therefor
JP2012155862A (en) * 2011-01-21 2012-08-16 Noritake Co Ltd Gas diffusion layer of solid polymer fuel cell, film-electrode assembly including the gas diffusion layer, manufacturing method for the gas diffusion layer and slurry used in manufacturing the gas diffusion layer
JP2012190619A (en) * 2011-03-09 2012-10-04 Noritake Co Ltd Gas diffusion layer of solid polymer fuel cell, membrane-electrode assembly of solid polymer fuel cell including gas diffusion layer, and slurry used for manufacturing gas diffusion layer
WO2015088472A1 (en) * 2013-12-09 2015-06-18 Audi Ag Method of manufacturing a dry-laid fuel cell precursor substrate and a substrate
CN105874634A (en) * 2013-12-09 2016-08-17 奥迪股份公司 Method of manufacturing a dry-laid fuel cell precursor substrate and a substrate
CN105874634B (en) * 2013-12-09 2018-12-04 奥迪股份公司 Manufacture the method and substrate of dry-laid fuel cell substrate early period
US10418640B2 (en) 2013-12-09 2019-09-17 Audi Ag Method of manufacturing a dry-laid fuel cell precursor substrate and a substrate
JP2015005525A (en) * 2014-08-25 2015-01-08 大日本印刷株式会社 Gas diffusion layer for fuel battery, manufacturing method therefor, gas diffusion electrode for fuel battery using the same, membrane-electrode junction for fuel battery, and fuel battery

Similar Documents

Publication Publication Date Title
JP6053251B2 (en) Solid polymer fuel cell gas diffusion layer
JP4898394B2 (en) Method for manufacturing stacked fuel cell
JP5839161B2 (en) Gas diffusion layer for fuel cell and manufacturing method thereof
JP6717748B2 (en) Gas diffusion base material
JP5915283B2 (en) Gas diffusion layer and fuel cell using the same
JP5031302B2 (en) Method for forming gas diffusion electrode
KR20120038984A (en) Gas diffusion layer member for solid polymer fuel cells, and solid polymer fuel cell
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
JP2010015908A (en) Substrate for gas diffusion electrode and method for manufacturing the same, and membrane-electrode assembly
JP2010153222A (en) Flexible type gas diffusion electrode substrate and membrane-electrode assembly
KR102175009B1 (en) Membrane-electrode assembly for fuel cell, method for manufacturing of the same, and fuel cell comprising the same
JP2006222024A (en) Solid polymer fuel cell, membrane-electrode assembly, and gas diffusion electrode substrate
JP2007005004A (en) Gas diffusion electrode for fuel cell, manufacturing method of the same, and fuel cell
JP5443413B2 (en) Gas diffusion layer of polymer electrolyte fuel cell, membrane-electrode assembly of polymer electrolyte fuel cell including gas diffusion layer, and slurry used for production of gas diffusion layer
JP5884550B2 (en) Anode gas diffusion layer
JP4898568B2 (en) Catalyst layer and membrane-electrode assembly
US9859572B2 (en) Gas diffusion substrate
JP5443401B2 (en) Gas diffusion layer of polymer electrolyte fuel cell, membrane-electrode assembly including gas diffusion layer, method for producing gas diffusion layer, and slurry used for production of gas diffusion layer
JP2011049179A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and gas diffusion electrode substrate
JP5301394B2 (en) Substrate for gas diffusion electrode, method for producing the same, and membrane-electrode assembly
JP2011038032A (en) Conductive water repellent material and water repellent gas diffusion electrode
JP4959946B2 (en) Solid polymer fuel cell, membrane-electrode assembly, and gas diffusion electrode substrate
WO2014174973A1 (en) Gas diffusion electrode body, method for manufacturing same, membrane electrode assembly for fuel cell using same, and fuel cell
JP2011124050A (en) Slurry for gas diffusion electrode base material
JP5426830B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly using the same, method for producing the same, and polymer electrolyte fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113