WO2014174973A1 - Gas diffusion electrode body, method for manufacturing same, membrane electrode assembly for fuel cell using same, and fuel cell - Google Patents

Gas diffusion electrode body, method for manufacturing same, membrane electrode assembly for fuel cell using same, and fuel cell Download PDF

Info

Publication number
WO2014174973A1
WO2014174973A1 PCT/JP2014/058694 JP2014058694W WO2014174973A1 WO 2014174973 A1 WO2014174973 A1 WO 2014174973A1 JP 2014058694 W JP2014058694 W JP 2014058694W WO 2014174973 A1 WO2014174973 A1 WO 2014174973A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
catalyst
electrode body
diffusion electrode
fuel cell
Prior art date
Application number
PCT/JP2014/058694
Other languages
French (fr)
Japanese (ja)
Inventor
圭 小野
慎二 宮川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014174973A1 publication Critical patent/WO2014174973A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a gas diffusion electrode body, a manufacturing method thereof, a membrane electrode assembly for a fuel cell using the same, and a fuel cell.
  • a fuel cell is a clean power generation system in which the product of an electrode reaction is water in principle and has almost no adverse effect on the global environment.
  • a polymer electrolyte fuel cell (PEFC) is expected as a power source for electric vehicles because it operates at a relatively low temperature.
  • the polymer electrolyte fuel cell has a structure in which a plurality of single cells that exhibit a power generation function are stacked.
  • This single cell includes a polymer-electrolyte membrane, a membrane-electrode assembly (MEA) having a pair of catalyst layers and a pair of gas diffusion layers (GDL) that are sequentially formed on both sides of the membrane. And MEA which each single cell has is electrically connected with MEA of an adjacent single cell through a separator.
  • MEA which each single cell has is electrically connected with MEA of an adjacent single cell through a separator.
  • a fuel cell stack is comprised by laminating
  • the fuel cell stack functions as power generation means that can be used for various applications.
  • an electrolyte membrane in which a polymer solid electrolyte resin is contained in a porous pore portion of expanded porous polytetrafluoroethylene (ePTFE), and an electrode in which a gap between ePTFE is filled with an electrode catalyst and a polymer solid electrolyte
  • ePTFE expanded porous polytetrafluoroethylene
  • Patent Document 1 An MEA having the above is disclosed (for example, Patent Document 1). According to the above configuration, it is described that the electrolyte membrane is thinned, and the generated ions in the catalyst layer are rapidly moved, the gas diffusibility is good, and the reactivity and strength can be improved.
  • ePTFE has a problem that the distance between micronodules is short and the pore diameter is small, so that the material transportability is poor and the power generation performance is insufficient.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a gas diffusion electrode body having excellent material transportability.
  • the present inventors have found that the above-mentioned problems can be solved by including a polymer electrolyte and an electrode catalyst in a non-conductive nonwoven fabric or woven fabric.
  • FIG. 1 is a polymer electrolyte fuel cell (PEFC); 2 is a solid polymer electrolyte membrane; 3a is an anode gas diffusion electrode body; 3c is a cathode gas diffusion electrode body; 8a is an anode separator; 8c is a cathode separator; 9a is an anode gas flow path; 9c is a cathode gas flow path; 10 is an MEA; and 11 is a refrigerant flow path.
  • PEFC polymer electrolyte fuel cell
  • 2 is a solid polymer electrolyte membrane
  • 3a is an anode gas diffusion electrode body
  • 3c is a cathode gas diffusion electrode body
  • 8a is an anode separator
  • 8c is a cathode separator
  • 9a is an anode gas flow path
  • 9c is a cathode gas flow path
  • 10 is an MEA
  • 11 is a refrigerant flow path.
  • the gas diffusion electrode body of the present invention is characterized in that a polymer electrolyte and an electrode catalyst are held in a nonconductive nonwoven fabric or woven fabric. Since the non-conductive nonwoven fabric or woven fabric is a continuous porous structure in which pores are continuously present, the ratio of the pores is higher than the conventional one. For this reason, the gas diffusion electrode body which uses a nonelectroconductive nonwoven fabric or a textile fabric can improve substance transportability (for example, gas diffusion property). The pores of the non-conductive nonwoven fabric or woven fabric have a size that can pass through the polymer electrolyte and the electrode catalyst.
  • the gas diffusion electrode body can ensure sufficient conductivity. Therefore, the fuel cell using the gas diffusion electrode body is excellent in power generation performance.
  • the non-woven fabric or the woven fabric is non-conductive, the range of materials that can be used is widened.
  • the gas diffusion electrode body also functions as a catalyst layer. Therefore, the gas diffusion electrode body of the present invention can fulfill both functions of the catalyst layer and the gas diffusion layer in one layer. For this reason, size reduction of a fuel cell can also be achieved by using the gas diffusion electrode body of the present invention.
  • the present invention also provides a fuel cell membrane electrode assembly having the gas diffusion electrode assembly of the present invention and a fuel cell including the fuel cell membrane electrode assembly.
  • the membrane electrode assembly for a fuel cell of the present invention can ensure sufficient material transportability by using a non-conductive nonwoven fabric or woven fabric that can ensure a pore diameter as a base material of a gas diffusion electrode body. For this reason, the fuel cell using a gas diffusion electrode body is excellent in power generation performance.
  • the membrane electrode assembly is generally produced by a direct coating method or a transfer method.
  • MEA is produced by applying catalyst ink directly to a polymer electrolyte membrane and then drying.
  • this method has a problem that the solvent derived from the catalyst ink penetrates into the electrolyte membrane and the dimensional stability deteriorates.
  • the polymer electrolyte and the electrode catalyst are previously held on a non-conductive nonwoven fabric or woven fabric.
  • the MEA can be easily produced by pressing the gas diffusion electrode body on the electrolyte membrane, and the catalyst ink is not brought into contact with the electrolyte membrane, so that the dimensional stability of the electrolyte membrane (and hence MEA) can be improved.
  • an MEA is produced by hot pressing after sandwiching a polymer electrolyte membrane between two sheets of a catalyst ink coated and dried on a transfer substrate.
  • this method has problems such as a decrease in yield due to transfer failure during transfer processing, and generation of a transfer substrate as a discarded material.
  • the polymer electrolyte and the electrode catalyst are held in advance in a non-conductive nonwoven fabric or woven fabric.
  • a gas diffusion electrode body can be produced simply by immersing and drying a non-conductive nonwoven fabric or woven fabric in a solution containing a low-viscosity polymer electrolyte and an electrode catalyst. For this reason, the viscosity control of a solution and the thickener for raising a viscosity are unnecessary, and the special stirrer for making it high viscosity is also unnecessary.
  • the drying condition and the solvent type are limited.
  • the gas diffusion electrode body is manufactured and then pressure-bonded to the electrolyte membrane, the range of drying conditions and solvent selection is widened.
  • X to Y indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to a first embodiment of the present invention.
  • the PEFC 1 first has a polymer electrolyte membrane 2 and a pair of gas diffusion electrode bodies (anode gas diffusion electrode body 3a and cathode gas diffusion electrode body 3c) sandwiching the polymer electrolyte membrane 2.
  • the polymer electrolyte membrane 2 and the pair of gas diffusion electrode bodies (3a, 3c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
  • MEA membrane electrode assembly
  • MEA 10 is further sandwiched between a pair of separators (anode separator 8a and cathode separator 8c).
  • the separators (8 a, 8 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10.
  • the separator is generally used as a separator for an adjacent PEFC (not shown).
  • the MEAs are sequentially stacked via the separator to form a stack.
  • a gas seal portion is disposed between the separators (8a, 8c) and the polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC. In 1, these descriptions are omitted.
  • the separators (8a, 8c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
  • the protrusions seen from the MEA side of the separators (8a, 8c) are in contact with the MEA10. Thereby, the electrical connection with MEA10 is ensured.
  • a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (8a, 8c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path. Specifically, fuel gas (for example, hydrogen) is circulated through the gas flow path 9a of the anode separator 8a, and oxidant gas (for example, air) is circulated through the gas flow path 9c of the cathode separator 8c.
  • fuel gas for example, hydrogen
  • the recess viewed from the side opposite to the MEA side of the separators (8a, 8c) serves as a refrigerant flow path 11 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1.
  • the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
  • the separators (8a, 8c) are formed in an uneven shape.
  • the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
  • the gas diffusion electrode bodies (3a, 3c) function as both a catalyst layer and a gas diffusion layer. For this reason, a gas diffusion layer (GDL) (gas diffusion layer, fine porous layer) is not necessarily required separately. However, if necessary, the PEFC 1 has a gas diffusion layer (GDL) (gas diffusion substrate, fine porous layer) between the gas diffusion electrode bodies (3a, 3c) and the separators (8a, 8c). (MPL)) may be included separately.
  • GDL gas diffusion layer, fine porous layer
  • the gas diffusion electrode bodies (anode gas diffusion electrode body 3a and cathode gas diffusion electrode body 3c) of the present invention are arranged on both the cathode and anode sides.
  • the present invention is not limited to the above form. That is, the gas diffusion electrode body of the present invention may be disposed on at least one side of the cathode and the anode. Preferably, the gas diffusion electrode body of the present invention is disposed at least on the cathode side, and more preferably disposed on both the cathode and anode sides.
  • the gas diffusion electrode bodies are layers in which the battery reaction actually proceeds. Specifically, the oxidation reaction of hydrogen proceeds in the anode catalyst layer 3a, and the reduction reaction of oxygen proceeds in the cathode catalyst layer 3c. For this reason, ePTFE as described in the said patent document 1 is not included in the nonwoven fabric of this invention.
  • the gas diffusion electrode body has a structure in which a polymer electrolyte and an electrode catalyst are held in a non-conductive nonwoven fabric or woven fabric.
  • the gas diffusion electrode body has a structure in which a polymer electrolyte and an electrode catalyst are held by a non-conductive nonwoven fabric.
  • nonwoven fabric means a laminate of fibers.
  • the material constituting the nonconductive nonwoven fabric or woven fabric is not particularly limited as long as it is nonconductive.
  • glass, polymer resin fiber, cellulose and the like can be mentioned. Of these, glass and polymer resin fibers are preferred. Although it does not restrict
  • the said material may be used individually by 1 type, or may be used with the form of 2 or more types of mixtures. That is, the nonconductive nonwoven fabric or woven fabric is preferably formed from at least one selected from the group consisting of glass, polymer resin fibers, and cellulose.
  • the thickness of the non-conductive nonwoven fabric or woven fabric is not particularly limited. Specifically, the thickness of the non-conductive nonwoven fabric or woven fabric (when loaded with 19.6 kPa) is preferably 5 to 500 ⁇ m, more preferably 25 to 250 ⁇ m.
  • the size of the fibers constituting the nonconductive nonwoven fabric or woven fabric is not particularly limited. Specifically, the thickness (diameter) of the fiber is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 25 ⁇ m. If it is such a magnitude
  • the method for producing the nonconductive nonwoven fabric or woven fabric is not particularly limited.
  • the nonconductive nonwoven fabric can be produced by a dry method, a wet papermaking method, a spunbond method, or the like.
  • a nonelectroconductive textile fabric can be produced with a well-known weaving method.
  • the production conditions of the non-conductive nonwoven fabric or woven fabric are not particularly limited, but for example, the basis weight is preferably 1 to 50 g / m 2 , and more preferably 5 to 25 g / m 2 .
  • the density of the nonconductive nonwoven fabric or woven fabric is preferably 0.05 to 1.0 g / cm 3 , more preferably 0.1 to 0.4 g / cm 3 .
  • the non-conductive nonwoven fabric or woven fabric can obtain an appropriate porosity (for example, 60 to 97.5%).
  • porosity of a nonelectroconductive nonwoven fabric or a woven fabric is the said range, gas diffusibility and electroconductivity can be improved, ensuring intensity
  • the non-conductive nonwoven fabric or woven fabric preferably has pores of a size that can pass through the polymer electrolyte or the electrode catalyst, preferably the electrode catalyst.
  • an electrode catalyst especially conductive support
  • the size of the pores of the non-conductive non-woven fabric or woven fabric is not particularly limited as long as it can pass through the electrode catalyst.
  • the pore diameter of the non-conductive nonwoven fabric or woven fabric is preferably 1.2 to 100 times, more preferably 1.5 to 20 times, particularly preferably 2 to 5 times the average particle diameter of the electrode catalyst. is there. If the pores have such a size, a sufficient amount of electrode catalyst can be continuously arranged in the pores (in contact with each other), so that the gas diffusion electrode body has sufficient conductivity and catalytic activity. Can demonstrate.
  • the “particle size of the electrode catalyst” means the average secondary particle size of the electrode catalyst.
  • a value calculated as the median value of the particle diameter of the electrode catalyst observed with a laser diffraction / scattering particle size distribution analyzer is adopted.
  • the pore diameter of the non-conductive nonwoven fabric or woven fabric is preferably 100 ⁇ m or less, more preferably 1 to 50 ⁇ m, more preferably 5 to 25 ⁇ m, and particularly preferably 5 to 10 ⁇ m. . Within such a range, the strength of the gas diffusion electrode body can be sufficiently secured, and even in a fuel cell stack in which a plurality of MEAs are laminated, no hole is caused by local reverse cell reaction or deterioration.
  • the “pore diameter” of the non-conductive nonwoven fabric or woven fabric is an average pore diameter ( ⁇ m) calculated from the bubble point.
  • a non-conductive non-woven fabric or woven fabric (sample) is dipped in isopropyl alcohol for 10 minutes or more in advance, it is placed horizontally and attached to a test tank, and isopropyl alcohol is placed in the tank up to a height of 15 mm at the upper end of the sample. pour it up.
  • the air pressure inside the sample is gradually increased from zero, bubbles are first generated from the medium, and the air pressure when the bubbles are continuously generated is read with a manometer. Further increase the air flow rate, measure the air flow rate and air pressure, and continue until the rate of change of the air flow rate becomes almost constant.
  • the non-conductive nonwoven fabric or woven fabric may be a commercially available product.
  • a porous glass manufactured by Nippon Sheet Glass Co., Ltd., trade name: TGP-015A
  • a polymer nonwoven fabric manufactured by Sanki, trade name: Delpore P1001-20B
  • the like can be used.
  • the electrode catalyst is composed of a catalyst component and a conductive carrier (catalyst carrier) carrying the catalyst component.
  • the catalyst component used in the anode gas diffusion electrode body is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner.
  • the catalyst component used in the cathode gas diffusion electrode body is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner. Specifically, it may be selected from metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof. .
  • those containing at least platinum are preferably used in order to improve catalytic activity, poisoning resistance to carbon monoxide, heat resistance, and the like.
  • the composition of the alloy depends on the type of metal to be alloyed, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal to be alloyed with platinum is preferably 10 to 70 atomic%.
  • an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal.
  • the catalyst component used for the anode gas diffusion electrode body and the catalyst component used for the cathode gas diffusion electrode body can be appropriately selected from the above.
  • the descriptions of the catalyst components for the anode gas diffusion electrode body and the cathode gas diffusion electrode body have the same definition for both. Therefore, they are collectively referred to as “catalyst components”.
  • the catalyst components of the anode gas diffusion electrode body and the cathode gas diffusion electrode body do not have to be the same, and can be appropriately selected so as to exhibit the desired action as described above.
  • the shape and size of the catalyst component are not particularly limited, and the same shape and size as known catalyst components can be adopted.
  • the catalyst component may be granular, scale-like, or layered, but is preferably granular.
  • the average particle diameter of the catalyst particles is preferably 1 to 30 nm, more preferably 1 to 10 nm, still more preferably 1 to 5 nm, and particularly preferably 2 to 4 nm. When the average particle diameter of the catalyst particles is within such a range, the balance between the catalyst utilization rate related to the effective electrode area where the electrochemical reaction proceeds and the ease of loading can be appropriately controlled.
  • the “average particle diameter of the catalyst particles” in the present invention is the crystallite diameter determined from the half-value width of the diffraction peak of the catalyst component in X-ray diffraction, or the particle diameter of the catalyst component determined by a transmission electron microscope (TEM). It can be measured as an average value of.
  • the catalyst component described above is included in the catalyst ink as an electrode catalyst supported on a conductive carrier.
  • the conductive carrier functions as a carrier for supporting the above-described catalyst component and an electron conduction path involved in the transfer of electrons between the catalyst component and another member.
  • the conductive carrier may have any specific surface area for supporting the catalyst particles in a desired dispersed state and has sufficient electronic conductivity as a current collector.
  • the main component is carbon. Preferably there is.
  • “the main component is carbon” refers to containing a carbon atom as a main component, and is a concept including both a carbon atom only and a substantially carbon atom.
  • elements other than carbon atoms may be included in order to improve the characteristics of the fuel cell. Incidentally, being substantially composed of carbon atoms means that contamination of impurities of about 2 to 3% by weight or less is allowed.
  • conventionally known materials such as carbon black, graphite (including granular graphite), and expanded graphite can be appropriately employed.
  • carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent conductivity and a large specific surface area.
  • carbon particles commercially available products can be used, such as Vulcan XC-72, Vulcan P, Black Pearls 880, Black Pearls 1100, Black Pearls 1300, Black Pearls 2000, Regal 400, Lion Corporation Black EC, Oil Furnace Black such as # 3150 and # 3250 manufactured by Mitsubishi Chemical Corporation; Denka Black manufactured by Denki Kagaku Kogyo Co., and acetylene black such as acetylene black AB-6 manufactured by Denki Kagaku Kogyo Co., Ltd.
  • artificial graphite or carbon obtained from an organic compound such as activated carbon, natural graphite, pitch, coke, polyacrylonitrile, phenol resin, or furan resin may be used.
  • the conductive carrier may be used alone or in the form of a mixture of two or more.
  • the particle size of the conductive carrier is not particularly limited. Considering the relationship with the pore size of the non-conductive nonwoven fabric or woven fabric, the particle size (average primary particle size) of the conductive carrier is preferably 5 to 200 nm, and more preferably 10 to 100 nm. If it is such a range, an electroconductive support
  • the shape of the conductive carrier is not particularly limited, and may have any structure such as a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indefinite shape, a flake shape, and a spindle shape, but a granular shape is preferable.
  • the size of the conductive carrier can be measured by a known method. In this specification, unless otherwise specified, a statistically significant number of fields of view (for example, several to several tens of fields of view) using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) is used. ) The value calculated as the average value of the particle diameters (diameters) of the particles observed in the above is adopted.
  • the “particle diameter” means the maximum distance among the distances between any two points on the particle outline.
  • the BET specific surface area of the conductive carrier may be a specific surface area sufficient to support the catalyst component in a highly dispersed state, but is preferably 20 to 1600 m 2 / g, more preferably 80 to 1200 m 2 / g. Is good. When the specific surface area is in the above range, the catalyst component and the polymer electrolyte are sufficiently dispersed on the conductive support to obtain sufficient power generation performance, and the catalyst component and the polymer electrolyte can be sufficiently effectively used. .
  • the supported amount of the catalyst component is preferably 10 to 80% by weight, more preferably 30 to 70% by weight, based on the total amount of the electrode catalyst. Good.
  • the supported amount of the catalyst component is within such a range, the balance between the degree of dispersion of the catalyst component on the catalyst support and the catalyst performance can be appropriately controlled.
  • the amount of the catalyst component supported can be examined by inductively coupled plasma emission spectroscopy (ICP).
  • ICP inductively coupled plasma emission spectroscopy
  • the catalyst component can be supported on the conductive support by a known method.
  • a commercially available electrode catalyst may be used.
  • a platinum catalyst for example, trade name: TEC10E40E, TEC10E50E, TEC10E60TPM, TEC10E70TPM, TEC10V30E, TEC10V40E, TEC10V50E, etc.
  • a catalyst for example, trade names: TEC66E50, TEC61E54, TEC62E58, etc.
  • TEC66E50, TEC61E54, TEC62E58, etc. can be used.
  • the content (mg / cm 2 ) of the electrode catalyst per unit catalyst application area is not particularly limited, but in view of sufficient dispersibility of the catalyst on the carrier, power generation performance, etc., 0.01 to 1. 0 mg / cm 2 .
  • the platinum content per unit catalyst coating area is preferably 0.5 mg / cm 2 or less.
  • the use of expensive noble metal catalysts typified by platinum (Pt) and platinum alloys has become a high cost factor for fuel cells. Therefore, it is preferable to reduce the amount of expensive platinum used (platinum content) to the above range and reduce the cost.
  • the lower limit is not particularly limited as long as power generation performance is obtained, and is, for example, 0.01 mg / cm 2 or more.
  • the platinum content is 0.05 to 0.30 mg / cm 2 .
  • inductively coupled plasma emission spectroscopy is used for measurement (confirmation) of “catalyst (platinum) content per unit catalyst application area (mg / cm 2 )”.
  • a person skilled in the art can easily carry out a method of making the desired “catalyst (platinum) content per unit catalyst coating area (mg / cm 2 )”, and control the ink composition (catalyst concentration) and coating amount. You can adjust the amount.
  • the content of the electrode catalyst is not particularly limited.
  • the content of the electrode catalyst is preferably 2.5 to 40% by volume, more preferably 5 to 25% by volume with respect to the gas diffusion electrode body. With such an electrode catalyst content, a sufficient conductive path can be formed, and good material diffusibility is ensured, so that excellent performance can be exhibited.
  • the gas diffusion electrode body includes an ion conductive polymer electrolyte in addition to the electrode catalyst.
  • the polymer electrolyte is not particularly limited, and conventionally known knowledge can be referred to as appropriate.
  • the ion exchange resin which comprises the catalyst layer mentioned above can be used conveniently as a polymer electrolyte.
  • the polymer electrolyte held in the non-conductive nonwoven fabric or woven fabric together with the electrode catalyst is not particularly limited, and conventionally known knowledge can be referred to as appropriate.
  • Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
  • the fluoropolymer electrolyte include perfluorocarbon sulfonic acid polymers such as Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), and Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.).
  • Perfluorocarbon phosphonic acid polymer trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-perfluorocarbon sulfonic acid polymer, etc. Is mentioned.
  • hydrocarbon electrolytes include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfone.
  • the polymer electrolyte preferably contains a fluorine atom because it is excellent in heat resistance, chemical stability, and the like.
  • fluorine-based electrolytes such as Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • the said polymer electrolyte only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
  • the content of the polymer electrolyte is not particularly limited.
  • the content of the polymer electrolyte is preferably 1.0 to 30% by volume, more preferably 2.5 to 20% by volume with respect to the gas diffusion electrode body. With such an amount, the gas diffusion electrode body can exhibit sufficient ion conductivity and conductivity.
  • the mixing ratio of the polymer electrolyte and the electrode catalyst is not particularly limited.
  • the polymer electrolyte is arranged (blended) so as to be an electrode catalyst, preferably in a proportion of 0.1 to 2 parts by mass, more preferably 0.3 to 1.4 parts by mass with respect to 100 parts by weight of the electrode catalyst. To do. With such an amount, the gas diffusion electrode body can exhibit sufficient ion conductivity, conductivity and catalytic activity.
  • the gas diffusion electrode body is formed by holding a conductive carrier on a non-conductive nonwoven fabric or woven fabric, but may further contain other additives.
  • the additive is not particularly limited, and examples thereof include a dispersant, a dispersion aid, a water repellent, and a binding binder. These additives may be used alone or in combination of two or more.
  • the gas diffusion electrode body preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • Molecular materials; thermoplastic resins such as polyethylene and polypropylene are listed.
  • fluorine-based polymer materials are preferably used because of their excellent water repellency and corrosion resistance during electrode reaction.
  • the polymer electrolyte is a fluorine electrolyte
  • the polymer electrolyte can also act as a water repellent.
  • the content (addition amount) of the water repellent is not particularly limited.
  • other additives are preferably mixed in an amount of about 1 to 10 parts by weight with respect to 100 parts by weight of the conductive carrier. With such an amount, the gas diffusion electrode body satisfies both conductivity and water repellency.
  • the gas diffusion electrode body may further contain conductive carbon (no catalyst component supported).
  • conductive carbon no catalyst component supported.
  • the conductivity of the gas diffusion electrode body can be improved. For this reason, when the amount of the electrode catalyst is small, it is preferable to use conductive carbon for the purpose of ensuring conductivity.
  • the conductive carbon is not particularly limited, and conventionally known materials such as carbon black, graphite (including granular graphite), and expanded graphite can be appropriately employed.
  • carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent conductivity and a large specific surface area.
  • carbon particles commercially available products can be used, such as Vulcan XC-72, Vulcan P, Black Pearls 880, Black Pearls 1100, Black Pearls 1300, Black Pearls 2000, Regal 400, Lion Corporation Black EC, Oil Furnace Black such as # 3150 and # 3250 manufactured by Mitsubishi Chemical Corporation; Denka Black manufactured by Denki Kagaku Kogyo Co., and acetylene black such as acetylene black AB-6 manufactured by Denki Kagaku Kogyo Co., Ltd.
  • artificial graphite or carbon obtained from organic compounds such as natural graphite, pitch, coke, polyacrylonitrile, phenol resin, furan resin may be used.
  • the conductive carbon may be used alone or in the form of a mixture of two or more.
  • the size of the conductive carbon is not particularly limited, but is preferably a size that can pass through the pores of the non-conductive nonwoven fabric or woven fabric.
  • the conductive carbon is continuously arranged (in contact with each other) in the pores of the non-conductive nonwoven fabric or woven fabric to form a conductive path, thereby further improving the conductivity of the gas diffusion electrode body. it can.
  • the particle size (average primary particle size) of the conductive carbon is preferably 2 to 250 nm, and more preferably 10 to 100 nm.
  • the conductive carbon can be efficiently and continuously disposed in the pores of the non-conductive nonwoven fabric or woven fabric to ensure sufficient conductivity.
  • the shape of the conductive carbon is not particularly limited, and may be any structure such as a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indefinite shape, a flake shape, or a spindle shape, but a granular shape is preferable.
  • the size of the conductive carbon can be measured by a known method.
  • a statistically significant number of fields of view (for example, several to several tens of fields of view) using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) is used.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the value calculated as the average value of the particle diameters (diameters) of the particles observed in the above is adopted.
  • the “particle diameter” means the maximum distance among the distances between any two points on the particle outline.
  • the ratio of the average particle diameter of the conductive carbon to the pore diameter of the non-conductive nonwoven fabric or woven fabric is 1 / 2 to 1/100 times, more preferably 1/2 to 1/20 times, even more preferably 1/3 to 1/10 times, and particularly preferably 1/3 to 1/5 times. It is. With holes of such a size, a sufficient amount of conductive carbon can be arranged continuously (in contact with each other) in the holes. For this reason, since the continuous arrangement of the conductive carbon forms a conductive path, the conductivity of the gas diffusion electrode body can be further improved.
  • particle diameter of conductive carbon means the average secondary particle diameter of conductive carbon.
  • a value calculated as the median value of the particle diameter of the particles observed with a laser diffraction / scattering particle size distribution measuring apparatus is adopted.
  • the content of conductive carbon when the gas diffusion electrode body contains conductive carbon (non-supported catalyst component) is not particularly limited. Considering improvement in conductivity, the total content of the electrode catalyst and the conductive carbon is preferably 2.5 to 40% by volume, more preferably 5 to 30% by volume with respect to the gas diffusion electrode body. .
  • the content of the electrode catalyst is in the above range, a sufficient conductive path can be formed and good material diffusibility is ensured, so that excellent performance can be exhibited.
  • the amount of the electrode catalyst is excessive, which is not preferable from the viewpoint of cost. Even in such a case, the conductive carbon can act so as to complement the provision of conductivity by the electrode catalyst. For this reason, especially when there are few compounding quantities of an electrode catalyst, it is especially preferable from a viewpoint of electroconductivity provision to further arrange
  • the thickness of the gas diffusion electrode body is not particularly limited, but is preferably 5 to 500 ⁇ m, and more preferably 25 to 250 ⁇ m. If it is such thickness, since sufficient amount of a polymer electrolyte and an electrode catalyst can be hold
  • the gas diffusion electrode body may be provided on at least one of the cathode side and the anode side of the MEA, but it is preferably provided on both the cathode and the anode.
  • the method for producing the gas diffusion electrode body is not particularly limited as long as the polymer electrolyte and the electrode catalyst can be held on the non-conductive nonwoven fabric or woven fabric.
  • a method of applying a slurry containing a polymer electrolyte, an electrode catalyst and a solvent to a non-conductive nonwoven fabric or woven fabric and then drying; impregnating and drying the non-conductive nonwoven fabric or woven fabric in a catalyst ink containing an electrode catalyst and a solvent A method of impregnating and drying (heat treatment) an electrolyte ink containing a polymer electrolyte and a solvent after heat treatment; After impregnating and drying (heat treatment) a non-conductive nonwoven fabric or fabric in an electrolyte ink containing a polymer electrolyte and a solvent
  • a method of impregnating and drying (heat treatment) a catalyst ink containing an electrode catalyst and a solvent a method of impregnating and drying (heat treatment) a catalyst
  • the manufacturing method of the gas diffusion electrode body when the gas diffusion electrode body contains conductive carbon is not particularly limited.
  • a method in which an ink (slurry) containing a polymer electrolyte, an electrode catalyst, conductive carbon and a solvent is applied to a non-conductive nonwoven fabric or woven fabric and then dried (heat treatment); a polymer electrolyte, an electrode catalyst, a conductive carbon
  • the application method is not particularly limited, and known methods such as spray coating (spraying method), dip coating (dipping method), spin coating, bar coating, roll coating, and screen printing are similarly modified or appropriately modified. Can be applied. Preferably, an immersion method is applied.
  • the drying conditions are not particularly limited as long as the conductive carbon can be held in the non-conductive nonwoven fabric or woven fabric, but are preferably 200 ° C. or less from the viewpoint of time, energy cost, and mass production. That is, the present invention also includes dipping a non-conductive nonwoven fabric or woven fabric in a slurry containing a polymer electrolyte, an electrode catalyst and a solvent; and heat-treating the non-conductive nonwoven fabric or woven fabric after the immersion at a temperature of 200 ° C.
  • the manufacturing method of the gas diffusion electrode body of this invention which has is also provided.
  • the preferable form of the manufacturing method of the gas diffusion electrode body of this invention is demonstrated.
  • the present invention is not limited to the following form.
  • the form in which the gas diffusion electrode body contains conductive carbon will be described.
  • the catalyst ink containing an electrode catalyst and a solvent, and the electrolyte ink containing a polymer electrolyte and a solvent are collectively referred to as “ink”.
  • the solvent is not particularly limited and is appropriately selected depending on the type of polymer electrolyte, electrode catalyst, and conductive carbon.
  • the solvent include water, perfluorobenzene, dichloropentafluoropropane, methanol, ethanol, propanol, 2-propanol, cyclohexanol, and other petroleum solvents such as toluene.
  • the concentration of the polymer electrolyte in the electrolyte ink is not particularly limited. Specifically, the concentration (solid content concentration) of the polymer electrolyte in the ink is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight.
  • the concentration (solid content concentration) of the electrode catalyst in the catalyst ink is not particularly limited. Specifically, the concentration of the electrode catalyst in the ink is preferably 0.1 to 25% by weight, more preferably 0.25 to 10% by weight. If it is such a density
  • the conductive carbon concentration (solid content concentration) in the carbon ink is not particularly limited. Specifically, the concentration of conductive carbon in the ink is preferably 5 to 25% by weight, more preferably 10 to 20% by weight. If it is such a density
  • the ink may contain other additives in addition to at least one of a polymer electrolyte, an electrode catalyst and conductive carbon, and a solvent.
  • the additive is not particularly limited, and examples thereof include a dispersion aid, a dispersant, a water repellent, and a binder binder.
  • the addition amount of the additive is not particularly limited, and is appropriately selected in consideration of a desired effect (for example, dispersibility and water repellency of conductive carbon).
  • the additive is preferably added in an amount of about 1 to 10% by weight with respect to the total amount of polymer electrolyte, electrode catalyst, and conductive carbon contained in the same ink.
  • the ink may be dispersed while being subjected to ultrasonic treatment (ultrasonic dispersion treatment). Since the viscosity of the ink is lowered by such treatment, each component (polymer electrolyte, electrode catalyst, or conductive carbon) is not contained in the nonconductive nonwoven fabric or woven fabric when the nonconductive nonwoven fabric or woven fabric is immersed in the next step. It can penetrate more efficiently into the pores.
  • ultrasonic treatment ultrasonic dispersion treatment
  • the ink may contain a thickener.
  • the thickener that can be used in this case is not particularly limited, and a known thickener can be used. Examples thereof include glycerin, ethylene glycol (EG), polyvinyl alcohol (PVA), and propylene glycol (PG). Of these, propylene glycol (PG) is preferably used.
  • PG propylene glycol
  • the boiling point of the ink increases and the solvent evaporation rate decreases. For this reason, for example, the solvent evaporation rate in the applied ink is suppressed, and the occurrence of cracks (cracks) in the gas diffusion electrode body after the drying process can be suppressed / prevented.
  • the concentration of mechanical stress on the gas diffusion electrode body is relaxed, and as a result, the durability of the MEA can be improved.
  • the amount of the thickener added when the thickener is used is not particularly limited as long as it does not interfere with the above effect of the present invention, but is preferably 5 to 20 weight with respect to the total weight of the ink. %.
  • the dipping condition is a condition in which a sufficient amount of electrolyte and electrode catalyst and, if necessary, conductive carbon can be held in a non-conductive nonwoven fabric or woven fabric within a range that avoids volatilization and solidification of the solvent used and an increase in viscosity.
  • the immersion temperature is preferably 10 to 80 ° C., more preferably 20 to 40 ° C.
  • the immersion time is preferably 5 seconds to 15 minutes, more preferably 10 seconds to 5 minutes. In addition, you may repeat the said immersion process as needed.
  • the nonconductive nonwoven fabric or woven fabric is dried (heat treated).
  • the drying condition is such that the solvent is removed from the non-conductive nonwoven fabric or woven fabric and the conductive carbon is held on the surface and in the pores, so that a high temperature for baking (firing) is required as in the past. And not.
  • the drying temperature should just be the temperature which can remove a solvent, and changes with kinds of solvent to be used.
  • the drying temperature is 200 ° C. or less from the viewpoint of time and energy cost.
  • the drying temperature is preferably 60 to 200 ° C., more preferably 80 to 150 ° C.
  • the drying time is preferably 5 to 20 minutes, more preferably 2 to 10 minutes.
  • the above conditions can be particularly suitably applied when a low boiling point solvent such as water or ethanol is selected as the solvent. In consideration of mass production, it is preferable to select a low boiling point solvent such as water or ethanol as the solvent.
  • an air flow may be introduced into the drying furnace. By performing such an operation, it is possible to further shorten the drying time.
  • the gas diffusion electrode body can be produced at a low temperature and in a short time, which is very preferable from an industrial viewpoint.
  • you may repeat the said drying (heat processing) process as needed. By performing such an operation, more polymer electrolyte and electrode catalyst and, if necessary, conductive carbon can be held in the non-conductive nonwoven fabric or woven fabric.
  • the nonconductive nonwoven fabric or woven fabric after the immersion may be subjected to a water repellent treatment.
  • the water repellent treatment method is not particularly limited, but is preferably immersed in a solution containing the water repellent as described above from the viewpoint of ease of operation.
  • the solvent that can be used to prepare the water repellent solution is not particularly limited as long as it can dissolve the water repellent, and can be appropriately selected depending on the type of the water repellent. Examples thereof include water, alcohols such as perfluorobenzene, dichloropentafluoropropane, methanol and ethanol, and petroleum solvents such as toluene.
  • the concentration of the water repellent is not particularly limited. Specifically, the concentration (solid content concentration) of the water repellent in the water repellent solution is preferably 0.1 to 25% by weight, more preferably 1 to 5% by weight. With such a concentration, sufficient water repellency can be imparted to the gas diffusion electrode body.
  • the immersion conditions in the water repellent solution are not particularly limited as long as a sufficient amount of water repellency can be imparted to the gas diffusion electrode body, but in order to prevent volatilization of the solvent used for immersion, It is preferably performed at a temperature lower than 20 ° C. so that the solution does not thicken or coagulate.
  • the immersion temperature when an alcohol solution of a perfluorosulfonic acid polymer is used is preferably 10 to 60 ° C., more preferably 20 to 40 ° C.
  • the immersion time is preferably 2 seconds to 15 minutes, more preferably 5 seconds to 10 minutes.
  • an ultrasonic treatment in order to remove the bubble inside a gas diffusion electrode body, it is preferable to perform an ultrasonic treatment.
  • the gas diffusion electrode body is dried (heat treatment). That is, after immersion and before heat treatment, the nonconductive nonwoven fabric or woven fabric after immersion may be subjected to water repellent treatment. Thereby, a gas diffusion electrode body with further improved water repellency can be obtained.
  • drying conditions should just remove a solvent, and change with kinds of solvent to be used.
  • the drying temperature is 200 ° C. or less, preferably 40 to 200 ° C., more preferably 80 to 150 ° C.
  • the drying time is preferably 30 seconds to 20 minutes, more preferably 3 minutes to 15 minutes.
  • the gas diffusion layer can be produced at a low temperature and in a short time, which is very preferable from an industrial viewpoint.
  • the polymer electrolyte membrane 2 has a function of selectively transmitting protons generated on the anode side (anode gas diffusion electrode body) during operation of the PEFC 1 to the cathode side (cathode gas diffusion electrode body) along the film thickness direction. Have.
  • the solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the polymer electrolyte membrane 2 is roughly classified into a fluorine-based polymer electrolyte membrane and a hydrocarbon-based polymer electrolyte membrane depending on the type of ion exchange resin that is a constituent material.
  • a fluorine-based polymer electrolyte membrane is preferably used, and particularly preferably a fluorine-based polymer electrolyte composed of a perfluorocarbon sulfonic acid-based polymer.
  • a molecular electrolyte membrane is used.
  • the hydrocarbon-based polymer electrolyte membrane has advantages in manufacturing such that the raw material is inexpensive, the manufacturing process is simple, and the material selectivity is high.
  • ion exchange resin As for the ion exchange resin mentioned above, only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
  • the thickness of the polymer electrolyte membrane may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited.
  • the thickness of the electrolyte layer is usually about 5 to 300 ⁇ m. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the membrane electrode assembly (MEA) may have a microporous layer (MPL) between the gas diffusion electrode body and the separator, if necessary.
  • MPL microporous layer
  • the microporous layer (MPL) is not particularly limited, but preferably has a large gas diffusion coefficient. By using such a microporous layer (MPL), the gas permeability can be further improved, and the power generation performance under dry and wet conditions can be more effectively achieved.
  • Such a microporous layer (MPL) is not particularly limited, but can be an aggregate of carbon particles containing a water repellent if necessary.
  • the carbon particles are not particularly limited, and conventionally known materials such as carbon black, graphite (including granular graphite), expanded graphite and the like can be appropriately employed.
  • carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • carbon particles commercially available products can be used, such as Vulcan XC-72, Vulcan P, Black Pearls 880, Black Pearls 1100, Black Pearls 1300, Black Pearls 2000, Regal 400, Lion Corporation Examples include black EC, oil furnace black such as # 3150 and # 3250 manufactured by Mitsubishi Chemical Corporation, and acetylene black such as Denka Black manufactured by Denki Kagaku Kogyo.
  • black EC oil furnace black such as # 3150 and # 3250 manufactured by Mitsubishi Chemical Corporation
  • acetylene black such as Denka Black manufactured by Denki Kagaku Kogyo.
  • artificial graphite or carbon obtained from organic compounds such as natural graphite, pitch, coke, polyacrylonitrile, phenol resin, furan resin may be used.
  • the above materials may be used alone or in the form of a mixture of two or more.
  • the particle size of the carbon particles is preferably about 10 to 100 nm.
  • the shape of the carbon particles is not particularly limited, and may take any structure such as a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indefinite shape, a flake shape, and a spindle shape.
  • the “particle diameter of the carbon particles” is an average secondary particle diameter of the carbon particles.
  • the measurement of the average secondary particle diameter of the carbon particles is performed by using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of the diameters shall be adopted.
  • the fine porous layer (MPL) preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, thermoplastic resins such as polyethylene and polypropylene. Of these, fluorine-based polymer materials are preferably used because of their excellent water repellency and corrosion resistance during electrode reaction.
  • the mixing ratio of the carbon particles to the water repellent may not be as good as the water repellent as expected when there are too many carbon particles. Conductivity may not be obtained. Considering these, the mixing ratio of the carbon particles and the water repellent in the microporous layer (MPL) is preferably about 90:10 to 40:60 in terms of weight ratio.
  • carbon particles may be bound by a binder.
  • the binder that can be used here include fluorine-based polymer materials such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • thermosetting resins such as phenol resin, melamine resin and polyamide resin
  • thermoplastic resins such as polypropylene and polyethylene. Note that the above-described water repellent and binder partially overlap. Therefore, a binder having water repellency is preferably used.
  • fluorine-based polymer materials are preferably used because of their excellent water repellency and corrosion resistance during electrode reaction, and polytetrafluoroethylene (PTFE) is particularly preferable.
  • PTFE polytetrafluoroethylene
  • these binders may be used individually by 1 type, or may be used together 2 or more types.
  • polymers other than these may be used.
  • the binder content is preferably 5 to 60% by weight, more preferably 10 to 50% by weight, and still more preferably 12 to 40% by weight with respect to the total weight of the microporous layer (MPL). A range is preferred. If the blending ratio of the binder is 5% by weight or more, the particles can be bonded well, and if it is 60% by weight or less, an increase in the electrical resistance of the microporous layer (MPL) can be prevented.
  • the thickness of the microporous layer (MPL) is not particularly limited, and may be appropriately determined in consideration of the characteristics of the gas diffusion electrode body.
  • the thickness of the microporous layer (MPL) is preferably 3 to 500 ⁇ m, more preferably 5 to 300 ⁇ m, still more preferably 10 to 150 ⁇ m, and particularly preferably 20 to 100 ⁇ m. Within such a range, the balance between mechanical strength and permeability such as gas and water can be appropriately controlled.
  • the membrane electrode assembly may have a gas diffusion layer base material between the gas diffusion electrode body and the separator, if necessary.
  • a gas diffusion layer base material and a microporous layer (MPL) are arrange
  • a gas diffusion layer base material is disposed on the separator side, and a microporous layer (MPL) is disposed on the gas diffusion electrode body side.
  • the gas diffusion layer base material is not particularly limited, and known materials can be used in the same manner.
  • carbon paper, carbon cloth such as carbon paper, carbon-made woven fabric, paper-like paper body, felt, non-woven sheet-like material having conductivity and porosity; and metal mesh, expanded metal, etching The thing which uses a plate as a base material etc. are mentioned.
  • the thickness of the substrate is not particularly limited and may be appropriately determined in consideration of desired characteristics, but may be about 30 to 500 ⁇ m. With such a thickness, sufficient mechanical strength and permeability such as gas and water can be secured.
  • the gas diffusion layer base material may contain a water repellent for the purpose of further improving water repellency and preventing a flooding phenomenon or the like.
  • the water repellent is not particularly limited, but fluorine-based such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include polymer materials, polypropylene, and polyethylene.
  • the water repellent treatment method is not particularly limited, and a general water repellent treatment method may be used. For example, after immersing the gas diffusion layer base material in a water repellent dispersion, a method of heating and drying in an oven or the like can be used.
  • a sheet body in which a porous body of polytetrafluoroethylene (PTFE) is impregnated with carbon particles and sintered can be used.
  • PTFE polytetrafluoroethylene
  • the manufacturing process is simplified, and handling and assembly when the members of the fuel cell are stacked are facilitated.
  • the gas diffusion layer substrate may not be subjected to water repellent treatment or may be subjected to hydrophilic treatment.
  • the method for forming the fine porous layer on the gas diffusion layer substrate is not particularly limited.
  • the ink is prepared by dispersing carbon particles, a water repellent, and the like in a solvent such as water, alcohol solvents such as perfluorobenzene, dichloropentafluoropropane, methanol, and ethanol.
  • the ink may be applied on a gas diffusion layer substrate and dried, or the ink may be dried and pulverized to form a powder, which is then applied onto the gas diffusion layer.
  • heat treatment is preferably performed at about 250 to 400 ° C. using a muffle furnace or a firing furnace. Or you may use the commercial item by which the fine porous layer was previously formed on the gas diffusion layer base material.
  • a method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used. For example, a method in which two gas diffusion electrode bodies are arranged on an electrolyte membrane and bonded can be used.
  • the joining conditions are not particularly limited, and may be appropriately adjusted depending on the type of electrolyte (perfluorosulfonic acid type or hydrocarbon type) in the electrolyte membrane or the gas diffusion electrode.
  • the separator has a function of electrically connecting cells in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack.
  • the separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other.
  • each of the separators is preferably provided with a gas flow path and a cooling flow path.
  • a material constituting the separator conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation.
  • the thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
  • the type of the fuel cell is not particularly limited.
  • the polymer electrolyte fuel cell (PEFC) has been described as an example.
  • an alkaline fuel cell a direct methanol fuel is used.
  • Examples include batteries and micro fuel cells.
  • a polymer electrolyte fuel cell is preferable because it is small in size, and can achieve high density and high output.
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
  • the fuel cell is particularly useful for an automobile application in which system start / stop and output fluctuation frequently occur. It can be particularly preferably used.
  • the manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
  • the fuel used when operating the fuel cell is not particularly limited.
  • hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used.
  • hydrogen and methanol are preferably used in that high output is possible.
  • a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage.
  • the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
  • the PEFC and membrane electrode assembly described above use a gas diffusion electrode body that is excellent in material transportability (for example, gas diffusibility), catalytic activity, and conductivity. Therefore, the PEFC and the membrane electrode assembly exhibit excellent power generation performance.
  • the carbon ink has a low viscosity, and has properties suitable for the porous body impregnation in the next step.
  • this carbon ink was measured with a laser diffraction / scattering particle size distribution analyzer (Microtrap MT3000), a dispersion having a median value (average secondary particle diameter of conductive carbon) of 2.2 ⁇ m was obtained.
  • platinum-supporting carbon As an electrode catalyst at a weight ratio of 160 to 1, and ultrasonic dispersion was performed for 30 minutes. This was mixed for 5 minutes with a kneading apparatus (trade name: Nertaro, manufactured by Shinky Co., Ltd.) to obtain a mixed dispersion of electrode catalyst / water.
  • a kneading apparatus trade name: Nertaro, manufactured by Shinky Co., Ltd.
  • the contents of the conductive carbon, electrode catalyst and electrolyte in the gas diffusion electrode body thus obtained were 5.68% by volume, 7.40% by volume and 5.29% by volume, respectively.
  • the gas diffusion electrode body contained 0.7 parts by weight of the polymer electrolyte with respect to 100 parts by weight of the electrode catalyst.
  • the thickness of the gas diffusion electrode body was 230 ⁇ m.
  • the MEA (1) thus obtained was subjected to power generation test evaluation under the following conditions. Under the following conditions, the load current density was swept in the range of 0 to 1.9 A / cm 2 , an IV curve was obtained, and the voltage value at 0.5 A / cm 2 was measured. The power generation performance was shown.
  • Comparative Example 1 (Production of catalyst layer) Platinum-supported carbon, water, and NPA (1-propanol) were put in a sand grinder (manufactured by Imex) and pulverized, and an electrolyte solution was further added to prepare a catalyst ink.
  • the obtained catalyst ink had a composition of 4.5% by weight of platinum-supported carbon, 16.5% by weight of electrolyte, 31.5% by weight of water, and 47.5% by weight of NPA (1-propanol).
  • TEC10E50E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.
  • the obtained catalyst ink was spray-coated on one side of a polytetrafluoroethylene sheet and dried at 130 ° C. for 15 minutes to produce anode and cathode catalyst layers.
  • the coating layer on the polytetrafluoroethylene sheet was adjusted so that the Pt amount was 0.32 mg / cm 2 .
  • Gaskets manufactured by Teijin Dupont, Teonex, thickness: 25 ⁇ m (adhesive layer: 10 ⁇ m) were arranged around both surfaces of the electrolyte membrane.
  • an electrolyte membrane manufactured by DuPont, Nafion (registered trademark) NR211, thickness: 25 ⁇ m
  • the anode catalyst layer (fuel cell electrode) and the cathode catalyst layer (fuel cell electrode) prepared above are formed on the exposed portion of the electrolyte membrane (working area: 25 cm 2 (5.0 cm ⁇ 5.0 cm)).
  • the formed PTFE (polytetrafluoroethylene) sheets were respectively arranged to form a laminate. After applying a pressure of 0.8 MPa to this laminate, the electrolyte membrane and each fuel cell electrode were brought into close contact with each other, heated at 150 ° C. for 10 minutes, and after joining the electrolyte membrane and each fuel cell electrode, The PTFE sheet was peeled to produce a CCM. Using this CCM, a small power generation cell MEA (2) was produced.
  • the cell voltage (Cell voltage) at a current density of 0.3 A / cm 2 under the following conditions: And resistance were measured.
  • the cell voltages of the MEA (1) and (2) are 0.64 V and 0.66 V, respectively, and the MEA (1) of the present invention exhibits power generation performance equivalent to that of the conventional MEA (2). I understood.

Abstract

The present invention provides a gas diffusion electrode body excellent in substance transportation. The gas diffusion electrode body according to the present invention is configured by holding a polyelectrolyte and an electrode catalyst with a nonconductive nonwoven fabric or a woven fabric.

Description

ガス拡散電極体、その製造方法ならびにこれを用いる燃料電池用膜電極接合体および燃料電池GAS DIFFUSION ELECTRODE, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL USING THE SAME
 本発明は、ガス拡散電極体、その製造方法ならびにこれを用いる燃料電池用膜電極接合体および燃料電池に関する。 The present invention relates to a gas diffusion electrode body, a manufacturing method thereof, a membrane electrode assembly for a fuel cell using the same, and a fuel cell.
 近年、エネルギー・環境問題を背景とした社会的要求や動向と呼応して、常温でも作動して高出力密度が得られる燃料電池が電気自動車用電源、定置型電源として注目されている。燃料電池は、電極反応による生成物が原理的に水であり、地球環境への悪影響がほとんどないクリーンな発電システムである。特に、固体高分子形燃料電池(PEFC)は、比較的低温で作動することから、電気自動車用電源として期待されている。固体高分子形燃料電池は、発電機能を発揮する複数の単セルが積層された構造を有する。この単セルは、高分子電解質膜、当該膜の両面に順次形成される一対の触媒層および一対のガス拡散層(GDL)を有する膜-電極接合体(MEA)を備える。そして、個々の単セルが有するMEAは、セパレータを介して隣接する単セルのMEAと電気的に接続される。このようにして単セルが積層されることにより、燃料電池スタックが構成される。そして、この燃料電池スタックは、種々の用途に使用可能な発電手段として機能する。 In recent years, in response to social demands and trends against the background of energy and environmental problems, fuel cells that can operate at room temperature and obtain high output density have attracted attention as power sources for electric vehicles and stationary power sources. A fuel cell is a clean power generation system in which the product of an electrode reaction is water in principle and has almost no adverse effect on the global environment. In particular, a polymer electrolyte fuel cell (PEFC) is expected as a power source for electric vehicles because it operates at a relatively low temperature. The polymer electrolyte fuel cell has a structure in which a plurality of single cells that exhibit a power generation function are stacked. This single cell includes a polymer-electrolyte membrane, a membrane-electrode assembly (MEA) having a pair of catalyst layers and a pair of gas diffusion layers (GDL) that are sequentially formed on both sides of the membrane. And MEA which each single cell has is electrically connected with MEA of an adjacent single cell through a separator. Thus, a fuel cell stack is comprised by laminating | stacking a single cell. The fuel cell stack functions as power generation means that can be used for various applications.
 従来、延伸多孔質ポリテトラフルオロエチレン(ePTFE)の多孔質空孔部に高分子固体電解質樹脂が含有されてなる電解質膜およびePTFEの空隙中に電極触媒及び高分子固体電解質を充填してなる電極を有するMEAが開示される(例えば、特許文献1)。上記構成によると、電解質膜を薄膜化し、さらに触媒層における生成イオンの移動が速やかに行われ、ガス拡散性が良く、反応性及び強度を向上できることが記載される。 Conventionally, an electrolyte membrane in which a polymer solid electrolyte resin is contained in a porous pore portion of expanded porous polytetrafluoroethylene (ePTFE), and an electrode in which a gap between ePTFE is filled with an electrode catalyst and a polymer solid electrolyte An MEA having the above is disclosed (for example, Patent Document 1). According to the above configuration, it is described that the electrolyte membrane is thinned, and the generated ions in the catalyst layer are rapidly moved, the gas diffusibility is good, and the reactivity and strength can be improved.
特開平8-329962号公報JP-A-8-329962
 しかしながら、ePTFEでは微小結節間が短く空孔径が小さいため、物質輸送性に劣り、発電性能が不十分であるという問題がある。 However, ePTFE has a problem that the distance between micronodules is short and the pore diameter is small, so that the material transportability is poor and the power generation performance is insufficient.
 したがって、本発明は、上記事情を鑑みてなされたものであり、物質輸送性に優れるガス拡散電極体を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a gas diffusion electrode body having excellent material transportability.
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、非導電性不織布または織物に高分子電解質と電極触媒とを含ませることによって、上記課題を解決できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that the above-mentioned problems can be solved by including a polymer electrolyte and an electrode catalyst in a non-conductive nonwoven fabric or woven fabric.
本発明の第一の実施形態に係る固体高分子形燃料電池(PEFC)の基本構成を示す概略図である。図1中、1は固体高分子形燃料電池(PEFC)を;2は固体高分子電解質膜を;3aはアノードガス拡散電極体を;3cはカソードガス拡散電極体を;8aはアノードセパレータを;8cはカソードセパレータを;9aはアノードガス流路を;9cはカソードガス流路を;10はMEAを;11は冷媒流路を、それぞれ、示す。It is the schematic which shows the basic composition of the polymer electrolyte fuel cell (PEFC) which concerns on 1st embodiment of this invention. In FIG. 1, 1 is a polymer electrolyte fuel cell (PEFC); 2 is a solid polymer electrolyte membrane; 3a is an anode gas diffusion electrode body; 3c is a cathode gas diffusion electrode body; 8a is an anode separator; 8c is a cathode separator; 9a is an anode gas flow path; 9c is a cathode gas flow path; 10 is an MEA; and 11 is a refrigerant flow path.
 本発明のガス拡散電極体は、高分子電解質および電極触媒を非導電性不織布または織物に保持してなることを特徴とする。非導電性不織布または織物は、空孔が連続的に存在する連続多孔構造体であるため、空孔の割合が従来に比べて高い。このため、非導電性不織布または織物を用いてなるガス拡散電極体は、物質輸送性(例えば、ガス拡散性)を向上できる。また、非導電性不織布または織物の空孔は高分子電解質や電極触媒を通過できる大きさを有する。このため、不織布または織物が非導電性であっても、これらの材料が空孔内に連続的に配置されて導電パスを形成するので、ガス拡散電極体は十分な導電性を確保できる。ゆえに、ガス拡散電極体を用いる燃料電池は、発電性能に優れる。また、不織布または織物が非導電性であることによって、使用できる材料の選択の幅が広がる。さらに、非導電性不織布または織物に高分子電解質および電極触媒を保持するため、ガス拡散電極体は触媒層としても機能する。ゆえに、本発明のガス拡散電極体は、触媒層およびガス拡散層双方の機能を一層の形態で果たすことができる。このため、本発明のガス拡散電極体を用いることによって、燃料電池の小型化を達成することもできる。 The gas diffusion electrode body of the present invention is characterized in that a polymer electrolyte and an electrode catalyst are held in a nonconductive nonwoven fabric or woven fabric. Since the non-conductive nonwoven fabric or woven fabric is a continuous porous structure in which pores are continuously present, the ratio of the pores is higher than the conventional one. For this reason, the gas diffusion electrode body which uses a nonelectroconductive nonwoven fabric or a textile fabric can improve substance transportability (for example, gas diffusion property). The pores of the non-conductive nonwoven fabric or woven fabric have a size that can pass through the polymer electrolyte and the electrode catalyst. For this reason, even if the nonwoven fabric or the woven fabric is non-conductive, these materials are continuously arranged in the pores to form a conductive path, so that the gas diffusion electrode body can ensure sufficient conductivity. Therefore, the fuel cell using the gas diffusion electrode body is excellent in power generation performance. In addition, since the non-woven fabric or the woven fabric is non-conductive, the range of materials that can be used is widened. Furthermore, since the polymer electrolyte and the electrode catalyst are held in the nonconductive nonwoven fabric or woven fabric, the gas diffusion electrode body also functions as a catalyst layer. Therefore, the gas diffusion electrode body of the present invention can fulfill both functions of the catalyst layer and the gas diffusion layer in one layer. For this reason, size reduction of a fuel cell can also be achieved by using the gas diffusion electrode body of the present invention.
 したがって、本発明は、本発明のガス拡散電極体を有する燃料電池用膜電極接合体および当該燃料電池用膜電極接合体を含む燃料電池をも提供する。本発明の燃料電池用膜電極接合体は、空孔径が確保できる非導電性不織布または織物をガス拡散電極体の基材として用いることによって十分な物質輸送性を確保できる。このため、ガス拡散電極体を用いてなる燃料電池は発電性能に優れる。 Therefore, the present invention also provides a fuel cell membrane electrode assembly having the gas diffusion electrode assembly of the present invention and a fuel cell including the fuel cell membrane electrode assembly. The membrane electrode assembly for a fuel cell of the present invention can ensure sufficient material transportability by using a non-conductive nonwoven fabric or woven fabric that can ensure a pore diameter as a base material of a gas diffusion electrode body. For this reason, the fuel cell using a gas diffusion electrode body is excellent in power generation performance.
 また、膜電極接合体(MEA)は、一般的に、直接塗布法または転写法によって作製される。直接塗布法は、触媒インクを高分子電解質膜に直接塗布した後乾燥することによりMEAを作製する。しかし、この方法では、電解質膜に触媒インク由来の溶剤が浸透し寸法安定性が悪化するなどの問題がある。これに対して、本発明のガス拡散電極体では、予め高分子電解質および電極触媒を非導電性不織布または織物に保持する。このため、このガス拡散電極体を電解質膜に圧着することによってMEAを容易に作製でき、触媒インクを電解質膜と接触させないため、電解質膜(ゆえに、MEA)の寸法安定性を向上できる。また、転写法は、触媒インクを転写基材上に塗布・乾燥したもの2枚で高分子電解質膜を挟持した後、ホットプレスすることによりMEAを作製する。しかし、この方法では、転写処理時の転写不良による歩留まりが低下する、転写基材が捨て材として発生するなどの問題がある。これに対して、本発明のガス拡散電極体は、予め高分子電解質および電極触媒を非導電性不織布または織物に保持される。このため、転写工程が存在せず、上記転写法による問題が生じない。また、上記2方法では、触媒インクを塗布に適した高い粘度で調節する必要がある。しかし、粘度を高くすると、触媒インクが不安定な状態となり、経時的に触媒インクが分離するという問題がある。これに対して、下記に詳述するが、低粘度の高分子電解質および電極触媒を含む溶液に非導電性不織布または織物を浸漬、乾燥するだけで、ガス拡散電極体を製造できる。このため、溶液の粘度管理や粘度を高めるための増粘剤が不必要であり、高粘度にするための特別な攪拌機も不必要である。さらに、上記2方法では、電解質膜や転写基材の材質によって、乾燥条件や触媒インク調製用の溶剤の選定が重要であるため、乾燥条件や溶剤種限定される。これに対して、ガス拡散電極体を製造した後、電解質膜と圧着させるので、乾燥条件や溶剤の選定の幅が広がる。 Also, the membrane electrode assembly (MEA) is generally produced by a direct coating method or a transfer method. In the direct application method, MEA is produced by applying catalyst ink directly to a polymer electrolyte membrane and then drying. However, this method has a problem that the solvent derived from the catalyst ink penetrates into the electrolyte membrane and the dimensional stability deteriorates. On the other hand, in the gas diffusion electrode body of the present invention, the polymer electrolyte and the electrode catalyst are previously held on a non-conductive nonwoven fabric or woven fabric. For this reason, the MEA can be easily produced by pressing the gas diffusion electrode body on the electrolyte membrane, and the catalyst ink is not brought into contact with the electrolyte membrane, so that the dimensional stability of the electrolyte membrane (and hence MEA) can be improved. Also, in the transfer method, an MEA is produced by hot pressing after sandwiching a polymer electrolyte membrane between two sheets of a catalyst ink coated and dried on a transfer substrate. However, this method has problems such as a decrease in yield due to transfer failure during transfer processing, and generation of a transfer substrate as a discarded material. On the other hand, in the gas diffusion electrode body of the present invention, the polymer electrolyte and the electrode catalyst are held in advance in a non-conductive nonwoven fabric or woven fabric. For this reason, there is no transfer process, and there is no problem with the transfer method. In the above two methods, it is necessary to adjust the catalyst ink at a high viscosity suitable for application. However, when the viscosity is increased, there is a problem that the catalyst ink becomes unstable and the catalyst ink is separated over time. In contrast, as will be described in detail below, a gas diffusion electrode body can be produced simply by immersing and drying a non-conductive nonwoven fabric or woven fabric in a solution containing a low-viscosity polymer electrolyte and an electrode catalyst. For this reason, the viscosity control of a solution and the thickener for raising a viscosity are unnecessary, and the special stirrer for making it high viscosity is also unnecessary. Furthermore, in the above two methods, since it is important to select a drying condition and a solvent for preparing the catalyst ink depending on the material of the electrolyte membrane and the transfer substrate, the drying condition and the solvent type are limited. On the other hand, since the gas diffusion electrode body is manufactured and then pressure-bonded to the electrolyte membrane, the range of drying conditions and solvent selection is widened.
 以下、添付した図面を参照して本発明を適用した実施形態を説明する。なお、本発明は、以下の実施形態のみには制限されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, an embodiment to which the present invention is applied will be described with reference to the accompanying drawings. In addition, this invention is not restrict | limited only to the following embodiment. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」及び「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。 In the present specification, “X to Y” indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 まず、本形態のガス拡散電極体が適用され得る固体高分子形燃料電池の基本的な構成を、図面を用いて説明する。 First, a basic configuration of a polymer electrolyte fuel cell to which the gas diffusion electrode body of the present embodiment can be applied will be described with reference to the drawings.
 図1は、本発明の第一の実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC 1は、まず、高分子電解質膜2と、これを挟持する一対のガス拡散電極体(アノードガス拡散電極体3aおよびカソードガス拡散電極体3c)とを有する。このように、高分子電解質膜2および一対のガス拡散電極体(3a、3c)は、積層された状態で膜電極接合体(MEA)10を構成する。 FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to a first embodiment of the present invention. The PEFC 1 first has a polymer electrolyte membrane 2 and a pair of gas diffusion electrode bodies (anode gas diffusion electrode body 3a and cathode gas diffusion electrode body 3c) sandwiching the polymer electrolyte membrane 2. Thus, the polymer electrolyte membrane 2 and the pair of gas diffusion electrode bodies (3a, 3c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
 PEFC 1において、MEA 10はさらに、一対のセパレータ(アノードセパレータ8aおよびカソードセパレータ8c)により挟持されている。図1において、セパレータ(8a、8c)は、図示したMEA10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(8a、8c)と高分子電解質膜2との間や、PEFC1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。 In PEFC 1, MEA 10 is further sandwiched between a pair of separators (anode separator 8a and cathode separator 8c). In FIG. 1, the separators (8 a, 8 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10. However, in a fuel cell stack in which a plurality of MEAs are stacked, the separator is generally used as a separator for an adjacent PEFC (not shown). In other words, in the fuel cell stack, the MEAs are sequentially stacked via the separator to form a stack. In an actual fuel cell stack, a gas seal portion is disposed between the separators (8a, 8c) and the polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC. In 1, these descriptions are omitted.
 セパレータ(8a、8c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(8a、8c)のMEA側から見た凸部はMEA10と接触している。これにより、MEA10との電気的な接続が確保される。また、セパレータ(8a、8c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ8aのガス流路9aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ8cのガス流路9cには酸化剤ガス(例えば、空気など)を流通させる。 The separators (8a, 8c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment. The protrusions seen from the MEA side of the separators (8a, 8c) are in contact with the MEA10. Thereby, the electrical connection with MEA10 is ensured. In addition, a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (8a, 8c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path. Specifically, fuel gas (for example, hydrogen) is circulated through the gas flow path 9a of the anode separator 8a, and oxidant gas (for example, air) is circulated through the gas flow path 9c of the cathode separator 8c.
 一方、セパレータ(8a、8c)のMEA側とは反対の側から見た凹部は、PEFC1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路11とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。 On the other hand, the recess viewed from the side opposite to the MEA side of the separators (8a, 8c) serves as a refrigerant flow path 11 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1. . Further, the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
 なお、図1に示す実施形態においては、セパレータ(8a、8c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。 In the embodiment shown in FIG. 1, the separators (8a, 8c) are formed in an uneven shape. However, the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
 また、ガス拡散電極体(3a、3c)は、触媒層およびガス拡散層双方として機能する。このため、ガス拡散層(GDL)(ガス拡散層、微細多孔質層)を必ずしも別途必要としない。しかし、PEFC 1は、必要であれば、ガス拡散電極体(3a、3c)と、セパレータ(8a、8c)と、の間に、ガス拡散層(GDL)(ガス拡散基材、微細多孔質層(MPL))を別途有してもよい。 Further, the gas diffusion electrode bodies (3a, 3c) function as both a catalyst layer and a gas diffusion layer. For this reason, a gas diffusion layer (GDL) (gas diffusion layer, fine porous layer) is not necessarily required separately. However, if necessary, the PEFC 1 has a gas diffusion layer (GDL) (gas diffusion substrate, fine porous layer) between the gas diffusion electrode bodies (3a, 3c) and the separators (8a, 8c). (MPL)) may be included separately.
 また、図1では、本発明のガス拡散電極体(アノードガス拡散電極体3aおよびカソードガス拡散電極体3c)は、カソードおよびアノード双方の側で配置されている。しかし、本発明は上記形態で限定されない。すなわち、本発明のガス拡散電極体は、カソードおよびアノードの少なくとも一方の側に配置れされていればよい。好ましくは、本発明のガス拡散電極体は少なくともカソード側に配置され、カソードおよびアノード双方の側で配置されることがより好ましい。 In FIG. 1, the gas diffusion electrode bodies (anode gas diffusion electrode body 3a and cathode gas diffusion electrode body 3c) of the present invention are arranged on both the cathode and anode sides. However, the present invention is not limited to the above form. That is, the gas diffusion electrode body of the present invention may be disposed on at least one side of the cathode and the anode. Preferably, the gas diffusion electrode body of the present invention is disposed at least on the cathode side, and more preferably disposed on both the cathode and anode sides.
 [ガス拡散電極体]
 ガス拡散電極体(アノードガス拡散電極体3aおよびカソードガス拡散電極体3c)は、実際に電池反応が進行する層である。具体的には、アノード触媒層3aでは水素の酸化反応が進行し、カソード触媒層3cでは酸素の還元反応が進行する。このため、上記特許文献1に記載されるようなePTFEは、本発明の不織布には包含されない。
[Gas diffusion electrode body]
The gas diffusion electrode bodies (the anode gas diffusion electrode body 3a and the cathode gas diffusion electrode body 3c) are layers in which the battery reaction actually proceeds. Specifically, the oxidation reaction of hydrogen proceeds in the anode catalyst layer 3a, and the reduction reaction of oxygen proceeds in the cathode catalyst layer 3c. For this reason, ePTFE as described in the said patent document 1 is not included in the nonwoven fabric of this invention.
 ここで、ガス拡散電極体は、高分子電解質および電極触媒を非導電性不織布または織物に保持されてなる構造を有する。好ましくは、ガス拡散電極体は、高分子電解質および電極触媒を非導電性不織布に保持されてなる構造を有する。本明細書において、「不織布」とは、繊維を積層したものを意味する。 Here, the gas diffusion electrode body has a structure in which a polymer electrolyte and an electrode catalyst are held in a non-conductive nonwoven fabric or woven fabric. Preferably, the gas diffusion electrode body has a structure in which a polymer electrolyte and an electrode catalyst are held by a non-conductive nonwoven fabric. In this specification, “nonwoven fabric” means a laminate of fibers.
 非導電性不織布または織物を構成する材料は、非導電性であれば特に制限されない。例えば、ガラス、高分子樹脂繊維、セルロースなどが挙げられる。これらのうち、ガラス、高分子樹脂繊維が好ましい。高分子樹脂繊維としては、特に制限されないが、耐熱性、耐加水分解性の観点から、ポリプロピレン、ポリアミド、ポリイミド、ポリサルホン、ポリフェニレンサルファイドなどが好適に挙げられる。より好ましくは、コストの観点から、高分子樹脂繊維は、ポリアミド、ポリプロピレンである。上記材料は、1種単独で使用されてあるいは2種以上の混合物の形態で使用されてもよい。すなわち、非導電性不織布または織物は、ガラス、高分子樹脂繊維およびセルロースからなる群より選択される少なくとも一種から形成されることが好ましい。 The material constituting the nonconductive nonwoven fabric or woven fabric is not particularly limited as long as it is nonconductive. For example, glass, polymer resin fiber, cellulose and the like can be mentioned. Of these, glass and polymer resin fibers are preferred. Although it does not restrict | limit especially as a polymeric resin fiber, From a heat resistant and hydrolysis resistant viewpoint, a polypropylene, polyamide, a polyimide, polysulfone, polyphenylene sulfide etc. are mentioned suitably. More preferably, from the viewpoint of cost, the polymer resin fiber is polyamide or polypropylene. The said material may be used individually by 1 type, or may be used with the form of 2 or more types of mixtures. That is, the nonconductive nonwoven fabric or woven fabric is preferably formed from at least one selected from the group consisting of glass, polymer resin fibers, and cellulose.
 非導電性不織布または織物の厚みは、特に制限されない。具体的には、非導電性不織布または織物の厚み(19.6kPa荷重時)は、好ましくは5~500μmであり、より好ましくは25~250μmである。 The thickness of the non-conductive nonwoven fabric or woven fabric is not particularly limited. Specifically, the thickness of the non-conductive nonwoven fabric or woven fabric (when loaded with 19.6 kPa) is preferably 5 to 500 μm, more preferably 25 to 250 μm.
 また、非導電性不織布または織物を構成する繊維の大きさは、特に制限されない。具体的には、繊維の太さ(直径)は、好ましくは0.01~100μmであり、より好ましくは0.1~25μmである。このような大きさであれば、非導電性不織布または織物は適度な空孔の大きさ(空孔径)を有する。 Also, the size of the fibers constituting the nonconductive nonwoven fabric or woven fabric is not particularly limited. Specifically, the thickness (diameter) of the fiber is preferably 0.01 to 100 μm, more preferably 0.1 to 25 μm. If it is such a magnitude | size, a nonelectroconductive nonwoven fabric or textile fabric has a moderate hole size (hole diameter).
 非導電性不織布または織物の製造方法は、特に制限されない。例えば、非導電性不織布は、乾式法、湿式抄紙法、スパンボンド法等によって製造できる。また、非導電性織物は、公知の製織方法で作製されうる。ここで、非導電性不織布または織物の製造条件は、特に制限されないが、例えば、坪量は、1~50g/mであることが好ましく、5~25g/mであることがより好ましい。また、非導電性不織布または織物の密度は、0.05~1.0g/cmであることが好ましく、0.1~0.4g/cmであることがより好ましい。このような条件であれば、非導電性不織布または織物は、適度な空隙率(例えば、60~97.5%)を得ることができる。ここで、非導電性不織布または織物の空隙率が上記範囲であれば、強度を確保(形状を維持)しつつ、ガス拡散性及び導電性を向上できる。 The method for producing the nonconductive nonwoven fabric or woven fabric is not particularly limited. For example, the nonconductive nonwoven fabric can be produced by a dry method, a wet papermaking method, a spunbond method, or the like. Moreover, a nonelectroconductive textile fabric can be produced with a well-known weaving method. Here, the production conditions of the non-conductive nonwoven fabric or woven fabric are not particularly limited, but for example, the basis weight is preferably 1 to 50 g / m 2 , and more preferably 5 to 25 g / m 2 . The density of the nonconductive nonwoven fabric or woven fabric is preferably 0.05 to 1.0 g / cm 3 , more preferably 0.1 to 0.4 g / cm 3 . Under such conditions, the non-conductive nonwoven fabric or woven fabric can obtain an appropriate porosity (for example, 60 to 97.5%). Here, if the porosity of a nonelectroconductive nonwoven fabric or a woven fabric is the said range, gas diffusibility and electroconductivity can be improved, ensuring intensity | strength (a shape is maintained).
 上述したように、非導電性不織布または織物は、高分子電解質または電極触媒、好ましくは電極触媒を通過できる大きさの空孔を有することが好ましい。これにより、不織布または織物が非導電性であっても、電極触媒(特に導電性担体)が非導電性不織布または織物の空孔内に連続的に(相互に接触した状態で)配置される。この電極触媒の連続的な配置が導電パスを形成するので、ガス拡散電極体は十分な導電性を確保できる。また、電極触媒はガス拡散電極体中に均一に存在するため、ガス拡散電極体全体が高い触媒活性を示す。ここで、非導電性不織布または織物の空孔の大きさは、電極触媒を通過できる大きさであれば特に制限されない。非導電性不織布または織物の空孔径が、電極触媒の平均粒径の、好ましくは1.2~100倍であり、より好ましくは1.5~20倍であり、特に好ましくは2~5倍である。このような大きさの空孔であれば、十分量の電極触媒が空孔内に連続的に(相互に接触した状態で)配置できるため、ガス拡散電極体は十分な導電性および触媒活性を発揮できる。本明細書中、「電極触媒の粒子径」は、電極触媒の平均二次粒子径を意味する。ここで、電極触媒の平均二次粒子径の測定は、レーザー回折散乱式粒度分布測定装置で観察される電極触媒の粒子径のメジアン値として算出される値を採用するものとする。 As described above, the non-conductive nonwoven fabric or woven fabric preferably has pores of a size that can pass through the polymer electrolyte or the electrode catalyst, preferably the electrode catalyst. Thereby, even if a nonwoven fabric or a woven fabric is non-conductive, an electrode catalyst (especially conductive support | carrier) is arrange | positioned continuously (in the state mutually contacted) in the hole of a non-conductive nonwoven fabric or a woven fabric. Since the continuous arrangement of the electrode catalyst forms a conductive path, the gas diffusion electrode body can ensure sufficient conductivity. Moreover, since the electrode catalyst is uniformly present in the gas diffusion electrode body, the entire gas diffusion electrode body exhibits high catalytic activity. Here, the size of the pores of the non-conductive non-woven fabric or woven fabric is not particularly limited as long as it can pass through the electrode catalyst. The pore diameter of the non-conductive nonwoven fabric or woven fabric is preferably 1.2 to 100 times, more preferably 1.5 to 20 times, particularly preferably 2 to 5 times the average particle diameter of the electrode catalyst. is there. If the pores have such a size, a sufficient amount of electrode catalyst can be continuously arranged in the pores (in contact with each other), so that the gas diffusion electrode body has sufficient conductivity and catalytic activity. Can demonstrate. In the present specification, the “particle size of the electrode catalyst” means the average secondary particle size of the electrode catalyst. Here, for the measurement of the average secondary particle diameter of the electrode catalyst, a value calculated as the median value of the particle diameter of the electrode catalyst observed with a laser diffraction / scattering particle size distribution analyzer is adopted.
 または、非導電性不織布または織物の空孔径は、100μm以下であることが好ましく、1~50μmであることがより好ましく、5~25μmであることがより好ましく、5~10μmであることが特に好ましい。このような範囲であれば、ガス拡散電極体の強度を十分確保でき、複数のMEAが積層されてなる燃料電池スタックであっても、局部的な逆電池反応や劣化により穴開きが起こらない。本明細書において、非導電性不織布または織物の「空孔径」は、バブルポイントから算出した平均空孔径(μm)である。具体的には、非導電性不織布または織物(試料)を予め10分以上イソプロピルアルコールに浸した後、水平にして、試験用タンクに取り付け、タンク内にイソプロピルアルコールを上記試料の上端15mmの高さまで注ぐ。次に、試料内部の空気圧を零から徐々に増加し、メディアより最初に気泡(バブル)が発生し、その気泡が連続して発生する時の空気圧をマノメータにより読み取る。さらに空気流量を増し、空気流量と空気圧を測定し、空気流量の変化率がほぼ一定になるまで継続する。空気流量と空気圧の関係をグラフに表わし、初期の傾きの接線と終期傾きの接線から、交点のバブルポイント圧を読み取る。得られた交点バブルポイント圧より、平均空孔径を次式より算出する。 Alternatively, the pore diameter of the non-conductive nonwoven fabric or woven fabric is preferably 100 μm or less, more preferably 1 to 50 μm, more preferably 5 to 25 μm, and particularly preferably 5 to 10 μm. . Within such a range, the strength of the gas diffusion electrode body can be sufficiently secured, and even in a fuel cell stack in which a plurality of MEAs are laminated, no hole is caused by local reverse cell reaction or deterioration. In the present specification, the “pore diameter” of the non-conductive nonwoven fabric or woven fabric is an average pore diameter (μm) calculated from the bubble point. Specifically, after a non-conductive non-woven fabric or woven fabric (sample) is dipped in isopropyl alcohol for 10 minutes or more in advance, it is placed horizontally and attached to a test tank, and isopropyl alcohol is placed in the tank up to a height of 15 mm at the upper end of the sample. pour it up. Next, the air pressure inside the sample is gradually increased from zero, bubbles are first generated from the medium, and the air pressure when the bubbles are continuously generated is read with a manometer. Further increase the air flow rate, measure the air flow rate and air pressure, and continue until the rate of change of the air flow rate becomes almost constant. The relationship between the air flow rate and air pressure is shown in a graph, and the bubble point pressure at the intersection is read from the tangent of the initial slope and the tangent of the final slope. From the obtained intersection bubble point pressure, the average pore diameter is calculated from the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Dは、平均空孔径(μm)を表わし;Pは、交点バブルポイント圧(mmHO)を表す。 Here, D represents the average pore diameter (μm); P represents the intersection bubble point pressure (mmH 2 O).
 非導電性不織布または織物は、市販品であってもよい。例えば、ガラス多孔体(日本板硝子株式会社製、商品名:TGP-015A)、ポリマー不織布(三晶製、商品名:デルポアP1001-20B)などが使用できる。 The non-conductive nonwoven fabric or woven fabric may be a commercially available product. For example, a porous glass (manufactured by Nippon Sheet Glass Co., Ltd., trade name: TGP-015A), a polymer nonwoven fabric (manufactured by Sanki, trade name: Delpore P1001-20B) and the like can be used.
 また、電極触媒は、触媒成分および前記触媒成分を担持する導電性担体(触媒担体)から構成される。 The electrode catalyst is composed of a catalyst component and a conductive carrier (catalyst carrier) carrying the catalyst component.
 アノードガス拡散電極体に用いられる触媒成分は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソードガス拡散電極体に用いられる触媒成分もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属およびこれらの合金などから選択されうる。 The catalyst component used in the anode gas diffusion electrode body is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner. The catalyst component used in the cathode gas diffusion electrode body is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner. Specifically, it may be selected from metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof. .
 これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。前記合金の組成は、合金化する金属の種類にもよるが、白金の含有量を30~90原子%とし、白金と合金化する金属の含有量を10~70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノードガス拡散電極体に用いられる触媒成分およびカソードガス拡散電極体に用いられる触媒成分は、上記の中から適宜選択されうる。本明細書では、特記しない限り、アノードガス拡散電極体用およびカソードガス拡散電極体用の触媒成分についての説明は、両者について同様の定義である。よって、一括して「触媒成分」と称する。しかしながら、アノードガス拡散電極体およびカソードガス拡散電極体の触媒成分は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択されうる。 Among these, those containing at least platinum are preferably used in order to improve catalytic activity, poisoning resistance to carbon monoxide, heat resistance, and the like. Although the composition of the alloy depends on the type of metal to be alloyed, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal to be alloyed with platinum is preferably 10 to 70 atomic%. In general, an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties. The alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There is what is formed, and any may be used in the present application. At this time, the catalyst component used for the anode gas diffusion electrode body and the catalyst component used for the cathode gas diffusion electrode body can be appropriately selected from the above. In the present specification, unless otherwise specified, the descriptions of the catalyst components for the anode gas diffusion electrode body and the cathode gas diffusion electrode body have the same definition for both. Therefore, they are collectively referred to as “catalyst components”. However, the catalyst components of the anode gas diffusion electrode body and the cathode gas diffusion electrode body do not have to be the same, and can be appropriately selected so as to exhibit the desired action as described above.
 触媒成分の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが採用されうる。例えば、触媒成分の形状は、粒状、鱗片状、層状などのものが使用できるが、粒状であることが好ましい。この際、触媒粒子の平均粒子径は、好ましくは1~30nm、より好ましくは1~10nm、さらに好ましくは1~5nm、特に好ましくは2~4nmである。触媒粒子の平均粒子径がかような範囲内の値であると、電気化学反応が進行する有効電極面積に関連する触媒利用率と担持の簡便さとのバランスが適切に制御されうる。なお、本発明における「触媒粒子の平均粒子径」は、X線回折における触媒成分の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡(TEM)より調べられる触媒成分の粒子径の平均値として測定されうる。 The shape and size of the catalyst component are not particularly limited, and the same shape and size as known catalyst components can be adopted. For example, the catalyst component may be granular, scale-like, or layered, but is preferably granular. At this time, the average particle diameter of the catalyst particles is preferably 1 to 30 nm, more preferably 1 to 10 nm, still more preferably 1 to 5 nm, and particularly preferably 2 to 4 nm. When the average particle diameter of the catalyst particles is within such a range, the balance between the catalyst utilization rate related to the effective electrode area where the electrochemical reaction proceeds and the ease of loading can be appropriately controlled. The “average particle diameter of the catalyst particles” in the present invention is the crystallite diameter determined from the half-value width of the diffraction peak of the catalyst component in X-ray diffraction, or the particle diameter of the catalyst component determined by a transmission electron microscope (TEM). It can be measured as an average value of.
 上述した触媒成分は導電性担体に担持された電極触媒として触媒インクに含まれる。 The catalyst component described above is included in the catalyst ink as an electrode catalyst supported on a conductive carrier.
 導電性担体は、上述した触媒成分を担持するための担体、および触媒成分と他の部材との間での電子の授受に関与する電子伝導パスとして機能する。前記導電性担体としては、触媒粒子を所望の分散状態で担持させるための比表面積を有し、集電体として十分な電子導電性を有しているものであればよく、主成分がカーボンであるのが好ましい。なお、本発明において「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念である。場合によっては、燃料電池の特性を向上させるために、炭素原子以外の元素が含まれていてもよい。なお、実質的に炭素原子からなるとは、2~3重量%程度以下の不純物の混入が許容されることを意味する。具体的には、カーボンブラック、黒鉛(粒状黒鉛を含む)、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、導電性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。かようなカーボン粒子は、市販品を用いることができ、キャボット社製バルカンXC-72、バルカンP、ブラックパールズ880、ブラックパールズ1100、ブラックパールズ1300、ブラックパールズ2000、リーガル400、ライオン社製ケッチェンブラックEC、三菱化学社製#3150、#3250などのオイルファーネスブラック;電気化学工業社製デンカブラック、電気化学工業社製のアセチレンブラックAB-6などのアセチレンブラック等が挙げられる。また、カーボンブラックのほか、活性炭、天然の黒鉛、ピッチ、コークス、ポリアクリロニトリル、フェノール樹脂、フラン樹脂などの有機化合物から得られる人工黒鉛や炭素などであってもよい。また、耐食性などを向上させるために、前記カーボン粒子に黒鉛化処理などの加工を行ってもよい。この際、上記導電性担体は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。 The conductive carrier functions as a carrier for supporting the above-described catalyst component and an electron conduction path involved in the transfer of electrons between the catalyst component and another member. The conductive carrier may have any specific surface area for supporting the catalyst particles in a desired dispersed state and has sufficient electronic conductivity as a current collector. The main component is carbon. Preferably there is. In the present invention, “the main component is carbon” refers to containing a carbon atom as a main component, and is a concept including both a carbon atom only and a substantially carbon atom. In some cases, elements other than carbon atoms may be included in order to improve the characteristics of the fuel cell. Incidentally, being substantially composed of carbon atoms means that contamination of impurities of about 2 to 3% by weight or less is allowed. Specifically, conventionally known materials such as carbon black, graphite (including granular graphite), and expanded graphite can be appropriately employed. Among these, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent conductivity and a large specific surface area. As such carbon particles, commercially available products can be used, such as Vulcan XC-72, Vulcan P, Black Pearls 880, Black Pearls 1100, Black Pearls 1300, Black Pearls 2000, Regal 400, Lion Corporation Black EC, Oil Furnace Black such as # 3150 and # 3250 manufactured by Mitsubishi Chemical Corporation; Denka Black manufactured by Denki Kagaku Kogyo Co., and acetylene black such as acetylene black AB-6 manufactured by Denki Kagaku Kogyo Co., Ltd. In addition to carbon black, artificial graphite or carbon obtained from an organic compound such as activated carbon, natural graphite, pitch, coke, polyacrylonitrile, phenol resin, or furan resin may be used. Moreover, in order to improve corrosion resistance etc., you may process the said carbon particle, such as a graphitization process. In this case, the conductive carrier may be used alone or in the form of a mixture of two or more.
 導電性担体の粒径は、特に制限されない。上記非導電性不織布または織物の空孔径との関係を考慮すると、導電性担体の粒径(平均一次粒子径)は、5~200nmであることが好ましく、10~100nmであることがより好ましい。このような範囲であれば、導電性担体は非導電性不織布または織物の空孔内に効率よく連続的に配置して、十分な導電性及び触媒活性を確保できる。また、触媒成分を担体上に容易に担持でき、触媒利用率、ガス拡散電極体の厚みを適切な範囲で制御できる。なお、導電性担体の形状は特に限定されず、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状など任意の構造をとりうるが、粒状が好ましい。ここで、導電性担体の大きさは、公知の方法によって測定できる。本明細書では、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、統計学的に有意な数の視野(例えば、数~数十視野)中に観察される粒子の粒子径(直径)の平均値として算出される値を採用するものとする。また、「粒径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。 The particle size of the conductive carrier is not particularly limited. Considering the relationship with the pore size of the non-conductive nonwoven fabric or woven fabric, the particle size (average primary particle size) of the conductive carrier is preferably 5 to 200 nm, and more preferably 10 to 100 nm. If it is such a range, an electroconductive support | carrier can be arrange | positioned efficiently and continuously in the hole of a nonelectroconductive nonwoven fabric or a textile fabric, and can ensure sufficient electroconductivity and catalytic activity. Further, the catalyst component can be easily supported on the carrier, and the catalyst utilization rate and the thickness of the gas diffusion electrode body can be controlled within appropriate ranges. The shape of the conductive carrier is not particularly limited, and may have any structure such as a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indefinite shape, a flake shape, and a spindle shape, but a granular shape is preferable. Here, the size of the conductive carrier can be measured by a known method. In this specification, unless otherwise specified, a statistically significant number of fields of view (for example, several to several tens of fields of view) using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) is used. ) The value calculated as the average value of the particle diameters (diameters) of the particles observed in the above is adopted. The “particle diameter” means the maximum distance among the distances between any two points on the particle outline.
 前記導電性担体のBET比表面積は、触媒成分を高分散担持させるのに十分な比表面積であればよいが、好ましくは20~1600m/g、より好ましくは80~1200m/gとするのがよい。前記比表面積が上記したような範囲であれば、導電性担体への触媒成分および高分子電解質が十分分散して十分な発電性能が得られ、また、触媒成分および高分子電解質を十分有効利用できる。 The BET specific surface area of the conductive carrier may be a specific surface area sufficient to support the catalyst component in a highly dispersed state, but is preferably 20 to 1600 m 2 / g, more preferably 80 to 1200 m 2 / g. Is good. When the specific surface area is in the above range, the catalyst component and the polymer electrolyte are sufficiently dispersed on the conductive support to obtain sufficient power generation performance, and the catalyst component and the polymer electrolyte can be sufficiently effectively used. .
 前記導電性担体に触媒成分が担持された電極触媒において、触媒成分の担持量は、電極触媒の全量に対して、好ましくは10~80重量%、より好ましくは30~70重量%とするのがよい。触媒成分の担持量がかような範囲内の値であると、触媒担体上での触媒成分の分散度と触媒性能とのバランスが適切に制御されうる。なお、触媒成分の担持量は、誘導結合プラズマ発光分光法(ICP)によって調べることができる。ここで、導電性担体への触媒成分の担持は公知の方法で行うことができる。例えば、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法が使用できる。または、電極触媒は、市販品を用いてもよい。具体的には、田中貴金属工業(株)製の、白金触媒(例えば、商品名:TEC10E40E、TEC10E50E、TEC10E60TPM、TEC10E70TPM、TEC10V30E、TEC10V40E、TEC10V50Eなど)、田中貴金属工業(株)製の、白金・ルテニウム触媒(例えば、商品名:TEC66E50、TEC61E54、TEC62E58など)が使用できる。 In the electrode catalyst in which the catalyst component is supported on the conductive support, the supported amount of the catalyst component is preferably 10 to 80% by weight, more preferably 30 to 70% by weight, based on the total amount of the electrode catalyst. Good. When the supported amount of the catalyst component is within such a range, the balance between the degree of dispersion of the catalyst component on the catalyst support and the catalyst performance can be appropriately controlled. The amount of the catalyst component supported can be examined by inductively coupled plasma emission spectroscopy (ICP). Here, the catalyst component can be supported on the conductive support by a known method. For example, known methods such as impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used. Alternatively, a commercially available electrode catalyst may be used. Specifically, a platinum catalyst (for example, trade name: TEC10E40E, TEC10E50E, TEC10E60TPM, TEC10E70TPM, TEC10V30E, TEC10V40E, TEC10V50E, etc.) manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., platinum / ruthenium manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. A catalyst (for example, trade names: TEC66E50, TEC61E54, TEC62E58, etc.) can be used.
 また、単位触媒塗布面積当たりの電極触媒の含有量(mg/cm)は、特に制限されないが、十分な触媒の担体上での分散度、発電性能などを考慮すると、0.01~1.0mg/cmである。ただし、触媒が白金または白金含有合金を含む場合、単位触媒塗布面積当たりの白金含有量が0.5mg/cm以下であることが好ましい。白金(Pt)や白金合金に代表される高価な貴金属触媒の使用は燃料電池の高価格要因となっている。したがって、高価な白金の使用量(白金含有量)を上記範囲まで低減し、コストを削減することが好ましい。下限値は発電性能が得られる限り特に制限されず、例えば、0.01mg/cm以上である。より好ましくは、当該白金含有量は0.05~0.30mg/cmである。なお、本明細書において、「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」の測定(確認)には、誘導結合プラズマ発光分光法(ICP)を用いる。所望の「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」にせしめる方法も当業者であれば容易に行うことができ、インクの組成(触媒濃度)と塗布量を制御することで量を調整することができる。 Further, the content (mg / cm 2 ) of the electrode catalyst per unit catalyst application area is not particularly limited, but in view of sufficient dispersibility of the catalyst on the carrier, power generation performance, etc., 0.01 to 1. 0 mg / cm 2 . However, when the catalyst contains platinum or a platinum-containing alloy, the platinum content per unit catalyst coating area is preferably 0.5 mg / cm 2 or less. The use of expensive noble metal catalysts typified by platinum (Pt) and platinum alloys has become a high cost factor for fuel cells. Therefore, it is preferable to reduce the amount of expensive platinum used (platinum content) to the above range and reduce the cost. The lower limit is not particularly limited as long as power generation performance is obtained, and is, for example, 0.01 mg / cm 2 or more. More preferably, the platinum content is 0.05 to 0.30 mg / cm 2 . In this specification, inductively coupled plasma emission spectroscopy (ICP) is used for measurement (confirmation) of “catalyst (platinum) content per unit catalyst application area (mg / cm 2 )”. A person skilled in the art can easily carry out a method of making the desired “catalyst (platinum) content per unit catalyst coating area (mg / cm 2 )”, and control the ink composition (catalyst concentration) and coating amount. You can adjust the amount.
 または、電極触媒の含有量は、特に制限されない。電極触媒の含有量は、ガス拡散電極体に対して、好ましくは2.5~40体積%、より好ましくは5~25体積%である。このような電極触媒の含有量であれば、十分な導電パスが形成でき、良好な物質拡散性が確保するため、優れた性能を発揮できる。 Or, the content of the electrode catalyst is not particularly limited. The content of the electrode catalyst is preferably 2.5 to 40% by volume, more preferably 5 to 25% by volume with respect to the gas diffusion electrode body. With such an electrode catalyst content, a sufficient conductive path can be formed, and good material diffusibility is ensured, so that excellent performance can be exhibited.
 ガス拡散電極体は、電極触媒に加えて、イオン伝導性の高分子電解質を含む。当該高分子電解質は特に限定されず従来公知の知見が適宜参照されうる。例えば、上述した触媒層を構成するイオン交換樹脂が、高分子電解質として好適に使用できる。 The gas diffusion electrode body includes an ion conductive polymer electrolyte in addition to the electrode catalyst. The polymer electrolyte is not particularly limited, and conventionally known knowledge can be referred to as appropriate. For example, the ion exchange resin which comprises the catalyst layer mentioned above can be used conveniently as a polymer electrolyte.
 また、電極触媒と共に非導電性不織布または織物に保持される高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。フッ素系高分子電解質としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。また、炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。これらのうち、高分子電解質は、耐熱性、化学的安定性などに優れることから、フッ素原子を含むのが好ましい。特に、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)などのフッ素系電解質が好ましく挙げられる。上記高分子電解質は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。 In addition, the polymer electrolyte held in the non-conductive nonwoven fabric or woven fabric together with the electrode catalyst is not particularly limited, and conventionally known knowledge can be referred to as appropriate. Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material. Examples of the fluoropolymer electrolyte include perfluorocarbon sulfonic acid polymers such as Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), and Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.). , Perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-perfluorocarbon sulfonic acid polymer, etc. Is mentioned. Specific examples of hydrocarbon electrolytes include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfone. Polyether ether ketone (S-PEEK), sulfonated polyphenylene (S-PPP), and the like. Among these, the polymer electrolyte preferably contains a fluorine atom because it is excellent in heat resistance, chemical stability, and the like. Particularly preferred are fluorine-based electrolytes such as Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. As for the said polymer electrolyte, only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
 高分子電解質の含有量は、特に制限されない。高分子電解質の含有量は、ガス拡散電極体に対して、好ましくは1.0~30体積%、より好ましくは2.5~20体積%である。このような量であれば、ガス拡散電極体は、十分なイオン伝導性、導電性を発揮できる。 The content of the polymer electrolyte is not particularly limited. The content of the polymer electrolyte is preferably 1.0 to 30% by volume, more preferably 2.5 to 20% by volume with respect to the gas diffusion electrode body. With such an amount, the gas diffusion electrode body can exhibit sufficient ion conductivity and conductivity.
 また、高分子電解質および電極触媒の混合比は、特に制限されない。高分子電解質を、電極触媒100重量部に対して、好ましくは0.1~2質量部、より好ましくは0.3~1.4質量部の割合で、電極触媒となるように配置(配合)する。このような量であれば、ガス拡散電極体は、十分なイオン伝導性、導電性および触媒活性を発揮できる。 Further, the mixing ratio of the polymer electrolyte and the electrode catalyst is not particularly limited. The polymer electrolyte is arranged (blended) so as to be an electrode catalyst, preferably in a proportion of 0.1 to 2 parts by mass, more preferably 0.3 to 1.4 parts by mass with respect to 100 parts by weight of the electrode catalyst. To do. With such an amount, the gas diffusion electrode body can exhibit sufficient ion conductivity, conductivity and catalytic activity.
 ガス拡散電極体は、導電性担体を非導電性不織布または織物に保持されてなるが、さらに他の添加剤を含んでもよい。ここで、添加剤としては、特に制限されず、分散剤、分散助剤、撥水剤、結着用バインダなどが挙げられる。これらの添加剤は、1種であってもあるいは2種以上を併用してもよい。これらのうち、ガス拡散電極体は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料;ポリエチレン、ポリプロピレンなどの熱可塑性樹脂などが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられる。なお、高分子電解質がフッ素系電解質である場合には、高分子電解質が撥水剤としても作用できる。ガス拡散電極体が撥水剤を含む場合の、撥水剤の含有量(添加量)は、特に制限されない。例えば、他の添加剤を、導電性担体100重量部に対して、1~10重量部程度混合することが好ましい。このような量であれば、ガス拡散電極体は、導電性及び撥水性双方に満足する。 The gas diffusion electrode body is formed by holding a conductive carrier on a non-conductive nonwoven fabric or woven fabric, but may further contain other additives. Here, the additive is not particularly limited, and examples thereof include a dispersant, a dispersion aid, a water repellent, and a binding binder. These additives may be used alone or in combination of two or more. Of these, the gas diffusion electrode body preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding. The water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Molecular materials; thermoplastic resins such as polyethylene and polypropylene are listed. Of these, fluorine-based polymer materials are preferably used because of their excellent water repellency and corrosion resistance during electrode reaction. When the polymer electrolyte is a fluorine electrolyte, the polymer electrolyte can also act as a water repellent. When the gas diffusion electrode body contains a water repellent, the content (addition amount) of the water repellent is not particularly limited. For example, other additives are preferably mixed in an amount of about 1 to 10 parts by weight with respect to 100 parts by weight of the conductive carrier. With such an amount, the gas diffusion electrode body satisfies both conductivity and water repellency.
 上記他の添加剤に代えてまたは加えて、ガス拡散電極体は、導電性カーボン(触媒成分非担持)をさらに含んでもよい。導電性カーボンを用いることにより、ガス拡散電極体の導電性を向上できる。このため、電極触媒量が少ない場合には、導電性の確保を目的として、導電性カーボンを使用することが好ましい。 In place of or in addition to the above other additives, the gas diffusion electrode body may further contain conductive carbon (no catalyst component supported). By using conductive carbon, the conductivity of the gas diffusion electrode body can be improved. For this reason, when the amount of the electrode catalyst is small, it is preferable to use conductive carbon for the purpose of ensuring conductivity.
 ここで、導電性カーボンとしては、特に限定されず、カーボンブラック、黒鉛(粒状黒鉛を含む)、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、導電性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。かようなカーボン粒子は、市販品を用いることができ、キャボット社製バルカンXC-72、バルカンP、ブラックパールズ880、ブラックパールズ1100、ブラックパールズ1300、ブラックパールズ2000、リーガル400、ライオン社製ケッチェンブラックEC、三菱化学社製#3150、#3250などのオイルファーネスブラック;電気化学工業社製デンカブラック、電気化学工業社製のアセチレンブラックAB-6などのアセチレンブラック等が挙げられる。また、カーボンブラックのほか、天然の黒鉛、ピッチ、コークス、ポリアクリロニトリル、フェノール樹脂、フラン樹脂などの有機化合物から得られる人工黒鉛や炭素などであってもよい。また、耐食性などを向上させるために、前記カーボン粒子に黒鉛化処理などの加工を行ってもよい。この際、上記導電性カーボンは、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。 Here, the conductive carbon is not particularly limited, and conventionally known materials such as carbon black, graphite (including granular graphite), and expanded graphite can be appropriately employed. Among these, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent conductivity and a large specific surface area. As such carbon particles, commercially available products can be used, such as Vulcan XC-72, Vulcan P, Black Pearls 880, Black Pearls 1100, Black Pearls 1300, Black Pearls 2000, Regal 400, Lion Corporation Black EC, Oil Furnace Black such as # 3150 and # 3250 manufactured by Mitsubishi Chemical Corporation; Denka Black manufactured by Denki Kagaku Kogyo Co., and acetylene black such as acetylene black AB-6 manufactured by Denki Kagaku Kogyo Co., Ltd. In addition to carbon black, artificial graphite or carbon obtained from organic compounds such as natural graphite, pitch, coke, polyacrylonitrile, phenol resin, furan resin may be used. Moreover, in order to improve corrosion resistance etc., you may process the said carbon particle, such as a graphitization process. In this case, the conductive carbon may be used alone or in the form of a mixture of two or more.
 導電性カーボンの大きさは、特に制限されないが、非導電性不織布または織物の空孔を通過できる程度の大きさであることが好ましい。これにより、導電性カーボンが非導電性不織布または織物の空孔内に連続的に(相互に接触した状態で)配置して、導電パスを形成するので、ガス拡散電極体の導電性をより向上できる。上記非導電性不織布または織物の空孔径との関係を考慮すると、導電性カーボンの粒径(平均一次粒子径)は、2~250nmであることが好ましく、10~100nmであることがより好ましい。このような範囲であれば、導電性カーボンは非導電性不織布または織物の空孔内に効率よく連続的に配置して、十分な導電性を確保できる。なお、導電性カーボンの形状は特に限定されず、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状など任意の構造をとりうるが、粒状が好ましい。ここで、導電性カーボンの大きさは、公知の方法によって測定できる。本明細書では、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、統計学的に有意な数の視野(例えば、数~数十視野)中に観察される粒子の粒子径(直径)の平均値として算出される値を採用するものとする。また、「粒径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。 The size of the conductive carbon is not particularly limited, but is preferably a size that can pass through the pores of the non-conductive nonwoven fabric or woven fabric. As a result, the conductive carbon is continuously arranged (in contact with each other) in the pores of the non-conductive nonwoven fabric or woven fabric to form a conductive path, thereby further improving the conductivity of the gas diffusion electrode body. it can. In consideration of the relationship with the pore size of the non-conductive nonwoven fabric or woven fabric, the particle size (average primary particle size) of the conductive carbon is preferably 2 to 250 nm, and more preferably 10 to 100 nm. Within such a range, the conductive carbon can be efficiently and continuously disposed in the pores of the non-conductive nonwoven fabric or woven fabric to ensure sufficient conductivity. The shape of the conductive carbon is not particularly limited, and may be any structure such as a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indefinite shape, a flake shape, or a spindle shape, but a granular shape is preferable. Here, the size of the conductive carbon can be measured by a known method. In this specification, unless otherwise specified, a statistically significant number of fields of view (for example, several to several tens of fields of view) using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) is used. ) The value calculated as the average value of the particle diameters (diameters) of the particles observed in the above is adopted. The “particle diameter” means the maximum distance among the distances between any two points on the particle outline.
 または、非導電性不織布または織物の空孔径に対する導電性カーボンの平均粒径の比[=導電性カーボンの平均粒径(μm)/非導電性不織布または織物の空孔径(μm)]は、1/2~1/100倍であり、より好ましくは1/2~1/20倍であり、さらにより好ましくは1/3~1/10倍であり、特に好ましくは1/3~1/5倍である。このような大きさの空孔であれば、十分量の導電性カーボンが空孔内に連続的に(相互に接触した状態で)配置できる。このため、導電性カーボンの連続的な配置が導電パスを形成するので、ガス拡散電極体の導電性をより向上できる。本明細書中、「導電性カーボンの粒子径」は、導電性カーボンの平均二次粒子径を意味する。ここで、導電性カーボンの平均二次粒子径の測定は、レーザー回折散乱式粒度分布測定装置で観察される粒子の粒子径のメジアン値として算出される値を採用するものとする。 Alternatively, the ratio of the average particle diameter of the conductive carbon to the pore diameter of the non-conductive nonwoven fabric or woven fabric [= average particle diameter of the conductive carbon (μm) / pore diameter of the non-conductive nonwoven fabric or woven fabric (μm)] is 1 / 2 to 1/100 times, more preferably 1/2 to 1/20 times, even more preferably 1/3 to 1/10 times, and particularly preferably 1/3 to 1/5 times. It is. With holes of such a size, a sufficient amount of conductive carbon can be arranged continuously (in contact with each other) in the holes. For this reason, since the continuous arrangement of the conductive carbon forms a conductive path, the conductivity of the gas diffusion electrode body can be further improved. In the present specification, “particle diameter of conductive carbon” means the average secondary particle diameter of conductive carbon. Here, for the measurement of the average secondary particle diameter of the conductive carbon, a value calculated as the median value of the particle diameter of the particles observed with a laser diffraction / scattering particle size distribution measuring apparatus is adopted.
 ガス拡散電極体が導電性カーボン(触媒成分非担持)を含む場合の導電性カーボンの含有量は、特に制限されない。導電性の向上などを考慮すると、電極触媒と導電性カーボンとの合計含有量が、ガス拡散電極体に対して、好ましくは2.5~40体積%、より好ましくは5~30体積%である。ここで、電極触媒の含有量が上記範囲であれば、十分な導電パスが形成でき、良好な物質拡散性が確保するため、優れた性能を発揮できる。なお、導電性を付与することを目的としては、電極触媒の配合量が過剰となり、コストなどの面から好ましくない場合がある。このような場合であっても、導電性カーボンが電極触媒による導電性の付与を補完するように作用できる。このため、特に電極触媒の配合量が少ない場合には、導電性カーボンを上記したような量でさらに配置(配合)することが、導電性付与の観点から特に好ましい。 The content of conductive carbon when the gas diffusion electrode body contains conductive carbon (non-supported catalyst component) is not particularly limited. Considering improvement in conductivity, the total content of the electrode catalyst and the conductive carbon is preferably 2.5 to 40% by volume, more preferably 5 to 30% by volume with respect to the gas diffusion electrode body. . Here, if the content of the electrode catalyst is in the above range, a sufficient conductive path can be formed and good material diffusibility is ensured, so that excellent performance can be exhibited. For the purpose of imparting conductivity, the amount of the electrode catalyst is excessive, which is not preferable from the viewpoint of cost. Even in such a case, the conductive carbon can act so as to complement the provision of conductivity by the electrode catalyst. For this reason, especially when there are few compounding quantities of an electrode catalyst, it is especially preferable from a viewpoint of electroconductivity provision to further arrange | position (mixing) conductive carbon by the quantity as mentioned above.
 ガス拡散電極体の厚みは、特に制限されないが、5~500μmであることが好ましく、25~250μmであることがより好ましい。このような厚みであれば、高分子電解質及び電極触媒を十分量保持できるため、十分な導電性及び触媒活性を発揮できる。 The thickness of the gas diffusion electrode body is not particularly limited, but is preferably 5 to 500 μm, and more preferably 25 to 250 μm. If it is such thickness, since sufficient amount of a polymer electrolyte and an electrode catalyst can be hold | maintained, sufficient electroconductivity and catalytic activity can be exhibited.
 ガス拡散電極体は、MEAのカソード側およびアノード側の少なくとも一方に設けられていればよいが、好ましくはカソード及びアノード双方に設置されることが好ましい。 The gas diffusion electrode body may be provided on at least one of the cathode side and the anode side of the MEA, but it is preferably provided on both the cathode and the anode.
 (ガス拡散電極体の製造方法)
 ガス拡散電極体の製造方法は、高分子電解質及び電極触媒を非導電性不織布または織物に保持できる限り、特に制限されない。例えば、高分子電解質、電極触媒および溶剤を含むスラリーを非導電性不織布または織物に塗布した後、乾燥する方法;非導電性不織布または織物を、電極触媒および溶剤を含む触媒インクに含浸・乾燥(熱処理)した後、高分子電解質および溶剤を含む電解質インクに含浸・乾燥(熱処理)する方法;非導電性不織布または織物を、高分子電解質および溶剤を含む電解質インクに含浸・乾燥(熱処理)した後、電極触媒および溶剤を含む触媒インクに含浸・乾燥(熱処理)する方法などの方法が挙げられる。また、ガス拡散電極体が導電性カーボンを含む場合のガス拡散電極体の製造方法はまた特に制限されない。例えば、高分子電解質、電極触媒、導電性カーボンおよび溶剤を含むインク(スラリー)を非導電性不織布または織物に塗布した後、乾燥(熱処理)する方法;高分子電解質、電極触媒、導電性カーボンのいずれか1種および溶剤を含むインク(スラリー)を非導電性不織布または織物に塗布・乾燥(熱処理)した後、残りの2種および溶剤を含むインク(スラリー)を非導電性不織布または織物に塗布・乾燥(熱処理)する方法;高分子電解質、電極触媒、導電性カーボンのいずれか2種および溶剤を含むインク(スラリー)を非導電性不織布または織物に塗布・乾燥(熱処理)した後、残りの1種および溶剤を含むインク(スラリー)を非導電性不織布または織物に塗布・乾燥(熱処理)する方法;非導電性不織布または織物に、導電性カーボンおよび溶剤を含むカーボンインク、高分子電解質および溶剤を含む電解質インクならびに電極触媒および溶剤を含む触媒インクをいずれかの順番で順次、塗布した後、乾燥(熱処理)する方法などが挙げられる。ここで、塗布方法としては、特に制限されず、スプレーコート(噴霧法)、ディップコート(浸漬法)、スピンコート、バーコート、ロールコート、スクリーン印刷などの公知の方法が同様にしてあるいは適宜修飾して適用できる。好ましくは、浸漬法が適用される。また、乾燥条件は、導電性カーボンを非導電性不織布または織物に保持できる条件であれば特に制限されないが、時間、エネルギーコスト、量産の観点から、200℃以下の温度であることが好ましい。すなわち、本発明はまた、高分子電解質、電極触媒および溶剤を含むスラリーに非導電性不織布または織物を浸漬し;前記浸漬後の非導電性不織布または織物を200℃以下の温度で熱処理することを有する本発明のガス拡散電極体の製造方法をも提供する。以下、本発明のガス拡散電極体の製造方法の好ましい形態を説明する。しかしながら、本発明は、下記形態に限定されるものではない。また、以下では、ガス拡散電極体が導電性カーボンを含む形態について説明するが、ガス拡散電極体が導電性カーボンを含まない場合も、導電性カーボンを使用しない以外は下記形態を同様にして適用できる。さらに、以下では、導電性カーボンおよび溶剤を含むカーボンインク、電極触媒および溶剤を含む触媒インクならびに高分子電解質および溶剤を含む電解質インクを、一括して、「インク」とも称する。
(Method for producing gas diffusion electrode body)
The method for producing the gas diffusion electrode body is not particularly limited as long as the polymer electrolyte and the electrode catalyst can be held on the non-conductive nonwoven fabric or woven fabric. For example, a method of applying a slurry containing a polymer electrolyte, an electrode catalyst and a solvent to a non-conductive nonwoven fabric or woven fabric and then drying; impregnating and drying the non-conductive nonwoven fabric or woven fabric in a catalyst ink containing an electrode catalyst and a solvent ( A method of impregnating and drying (heat treatment) an electrolyte ink containing a polymer electrolyte and a solvent after heat treatment; After impregnating and drying (heat treatment) a non-conductive nonwoven fabric or fabric in an electrolyte ink containing a polymer electrolyte and a solvent And a method of impregnating and drying (heat treatment) a catalyst ink containing an electrode catalyst and a solvent. Moreover, the manufacturing method of the gas diffusion electrode body when the gas diffusion electrode body contains conductive carbon is not particularly limited. For example, a method in which an ink (slurry) containing a polymer electrolyte, an electrode catalyst, conductive carbon and a solvent is applied to a non-conductive nonwoven fabric or woven fabric and then dried (heat treatment); a polymer electrolyte, an electrode catalyst, a conductive carbon After applying ink (slurry) containing any one and solvent to non-conductive nonwoven fabric or woven fabric and drying (heat treatment), applying ink (slurry) containing the remaining two types and solvent to non-conductive nonwoven fabric or woven fabric A method of drying (heat treatment): applying an ink (slurry) containing a polymer electrolyte, an electrode catalyst, conductive carbon and a solvent to a non-conductive nonwoven fabric or woven fabric and drying (heat treatment), then the remaining A method of applying ink (slurry) containing one kind and a solvent to a non-conductive non-woven fabric or woven fabric and drying (heat treatment); Carbon ink containing Bon and solvent, sequentially a catalyst ink containing an electrolyte ink and the electrode catalyst and a solvent containing a polymer electrolyte and solvent in any order, after coating, a method of drying (heat treatment) can be mentioned. Here, the application method is not particularly limited, and known methods such as spray coating (spraying method), dip coating (dipping method), spin coating, bar coating, roll coating, and screen printing are similarly modified or appropriately modified. Can be applied. Preferably, an immersion method is applied. The drying conditions are not particularly limited as long as the conductive carbon can be held in the non-conductive nonwoven fabric or woven fabric, but are preferably 200 ° C. or less from the viewpoint of time, energy cost, and mass production. That is, the present invention also includes dipping a non-conductive nonwoven fabric or woven fabric in a slurry containing a polymer electrolyte, an electrode catalyst and a solvent; and heat-treating the non-conductive nonwoven fabric or woven fabric after the immersion at a temperature of 200 ° C. or lower. The manufacturing method of the gas diffusion electrode body of this invention which has is also provided. Hereinafter, the preferable form of the manufacturing method of the gas diffusion electrode body of this invention is demonstrated. However, the present invention is not limited to the following form. Further, in the following, the form in which the gas diffusion electrode body contains conductive carbon will be described. However, even when the gas diffusion electrode body does not contain conductive carbon, the following form is similarly applied except that the conductive carbon is not used. it can. Further, hereinafter, the carbon ink containing conductive carbon and a solvent, the catalyst ink containing an electrode catalyst and a solvent, and the electrolyte ink containing a polymer electrolyte and a solvent are collectively referred to as “ink”.
 上記溶剤は、特に制限されず、高分子電解質、電極触媒及び導電性カーボンの種類によって適宜選択される。例えば、溶剤としては、水、パーフルオロベンゼン、ジクロロペンタフルオロプロパン、メタノール、エタノール、プロパノール、2-プロパノール、シクロヘキサノール等のアルコール、トルエン等の石油系溶剤などが挙げられる。ここで、電解質インクにおける高分子電解質の濃度は、特に制限されない。具体的には、インクにおける高分子電解質の濃度(固形分濃度)は、好ましくは0.1~20重量%、より好ましくは0.5~10重量%である。このような濃度であれば、次の塗布(浸漬)工程で非導電性不織布または織物に十分量の高分子電解質を保持できる。また、インクの粘度を適度に制御して、良好な作業性を達成できる。触媒インクにおける電極触媒の濃度(固形分濃度)は、特に制限されない。具体的には、インクにおける電極触媒の濃度は、好ましくは0.1~25重量%、より好ましくは0.25~10重量%である。このような濃度であれば、次の塗布(浸漬)工程で非導電性不織布または織物に十分量の電極触媒を保持できる。カーボンインクにおける導電性カーボンの濃度(固形分濃度)は、特に制限されない。具体的には、インクにおける導電性カーボンの濃度は、好ましくは5~25重量%、より好ましくは10~20重量%である。このような濃度であれば、次の塗布(浸漬)工程で非導電性不織布または織物に十分量の導電性カーボンを保持して、十分な導電性を確保できる。 The solvent is not particularly limited and is appropriately selected depending on the type of polymer electrolyte, electrode catalyst, and conductive carbon. Examples of the solvent include water, perfluorobenzene, dichloropentafluoropropane, methanol, ethanol, propanol, 2-propanol, cyclohexanol, and other petroleum solvents such as toluene. Here, the concentration of the polymer electrolyte in the electrolyte ink is not particularly limited. Specifically, the concentration (solid content concentration) of the polymer electrolyte in the ink is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight. If it is such a density | concentration, a sufficient amount of polymer electrolyte can be hold | maintained to a nonelectroconductive nonwoven fabric or textile fabric at the next application | coating (dipping) process. Also, good workability can be achieved by appropriately controlling the viscosity of the ink. The concentration (solid content concentration) of the electrode catalyst in the catalyst ink is not particularly limited. Specifically, the concentration of the electrode catalyst in the ink is preferably 0.1 to 25% by weight, more preferably 0.25 to 10% by weight. If it is such a density | concentration, a sufficient amount of electrode catalyst can be hold | maintained at a nonelectroconductive nonwoven fabric or textile fabric at the next application | coating (dipping) process. The conductive carbon concentration (solid content concentration) in the carbon ink is not particularly limited. Specifically, the concentration of conductive carbon in the ink is preferably 5 to 25% by weight, more preferably 10 to 20% by weight. If it is such a density | concentration, sufficient electroconductive carbon can be ensured by hold | maintaining sufficient quantity of electroconductive carbon to a nonelectroconductive nonwoven fabric or textile fabric at the next application | coating (immersion) process.
 また、上記インクは、高分子電解質、電極触媒および導電性カーボンの少なくとも1種ならびに溶剤に加えて、他の添加剤を含んでもよい。ここで、添加剤としては、特に制限されず、分散助剤、分散剤、撥水剤、結着バインダ剤などが挙げられる。添加剤の添加量は、特に制限されず、所望の効果(例えば、導電性カーボンの分散性や撥水性)などを考慮して適宜選択される。具体的には、添加剤は、同一インク中に含まれる高分子電解質、電極触媒、導電性カーボンの合計量に対して、1~10重量%程度添加されることが好ましい。なお、インクは、必要であれば、超音波処理しながら分散させてもよい(超音波分散処理)。このような処理によって、インクの粘度が下がるため、次工程で非導電性不織布または織物を浸漬した際に、各成分(高分子電解質、電極触媒または導電性カーボン)が非導電性不織布または織物の空孔内により効率的に浸透できる。 The ink may contain other additives in addition to at least one of a polymer electrolyte, an electrode catalyst and conductive carbon, and a solvent. Here, the additive is not particularly limited, and examples thereof include a dispersion aid, a dispersant, a water repellent, and a binder binder. The addition amount of the additive is not particularly limited, and is appropriately selected in consideration of a desired effect (for example, dispersibility and water repellency of conductive carbon). Specifically, the additive is preferably added in an amount of about 1 to 10% by weight with respect to the total amount of polymer electrolyte, electrode catalyst, and conductive carbon contained in the same ink. If necessary, the ink may be dispersed while being subjected to ultrasonic treatment (ultrasonic dispersion treatment). Since the viscosity of the ink is lowered by such treatment, each component (polymer electrolyte, electrode catalyst, or conductive carbon) is not contained in the nonconductive nonwoven fabric or woven fabric when the nonconductive nonwoven fabric or woven fabric is immersed in the next step. It can penetrate more efficiently into the pores.
 または、インクは、増粘剤を含んでもよい。この際使用できる増粘剤は、特に制限されず、公知の増粘剤が使用できるが、例えば、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などが挙げられる。これらのうち、プロピレングリコール(PG)が好ましく使用される。これは、プロピレングリコール(PG)を使用することにより、インクの沸点が高まり溶媒蒸発速度が小さくなる。このため、例えば、塗布されたインク中の溶媒蒸発速度が抑制され、乾燥過程後のガス拡散電極体にひび割れ(クラック)が生じることを抑制・防止できる。ガス拡散電極体への機械的応力集中が緩和され、その結果、MEAの耐久性が向上することができる。増粘剤を使用する際の、増粘剤の添加量は、本発明の上記効果を妨げない程度の量であれば特に制限されないが、インクの全重量に対して、好ましくは5~20重量%である。 Alternatively, the ink may contain a thickener. The thickener that can be used in this case is not particularly limited, and a known thickener can be used. Examples thereof include glycerin, ethylene glycol (EG), polyvinyl alcohol (PVA), and propylene glycol (PG). Of these, propylene glycol (PG) is preferably used. By using propylene glycol (PG), the boiling point of the ink increases and the solvent evaporation rate decreases. For this reason, for example, the solvent evaporation rate in the applied ink is suppressed, and the occurrence of cracks (cracks) in the gas diffusion electrode body after the drying process can be suppressed / prevented. The concentration of mechanical stress on the gas diffusion electrode body is relaxed, and as a result, the durability of the MEA can be improved. The amount of the thickener added when the thickener is used is not particularly limited as long as it does not interfere with the above effect of the present invention, but is preferably 5 to 20 weight with respect to the total weight of the ink. %.
 次に、上記のようにして調製されたインクに非導電性不織布または織物を浸漬する。ここで、浸漬条件は、使用溶剤の揮発および凝固および粘度上昇を避ける範囲内で、十分量の電解質および電極触媒ならびに必要であれば導電性カーボンが非導電性不織布または織物に保持できる条件であれば、特に制限されない。例えば、溶剤として水やエタノール等の低沸点溶剤を選定した場合には、浸漬温度は、好ましくは10~80℃、より好ましくは20~40℃である。また、浸漬時間は、好ましくは5秒~15分、より好ましくは10秒~5分である。なお、上記浸漬工程は、必要により、繰り返し行ってもよい。このような操作を行うことによって、より多くの高分子電解質、電極触媒または導電性カーボンを非導電性不織布または織物に保持できる。また、浸漬工程中および/または後に、気泡を除去して均一な浸透を促進するために、真空吸引、減圧脱泡処理、表面に対するジグの物理的な接触(例えば、刷毛で擦ったり叩いたりして気泡を取り除く処理)、超音波処理などを行ってもよい。 Next, a non-conductive nonwoven fabric or fabric is immersed in the ink prepared as described above. Here, the dipping condition is a condition in which a sufficient amount of electrolyte and electrode catalyst and, if necessary, conductive carbon can be held in a non-conductive nonwoven fabric or woven fabric within a range that avoids volatilization and solidification of the solvent used and an increase in viscosity. There is no particular limitation. For example, when a low boiling point solvent such as water or ethanol is selected as the solvent, the immersion temperature is preferably 10 to 80 ° C., more preferably 20 to 40 ° C. The immersion time is preferably 5 seconds to 15 minutes, more preferably 10 seconds to 5 minutes. In addition, you may repeat the said immersion process as needed. By performing such an operation, more polymer electrolyte, electrode catalyst, or conductive carbon can be held in the nonconductive nonwoven fabric or woven fabric. Also, during and / or after the dipping process, vacuum suction, vacuum degassing treatment, physical contact of the jig against the surface (eg rubbing or tapping with a brush) to remove bubbles and promote uniform penetration. Treatment for removing bubbles), ultrasonic treatment or the like.
 さらに、インクに浸漬した後、非導電性不織布または織物を乾燥(熱処理)する。ここで、乾燥条件は、非導電性不織布または織物から溶剤が除去されて導電性カーボンが表面及び空孔内に保持されればよいので、従来のように焼付(焼成)のための高温を必要としない。このため、時間、エネルギーコストの観点から、量産する上で非常に好ましい。このため、乾燥温度は、溶剤が除去できる温度であればよく、使用する溶剤の種類によって異なる。例えば、時間、エネルギーコストの観点から、乾燥温度は、200℃以下である。例えば、乾燥温度は、好ましくは60~200℃であり、より好ましくは80~150℃である。また、乾燥時間は、好ましくは5~20分であり、より好ましくは2~10分である。上記条件は、溶剤として水やエタノール等の低沸点溶剤を選定した場合に特に好適に適用できる。なお、量産を考慮した場合には、溶剤として水やエタノール等の低沸点溶剤を選定することが好ましい。また、乾燥工程では、乾燥炉中に気流を導入してもよい。このような操作を行うことにより、乾燥時間をより短縮することが可能である。このように、本形態の方法によると、低温でかつ短時間でガス拡散電極体を製造できるため、工業上の観点から非常に好ましい。なお、上記乾燥(熱処理)工程は、必要により、繰り返し行ってもよい。このような操作を行うことによって、より多くの高分子電解質および電極触媒ならびに必要であれば導電性カーボンを非導電性不織布または織物に保持できる。 Further, after dipping in ink, the nonconductive nonwoven fabric or woven fabric is dried (heat treated). Here, the drying condition is such that the solvent is removed from the non-conductive nonwoven fabric or woven fabric and the conductive carbon is held on the surface and in the pores, so that a high temperature for baking (firing) is required as in the past. And not. For this reason, it is very preferable in mass production from the viewpoint of time and energy cost. For this reason, the drying temperature should just be the temperature which can remove a solvent, and changes with kinds of solvent to be used. For example, the drying temperature is 200 ° C. or less from the viewpoint of time and energy cost. For example, the drying temperature is preferably 60 to 200 ° C., more preferably 80 to 150 ° C. The drying time is preferably 5 to 20 minutes, more preferably 2 to 10 minutes. The above conditions can be particularly suitably applied when a low boiling point solvent such as water or ethanol is selected as the solvent. In consideration of mass production, it is preferable to select a low boiling point solvent such as water or ethanol as the solvent. In the drying process, an air flow may be introduced into the drying furnace. By performing such an operation, it is possible to further shorten the drying time. Thus, according to the method of this embodiment, the gas diffusion electrode body can be produced at a low temperature and in a short time, which is very preferable from an industrial viewpoint. In addition, you may repeat the said drying (heat processing) process as needed. By performing such an operation, more polymer electrolyte and electrode catalyst and, if necessary, conductive carbon can be held in the non-conductive nonwoven fabric or woven fabric.
 なお、上記にてガス拡散電極体を製造できるが、ガス拡散電極体の撥水性を向上するために、前記浸漬後の非導電性不織布または織物を撥水処理してもよい。ここで、撥水処理方法は、特に制限されないが、上記したような撥水剤を含む溶液中に浸漬することが操作の簡便さの点から好ましい。撥水剤溶液を調製するために使用できる溶媒としては、撥水剤を溶解できるものであれば特に制限されず、撥水剤の種類によって適宜選択できる。例えば、水、パーフルオロベンゼン、ジクロロペンタフルオロプロパン、メタノール、エタノール等のアルコール、トルエン等の石油系溶剤などが挙げられる。ここで、撥水剤の濃度は、特に制限されない。具体的には、撥水剤溶液における撥水剤の濃度(固形分濃度)は、好ましくは0.1~25重量%、より好ましくは1~5重量%である。このような濃度であれば、ガス拡散電極体に十分な撥水性を付与できる。 In addition, although a gas diffusion electrode body can be manufactured as described above, in order to improve the water repellency of the gas diffusion electrode body, the nonconductive nonwoven fabric or woven fabric after the immersion may be subjected to a water repellent treatment. Here, the water repellent treatment method is not particularly limited, but is preferably immersed in a solution containing the water repellent as described above from the viewpoint of ease of operation. The solvent that can be used to prepare the water repellent solution is not particularly limited as long as it can dissolve the water repellent, and can be appropriately selected depending on the type of the water repellent. Examples thereof include water, alcohols such as perfluorobenzene, dichloropentafluoropropane, methanol and ethanol, and petroleum solvents such as toluene. Here, the concentration of the water repellent is not particularly limited. Specifically, the concentration (solid content concentration) of the water repellent in the water repellent solution is preferably 0.1 to 25% by weight, more preferably 1 to 5% by weight. With such a concentration, sufficient water repellency can be imparted to the gas diffusion electrode body.
 また、撥水剤溶液における浸漬条件は、十分量の撥水性をガス拡散電極体に付与できる条件であれば特に制限されないが、浸漬に用いる溶剤の揮発を防止するために、溶剤の沸点よりも20℃以上低く、溶液の増粘または凝固が起こらない範囲の温度で行うことが好ましい。例えば、パーフロロスルホン酸系ポリマーのアルコール溶液を使用した場合の浸漬温度は、好ましくは10~60℃、より好ましくは20~40℃である。また、浸漬時間は、好ましくは2秒~15分、より好ましくは5秒~10分である。なお、上記浸漬工程中、ガス拡散電極体内部の気泡を除くために、超音波処理を行うことが好ましい。なお、上記浸漬工程は、必要により(例えば、より撥水性を付与するため)、繰り返し行ってもよい。 Further, the immersion conditions in the water repellent solution are not particularly limited as long as a sufficient amount of water repellency can be imparted to the gas diffusion electrode body, but in order to prevent volatilization of the solvent used for immersion, It is preferably performed at a temperature lower than 20 ° C. so that the solution does not thicken or coagulate. For example, the immersion temperature when an alcohol solution of a perfluorosulfonic acid polymer is used is preferably 10 to 60 ° C., more preferably 20 to 40 ° C. The immersion time is preferably 2 seconds to 15 minutes, more preferably 5 seconds to 10 minutes. In addition, during the said immersion process, in order to remove the bubble inside a gas diffusion electrode body, it is preferable to perform an ultrasonic treatment. In addition, you may repeat the said immersion process as needed (for example, in order to provide more water repellency).
 さらに、撥水剤溶液に浸漬した後、ガス拡散電極体を乾燥(熱処理)する。すなわち、浸漬後でかつ熱処理前に、前記浸漬後の非導電性不織布または織物を撥水処理してもよい。これにより、さらに撥水性が向上したガス拡散電極体が得られる。ここで、乾燥条件は、溶媒が除去されればよく、使用する溶剤の種類によって異なる。例えば、時間、エネルギーコストの観点から、乾燥温度は、200℃以下であり、好ましくは40~200℃であり、より好ましくは80~150℃である。また、量産を考慮すると、乾燥時間は、好ましくは30秒~20分であり、より好ましくは3分~15分である。なお、上記乾燥(熱処理)工程は、必要により(例えば、導電性カーボンを強固に保持するまたは撥水性をより効率的に付与するため)、繰り返し行ってもよい。このように、本形態の方法によると、低温でかつ短時間でガス拡散層を製造できるため、工業上の観点から非常に好ましい。 Further, after immersing in the water repellent solution, the gas diffusion electrode body is dried (heat treatment). That is, after immersion and before heat treatment, the nonconductive nonwoven fabric or woven fabric after immersion may be subjected to water repellent treatment. Thereby, a gas diffusion electrode body with further improved water repellency can be obtained. Here, drying conditions should just remove a solvent, and change with kinds of solvent to be used. For example, from the viewpoint of time and energy cost, the drying temperature is 200 ° C. or less, preferably 40 to 200 ° C., more preferably 80 to 150 ° C. In consideration of mass production, the drying time is preferably 30 seconds to 20 minutes, more preferably 3 minutes to 15 minutes. In addition, you may repeat the said drying (heat processing) process as needed (for example, in order to hold | maintain electroconductive carbon firmly or to provide water repellency more efficiently). Thus, according to the method of this embodiment, the gas diffusion layer can be produced at a low temperature and in a short time, which is very preferable from an industrial viewpoint.
 [高分子電解質膜]
 高分子電解質膜2は、PEFC 1の運転時にアノード側(アノードガス拡散電極体)で生成したプロトンを膜厚方向に沿ってカソード側(カソードガス拡散電極体)へと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
[Polymer electrolyte membrane]
The polymer electrolyte membrane 2 has a function of selectively transmitting protons generated on the anode side (anode gas diffusion electrode body) during operation of the PEFC 1 to the cathode side (cathode gas diffusion electrode body) along the film thickness direction. Have. The solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
 高分子電解質膜2は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質膜と炭化水素系高分子電解質膜とに大別される。なお、フッ素系高分子電解質と炭化水素系高分子電解質の具体的な説明は上記高分子電解質における説明と同様であるため、ここでは説明を省略する。これらのうち、耐熱性、化学的安定性などの発電性能を向上させるという観点からは、フッ素系高分子電解質膜が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質膜が用いられる。また、炭化水素系高分子電解質膜は、原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の利点がある。 The polymer electrolyte membrane 2 is roughly classified into a fluorine-based polymer electrolyte membrane and a hydrocarbon-based polymer electrolyte membrane depending on the type of ion exchange resin that is a constituent material. In addition, since the specific description of the fluorine-based polymer electrolyte and the hydrocarbon-based polymer electrolyte is the same as the description of the polymer electrolyte, the description is omitted here. Among these, from the viewpoint of improving power generation performance such as heat resistance and chemical stability, a fluorine-based polymer electrolyte membrane is preferably used, and particularly preferably a fluorine-based polymer electrolyte composed of a perfluorocarbon sulfonic acid-based polymer. A molecular electrolyte membrane is used. Further, the hydrocarbon-based polymer electrolyte membrane has advantages in manufacturing such that the raw material is inexpensive, the manufacturing process is simple, and the material selectivity is high.
 なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。 In addition, as for the ion exchange resin mentioned above, only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
 高分子電解質膜の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質層の厚さは、通常は5~300μm程度である。電解質層の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性及び使用時の出力特性のバランスが適切に制御されうる。 The thickness of the polymer electrolyte membrane may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited. The thickness of the electrolyte layer is usually about 5 to 300 μm. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
 [微細多孔質層(MPL)]
 膜電極接合体(MEA)は、ガス拡散電極体とセパレータとの間に、必要であれば、微細多孔質層(MPL)を有していてもよい。ここで、微細多孔質層(MPL)は、特に制限されないが、ガス拡散係数が大きいことが好ましい。このような微細多孔質層(MPL)を用いることにより、ガス透過性をさらに向上して、ドライ条件と湿潤条件における発電性能をより効果的に両立することができる。このような微細多孔質層(MPL)としては、特に制限されないが、必要であれば撥水剤を含むカーボン粒子の集合体からなりうる。ここで、カーボン粒子としては、特に限定されず、カーボンブラック、黒鉛(粒状黒鉛を含む)、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。かようなカーボン粒子は、市販品を用いることができ、キャボット社製バルカンXC-72、バルカンP、ブラックパールズ880、ブラックパールズ1100、ブラックパールズ1300、ブラックパールズ2000、リーガル400、ライオン社製ケッチェンブラックEC、三菱化学社製#3150、#3250などのオイルファーネスブラック;電気化学工業社製デンカブラックなどのアセチレンブラック等が挙げられる。また、カーボンブラックのほか、天然の黒鉛、ピッチ、コークス、ポリアクリロニトリル、フェノール樹脂、フラン樹脂などの有機化合物から得られる人工黒鉛や炭素などであってもよい。また、耐食性などを向上させるために、前記カーボン粒子に黒鉛化処理などの加工を行ってもよい。この際、上記材料は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
[Microporous layer (MPL)]
The membrane electrode assembly (MEA) may have a microporous layer (MPL) between the gas diffusion electrode body and the separator, if necessary. Here, the microporous layer (MPL) is not particularly limited, but preferably has a large gas diffusion coefficient. By using such a microporous layer (MPL), the gas permeability can be further improved, and the power generation performance under dry and wet conditions can be more effectively achieved. Such a microporous layer (MPL) is not particularly limited, but can be an aggregate of carbon particles containing a water repellent if necessary. Here, the carbon particles are not particularly limited, and conventionally known materials such as carbon black, graphite (including granular graphite), expanded graphite and the like can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area. As such carbon particles, commercially available products can be used, such as Vulcan XC-72, Vulcan P, Black Pearls 880, Black Pearls 1100, Black Pearls 1300, Black Pearls 2000, Regal 400, Lion Corporation Examples include black EC, oil furnace black such as # 3150 and # 3250 manufactured by Mitsubishi Chemical Corporation, and acetylene black such as Denka Black manufactured by Denki Kagaku Kogyo. In addition to carbon black, artificial graphite or carbon obtained from organic compounds such as natural graphite, pitch, coke, polyacrylonitrile, phenol resin, furan resin may be used. Moreover, in order to improve corrosion resistance etc., you may process the said carbon particle, such as a graphitization process. In this case, the above materials may be used alone or in the form of a mixture of two or more.
 前記カーボン粒子の粒径は、10~100nm程度とするのがよい。これにより、ガス拡散係数が向上し、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。なお、カーボン粒子の形状は特に限定されず、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状など任意の構造をとりうる。上記「カーボン粒子の粒子径」は、カーボン粒子の平均二次粒子径である。ここで、カーボン粒子の平均二次粒子径の測定は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The particle size of the carbon particles is preferably about 10 to 100 nm. As a result, the gas diffusion coefficient is improved, high drainage due to capillary force is obtained, and the contact property with the catalyst layer can be improved. The shape of the carbon particles is not particularly limited, and may take any structure such as a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indefinite shape, a flake shape, and a spindle shape. The “particle diameter of the carbon particles” is an average secondary particle diameter of the carbon particles. Here, the measurement of the average secondary particle diameter of the carbon particles is performed by using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of the diameters shall be adopted.
 微細多孔質層(MPL)は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリエチレン、ポリプロピレンなどの熱可塑性樹脂等が挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられる。微細多孔質層(MPL)における、カーボン粒子と撥水剤との混合比は、カーボン粒子が多過ぎると期待するほど撥水性が得られない恐れがあり、撥水剤が多過ぎると十分な電子伝導性が得られない恐れがある。これらを考慮して、微細多孔質層(MPL)におけるカーボン粒子と撥水剤との混合比は、重量比で、90:10~40:60程度とするのがよい。 The fine porous layer (MPL) preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding. The water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, thermoplastic resins such as polyethylene and polypropylene. Of these, fluorine-based polymer materials are preferably used because of their excellent water repellency and corrosion resistance during electrode reaction. In the microporous layer (MPL), the mixing ratio of the carbon particles to the water repellent may not be as good as the water repellent as expected when there are too many carbon particles. Conductivity may not be obtained. Considering these, the mixing ratio of the carbon particles and the water repellent in the microporous layer (MPL) is preferably about 90:10 to 40:60 in terms of weight ratio.
 また、微細多孔質層(MPL)では、カーボン粒子がバインダにより結着されていてもよい。ここで用いられうるバインダとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、フェノール樹脂、メラミン樹脂、ポリアミド樹脂などの熱硬化性樹脂や、ポリプロピレン、ポリエチレンなどの熱可塑性樹脂などが挙げられる。なお、上述した撥水剤とバインダとは一部重複する。したがって、好ましくは、撥水性を有するバインダを使用する。中でも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられ、特にポリテトラフルオロエチレン(PTFE)が好ましい。撥水性を有するバインダを用いることにより、微細多孔質層(MPL)内の細孔(カーボン粒子間)に撥水性が付与され、水の排出性を向上させることができる。なお、これらのバインダは1種類単独で用いてもよいし、または2種類以上併用してもよい。また、これら以外の高分子が用いられてもよい。 In the fine porous layer (MPL), carbon particles may be bound by a binder. Examples of the binder that can be used here include fluorine-based polymer materials such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). And thermosetting resins such as phenol resin, melamine resin and polyamide resin, and thermoplastic resins such as polypropylene and polyethylene. Note that the above-described water repellent and binder partially overlap. Therefore, a binder having water repellency is preferably used. Among these, fluorine-based polymer materials are preferably used because of their excellent water repellency and corrosion resistance during electrode reaction, and polytetrafluoroethylene (PTFE) is particularly preferable. By using a binder having water repellency, water repellency is imparted to the pores (between carbon particles) in the microporous layer (MPL), and water drainage can be improved. In addition, these binders may be used individually by 1 type, or may be used together 2 or more types. Moreover, polymers other than these may be used.
 微細多孔質層(MPL)におけるバインダの含有量は、微細多孔質層(MPL)内の空隙構造が所望の特性となるように適宜調整すればよい。具体的には、バインダの含有量は、微細多孔質層(MPL)の全重量に対して好ましくは5~60重量%、より好ましくは10~50重量%、さらに好ましくは12~40重量%の範囲であるのが好ましい。バインダの配合割合が5重量%以上であれば粒子同士を良好に結合でき、60重量%以下であれば微細多孔質層(MPL)の電気抵抗の上昇を防止しうる。 What is necessary is just to adjust suitably content of the binder in a microporous layer (MPL) so that the void structure in a microporous layer (MPL) may become a desired characteristic. Specifically, the binder content is preferably 5 to 60% by weight, more preferably 10 to 50% by weight, and still more preferably 12 to 40% by weight with respect to the total weight of the microporous layer (MPL). A range is preferred. If the blending ratio of the binder is 5% by weight or more, the particles can be bonded well, and if it is 60% by weight or less, an increase in the electrical resistance of the microporous layer (MPL) can be prevented.
 微細多孔質層(MPL)の厚さは、特に制限されず、ガス拡散電極体の特性を考慮して適宜決定すればよい。微細多孔質層(MPL)の厚さは、好ましく3~500μmであり、より好ましくは5~300μmであり、さらに好ましくは10~150μmであり、特に好ましくは20~100μmである。かような範囲にあれば、機械的強度とガスおよび水などの透過性とのバランスが適切に制御できる。 The thickness of the microporous layer (MPL) is not particularly limited, and may be appropriately determined in consideration of the characteristics of the gas diffusion electrode body. The thickness of the microporous layer (MPL) is preferably 3 to 500 μm, more preferably 5 to 300 μm, still more preferably 10 to 150 μm, and particularly preferably 20 to 100 μm. Within such a range, the balance between mechanical strength and permeability such as gas and water can be appropriately controlled.
 [ガス拡散層基材]
 膜電極接合体(MEA)は、ガス拡散電極体とセパレータとの間に、必要であれば、ガス拡散層基材を有していてもよい。なお、ガス拡散層基材及び微細多孔質層(MPL)がガス拡散電極体とセパレータとの間に配置される場合の、これらの順序は特に制限されない。好ましくは、セパレータ側にガス拡散層基材を及びガス拡散電極体側に微細多孔質層(MPL)を配置する。
[Gas diffusion layer substrate]
The membrane electrode assembly (MEA) may have a gas diffusion layer base material between the gas diffusion electrode body and the separator, if necessary. In addition, when a gas diffusion layer base material and a microporous layer (MPL) are arrange | positioned between a gas diffusion electrode body and a separator, these order is not restrict | limited in particular. Preferably, a gas diffusion layer base material is disposed on the separator side, and a microporous layer (MPL) is disposed on the gas diffusion electrode body side.
 ガス拡散層基材としては、特に限定されず公知のものが同様にして使用できる。例えば、カーボンペーパー、カーボンクロス等の炭素繊維で形成された炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性及び多孔質性を有するシート状材料;ならびに金属製メッシュ、エキスパンドメタル、エッチングプレートを基材とするものなどが挙げられる。前記基材の厚さは、特に制限されず所望の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。このような厚さであれば、十分な機械的強度ならびにガスや水などの透過性が確保できる。また、ガス拡散層基材は、撥水性をより高めてフラッディング現象などを防ぐことを目的として、撥水剤を含んでもよい。前記撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。ここで、撥水処理方法は特に制限されず、一般的な撥水処理方法を用いて行えばよい。例えば、ガス拡散層基材を撥水剤の分散液に浸漬した後、オーブン等で加熱乾燥させる方法などが挙げられる。特にポリテトラフルオロエチレン(PTFE)の多孔体にカーボン粒子を含浸させて焼結させたシート体を用いることができる。シート体とすることによって、製造工程が簡易になり、また、燃料電池の各部材を積層する際の取り扱い及び組み立てが容易になる。また、MEAの排水特性、セパレータの表面性状によっては、ガス拡散層基材の撥水処理を行わない、または、親水処理を行ってもよい。 The gas diffusion layer base material is not particularly limited, and known materials can be used in the same manner. For example, carbon paper, carbon cloth such as carbon paper, carbon-made woven fabric, paper-like paper body, felt, non-woven sheet-like material having conductivity and porosity; and metal mesh, expanded metal, etching The thing which uses a plate as a base material etc. are mentioned. The thickness of the substrate is not particularly limited and may be appropriately determined in consideration of desired characteristics, but may be about 30 to 500 μm. With such a thickness, sufficient mechanical strength and permeability such as gas and water can be secured. In addition, the gas diffusion layer base material may contain a water repellent for the purpose of further improving water repellency and preventing a flooding phenomenon or the like. The water repellent is not particularly limited, but fluorine-based such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include polymer materials, polypropylene, and polyethylene. Here, the water repellent treatment method is not particularly limited, and a general water repellent treatment method may be used. For example, after immersing the gas diffusion layer base material in a water repellent dispersion, a method of heating and drying in an oven or the like can be used. In particular, a sheet body in which a porous body of polytetrafluoroethylene (PTFE) is impregnated with carbon particles and sintered can be used. By using the sheet body, the manufacturing process is simplified, and handling and assembly when the members of the fuel cell are stacked are facilitated. Further, depending on the drainage characteristics of MEA and the surface properties of the separator, the gas diffusion layer substrate may not be subjected to water repellent treatment or may be subjected to hydrophilic treatment.
 また、ガス拡散層基材と微細多孔質層とを組み合わせたものを使用してもよい。この際、ガス拡散層基材上に微細多孔質層を形成する方法は特に制限されない。例えば、カーボン粒子、撥水剤等を、水、パーフルオロベンゼン、ジクロロペンタフルオロプロパン、メタノール、エタノール等のアルコール系溶媒などの溶媒中に分散させることによりインクを調製する。次に、このインクをガス拡散層基材上に塗布し乾燥、もしくは、前記インクを一度乾燥させ粉砕することで粉体にし、これを前記ガス拡散層上に塗布する方法などを用いればよい。その後、マッフル炉や焼成炉を用いて250~400℃程度で熱処理を施すのが好ましい。または、ガス拡散層基材上に微細多孔質層が予め形成された市販品を使用してもよい。 Further, a combination of a gas diffusion layer base material and a fine porous layer may be used. At this time, the method for forming the fine porous layer on the gas diffusion layer substrate is not particularly limited. For example, the ink is prepared by dispersing carbon particles, a water repellent, and the like in a solvent such as water, alcohol solvents such as perfluorobenzene, dichloropentafluoropropane, methanol, and ethanol. Next, the ink may be applied on a gas diffusion layer substrate and dried, or the ink may be dried and pulverized to form a powder, which is then applied onto the gas diffusion layer. Thereafter, heat treatment is preferably performed at about 250 to 400 ° C. using a muffle furnace or a firing furnace. Or you may use the commercial item by which the fine porous layer was previously formed on the gas diffusion layer base material.
 [膜電極接合体の製造方法]
 膜電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、ガス拡散電極体2枚を電解質膜に配置して、接合する方法が使用できる。接合条件は、特に制限されず、電解質膜やガス拡散電極体内の電解質の種類(パーフルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。
[Production method of membrane electrode assembly]
A method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used. For example, a method in which two gas diffusion electrode bodies are arranged on an electrolyte membrane and bonded can be used. The joining conditions are not particularly limited, and may be appropriately adjusted depending on the type of electrolyte (perfluorosulfonic acid type or hydrocarbon type) in the electrolyte membrane or the gas diffusion electrode.
 [セパレータ]
 セパレータは、固体高分子型燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
[Separator]
The separator has a function of electrically connecting cells in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack. The separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other. In order to secure these flow paths, as described above, each of the separators is preferably provided with a gas flow path and a cooling flow path. As a material constituting the separator, conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation. The thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
 前記燃料電池の種類としては、特に限定されず、上記した説明中では高分子電解質型燃料電池(PEFC)を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質型燃料電池が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用であるが、特にシステムの起動/停止や出力変動が頻繁に発生する自動車用途で特に好適に使用できる。 The type of the fuel cell is not particularly limited. In the above description, the polymer electrolyte fuel cell (PEFC) has been described as an example. In addition, an alkaline fuel cell, a direct methanol fuel is used. Examples include batteries and micro fuel cells. Among them, a polymer electrolyte fuel cell is preferable because it is small in size, and can achieve high density and high output. The fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited. However, the fuel cell is particularly useful for an automobile application in which system start / stop and output fluctuation frequently occur. It can be particularly preferably used.
 燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。 The manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
 燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。 The fuel used when operating the fuel cell is not particularly limited. For example, hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used. Of these, hydrogen and methanol are preferably used in that high output is possible.
 さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。 Furthermore, a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage. The shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
 上述したPEFCや膜電極接合体は、物質輸送性(例えば、ガス拡散性)、触媒活性及び導電性に優れるガス拡散電極体を用いている。したがって、当該PEFCや膜電極接合体は優れた発電性能を発揮する。 The PEFC and membrane electrode assembly described above use a gas diffusion electrode body that is excellent in material transportability (for example, gas diffusibility), catalytic activity, and conductivity. Therefore, the PEFC and the membrane electrode assembly exhibit excellent power generation performance.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「重量部」または「重量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行われる。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In the examples, “parts” or “%” is used, but “parts by weight” or “% by weight” is indicated unless otherwise specified. Unless otherwise specified, each operation is performed at room temperature (25 ° C.).
 実施例1
 (ガス拡散電極体の作製)
 導電性カーボン(アセチレンブラックAB-6、平均一次粒子径=50nm、電気化学工業株式会社製)25.6g、分散助剤(花王株式会社、商品名:エマルゲン)1.4g、および水120gを加えた。この混合物を、プロペラ攪拌機で、10分間、攪拌を行い、ペースト状インクを得た。このペースト状インクを、60分間、超音波分散機で分散処理を行い、カーボンインクを調製した。上記超音波分散処理により、カーボンインクは低粘度となり、次工程での多孔体含浸に適した性状となった。このカーボンインクをレーザー回折散乱式粒度分布測定装置(マイクロトラップMT3000)で測定したところ、メジアン値(導電性カーボンの平均二次粒子径)が2.2μmとなる分散液を得た。
Example 1
(Production of gas diffusion electrode body)
Add 25.6 g of conductive carbon (acetylene black AB-6, average primary particle size = 50 nm, manufactured by Denki Kagaku Kogyo Co., Ltd.), 1.4 g of dispersion aid (Kao Corporation, trade name: Emulgen), and 120 g of water. It was. This mixture was stirred with a propeller stirrer for 10 minutes to obtain a paste-like ink. The paste-like ink was subjected to a dispersion treatment with an ultrasonic disperser for 60 minutes to prepare a carbon ink. By the ultrasonic dispersion treatment, the carbon ink has a low viscosity, and has properties suitable for the porous body impregnation in the next step. When this carbon ink was measured with a laser diffraction / scattering particle size distribution analyzer (Microtrap MT3000), a dispersion having a median value (average secondary particle diameter of conductive carbon) of 2.2 μm was obtained.
 80cm×80cmのガラス多孔体(非導電性不織布)(厚さ=160μm)を、上記で調整したカーボンインクに1分間、浸漬した後、引き上げた。なお、使用したガラス多孔体としては、日本板硝子株式会社製、商品名:TGP-015A(厚さ=160μm(19.6kPa荷重時)、空孔径=7.8μm、坪量=22g/m、密度=0.136g/m)を使用した。このガラス多孔体を刷毛で表面を叩き、表面に付着した気泡を除いた後、120℃で8分間乾燥して、導電性カーボン(カーボン粒子)を空孔内に保持した多孔体複合体(1)を得た。 An 80 cm × 80 cm glass porous body (nonconductive non-woven fabric) (thickness = 160 μm) was immersed in the carbon ink prepared above for 1 minute, and then pulled up. As the porous glass used, manufactured by Nippon Sheet Glass Co., Ltd., trade name: TGP-015A (thickness = 160 μm (when loaded with 19.6 kPa), pore diameter = 7.8 μm, basis weight = 22 g / m 2 , Density = 0.136 g / m 3 ) was used. The glass porous body was hit with a brush to remove bubbles adhering to the surface and then dried at 120 ° C. for 8 minutes to hold a porous composite (1) in which conductive carbon (carbon particles) was held in the pores. )
 次に、電極触媒としての白金担持カーボンを1に対し160となる重量比で水を加え、30分間超音波分散を行った。これを混練装置((株)シンキー製、商品名:練太郎)で5分間混合し、電極触媒/水の混合分散液を得た。白金担持カーボンとしては、田中貴金属工業株式会社製、TEC10E50E(平均一次粒径30nmの導電性炭素粒子であるKetjenblackに平均一次粒径が4nmの白金粒子を担持、白金担持量=50重量%)を使用した。この電極触媒/水の混合分散液をレーザー回折散乱式粒度分布測定装置(マイクロトラップMT3000)で測定したところ、電極触媒/水の混合分散液のメジアン値(電極触媒の平均二次粒子径)は4.4μmであった。 Next, water was added to platinum-supporting carbon as an electrode catalyst at a weight ratio of 160 to 1, and ultrasonic dispersion was performed for 30 minutes. This was mixed for 5 minutes with a kneading apparatus (trade name: Nertaro, manufactured by Shinky Co., Ltd.) to obtain a mixed dispersion of electrode catalyst / water. As the platinum-supporting carbon, TEC10E50E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. (supporting platinum particles having an average primary particle size of 4 nm on Ketjenblack, which is conductive carbon particles having an average primary particle size of 30 nm, platinum support amount = 50% by weight) used. When this electrocatalyst / water mixed dispersion was measured with a laser diffraction / scattering particle size distribution analyzer (Microtrap MT3000), the median value of the electrocatalyst / water mixed dispersion (average secondary particle diameter of the electrode catalyst) was It was 4.4 μm.
 上記で調製した電極触媒/水の混合分散液中に、前工程で作製した多孔体複合体(1)を1分間浸漬した。浸漬後、多孔体複合体(1)を混合分散液から引き上げて、120℃で10分乾燥(熱処理)して、導電性カーボン(カーボン粒子)及び電極触媒を空孔内に保持した多孔体複合体(2)(白金の担持量=0.28mg/cm)を得た。 The porous body composite (1) prepared in the previous step was immersed in the mixed electrode catalyst / water dispersion prepared above for 1 minute. After the immersion, the porous composite (1) is pulled up from the mixed dispersion and dried (heat treatment) at 120 ° C. for 10 minutes to hold the conductive carbon (carbon particles) and the electrode catalyst in the pores. Body (2) (platinum supported amount = 0.28 mg / cm 2 ) was obtained.
 電解質溶液DE2020(DuPont社製,ナフィオン(登録商標)分散液、固形分濃度=21重量%)を10gを100gのエタノールで希釈して、電解質溶液(固形分濃度=2重量%)を調製した。この電解質溶液中に、前工程で作製した多孔体複合体(2)を浸漬し、継続して3分間の真空吸引し、内部の気泡を除去して、電解質溶液を十分多孔体複合体(2)の空孔内に浸透させた。さらに、この多孔質複合体(2)を120℃で10分乾燥(熱処理)して、ガス拡散電極体(白金の担持量=0.28mg/cm)を得た。このようにして得られたガス拡散電極体における導電性カーボン、電極触媒及び電解質の含有量は、それぞれ、5.68体積%、7.40体積%及び5.29体積%であった。また、ガス拡散電極体は、電極触媒100重量部に対して、高分子電解質を0.7重量部の割合で含んだ。ガス拡散電極体の厚みは230μmであった。 Electrolyte solution DE2020 (manufactured by DuPont, Nafion (registered trademark) dispersion, solid content concentration = 21 wt%) was diluted with 100 g of ethanol to prepare an electrolyte solution (solid content concentration = 2 wt%). The porous body composite (2) produced in the previous step is immersed in this electrolyte solution, and vacuum suction is continuously performed for 3 minutes to remove internal bubbles, and the electrolyte solution is sufficiently filled with the porous body composite (2 ). Further, this porous composite (2) was dried (heat treatment) at 120 ° C. for 10 minutes to obtain a gas diffusion electrode body (platinum supported amount = 0.28 mg / cm 2 ). The contents of the conductive carbon, electrode catalyst and electrolyte in the gas diffusion electrode body thus obtained were 5.68% by volume, 7.40% by volume and 5.29% by volume, respectively. The gas diffusion electrode body contained 0.7 parts by weight of the polymer electrolyte with respect to 100 parts by weight of the electrode catalyst. The thickness of the gas diffusion electrode body was 230 μm.
 (小型発電セルの作製)
 上記で作製されたガス拡散電極体を2cm×5cmの大きさに2枚切断し、アクティブエリア2cm×5cmのカソードガス拡散電極体及びアノードガス拡散電極体とした。これらを電解質膜の両側に配置して、小型発電セルのMEA(1)を作製した。なお、電解質膜としては、電解質膜(デュポン社製、ナフィオン(登録商標)NR211、厚み:25μm)を使用した。
(Production of small power generation cells)
Two gas diffusion electrode bodies produced as described above were cut into a size of 2 cm × 5 cm to obtain a cathode gas diffusion electrode body and an anode gas diffusion electrode body having an active area of 2 cm × 5 cm. These were arranged on both sides of the electrolyte membrane to produce a MEA (1) of a small power generation cell. As the electrolyte membrane, an electrolyte membrane (manufactured by DuPont, Nafion (registered trademark) NR211, thickness: 25 μm) was used.
 このようにして得られたMEA(1)について、以下の条件で発電試験評価を行った。下記条件において、負荷電流密度を0~1.9A/cmの範囲で掃引し、IV曲線を得、0.5A/cmでの電圧値を測定したところ、0.49Vであり、十分な発電性能を示した。 The MEA (1) thus obtained was subjected to power generation test evaluation under the following conditions. Under the following conditions, the load current density was swept in the range of 0 to 1.9 A / cm 2 , an IV curve was obtained, and the voltage value at 0.5 A / cm 2 was measured. The power generation performance was shown.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 比較例1
 (触媒層の作製)
 白金担持カーボン、水及びNPA(1-プロパノール)とをサンドグラインダー(アイメックス社製)の容器に投入して粉砕した後、さらに、電解質溶液を加えて、触媒インクを作製した。なお、得られた触媒インクは、白金担持カーボン 4.5重量%、電解質 16.5重量%、水 31.5重量%及びNPA(1-プロパノール) 47.5重量%の組成を有した。また、白金担持カーボンとしては、田中貴金属工業株式会社製、TEC10E50E(平均一次粒径30nmの導電性炭素粒子であるKetjenblackに平均一次粒径が4nmの白金粒子を担持、白金担持量=50重量%)を使用した。また、電解質溶液としては、電解質溶液DE2020(DuPont社製,ナフィオン(登録商標)分散液、固形分濃度=21重量%)を10gを100gのエタノールで希釈することによって調製した。触媒インク中の、電解質と電極触媒(白金およびカーボン)との固形分重量比は、1.5:2とした。
Comparative Example 1
(Production of catalyst layer)
Platinum-supported carbon, water, and NPA (1-propanol) were put in a sand grinder (manufactured by Imex) and pulverized, and an electrolyte solution was further added to prepare a catalyst ink. The obtained catalyst ink had a composition of 4.5% by weight of platinum-supported carbon, 16.5% by weight of electrolyte, 31.5% by weight of water, and 47.5% by weight of NPA (1-propanol). Further, as the platinum-supported carbon, TEC10E50E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. (Ketjenblack, which is a conductive carbon particle having an average primary particle size of 30 nm, supports platinum particles having an average primary particle size of 4 nm, platinum support amount = 50% by weight) )It was used. Further, as an electrolyte solution, an electrolyte solution DE2020 (manufactured by DuPont, Nafion (registered trademark) dispersion, solid content concentration = 21 wt%) was prepared by diluting 10 g with 100 g of ethanol. The solid content weight ratio of the electrolyte and the electrode catalyst (platinum and carbon) in the catalyst ink was 1.5: 2.
 得られた触媒インクを、ポリテトラフルオロエチレンシートの片面にスプレー塗布し、130℃で15分間乾燥させて、アノード及びカソード触媒層を作製した。また、ポリテトラフルオロエチレンシート上の塗布層は、Pt量が0.32mg/cmとなるように調整した。 The obtained catalyst ink was spray-coated on one side of a polytetrafluoroethylene sheet and dried at 130 ° C. for 15 minutes to produce anode and cathode catalyst layers. The coating layer on the polytetrafluoroethylene sheet was adjusted so that the Pt amount was 0.32 mg / cm 2 .
 (小型発電セルの作製)
 電解質膜の両面の周囲にガスケット(帝人Dupont社製、テオネックス、厚み:25μm(接着層:10μm))を配置した。なお、電解質膜としては、電解質膜(デュポン社製、ナフィオン(登録商標)NR211、厚み:25μm)を使用した。次に、電解質膜の露出部(作用面積:25cm(5.0cm×5.0cm))に、上記で作製したアノード触媒層(燃料電池用電極)及びカソード触媒層(燃料電池用電極)を形成したPTFE(ポリテトラフルオロエチレン)シートを、それぞれ、配置して、積層体を形成した。この積層体に0.8MPaの圧力を加えて、電解質膜と各燃料電池用電極を密着させた後、150℃で10分間加熱し、電解質膜と各燃料電池用電極とを接合した後、各々のPTFEシートを剥離して、CCMを作製した。このCCMを用いて小型発電セルのMEA(2)を作製した。
(Production of small power generation cells)
Gaskets (manufactured by Teijin Dupont, Teonex, thickness: 25 μm (adhesive layer: 10 μm)) were arranged around both surfaces of the electrolyte membrane. As the electrolyte membrane, an electrolyte membrane (manufactured by DuPont, Nafion (registered trademark) NR211, thickness: 25 μm) was used. Next, the anode catalyst layer (fuel cell electrode) and the cathode catalyst layer (fuel cell electrode) prepared above are formed on the exposed portion of the electrolyte membrane (working area: 25 cm 2 (5.0 cm × 5.0 cm)). The formed PTFE (polytetrafluoroethylene) sheets were respectively arranged to form a laminate. After applying a pressure of 0.8 MPa to this laminate, the electrolyte membrane and each fuel cell electrode were brought into close contact with each other, heated at 150 ° C. for 10 minutes, and after joining the electrolyte membrane and each fuel cell electrode, The PTFE sheet was peeled to produce a CCM. Using this CCM, a small power generation cell MEA (2) was produced.
 このようにして得られたMEA(2)及び上記実施例1で得られたMEA(1)について、以下の条件で発電試験評価を行った。 For the MEA (2) thus obtained and the MEA (1) obtained in Example 1, the power generation test was evaluated under the following conditions.
 各MEAについて、ガス拡散層(SGL GROUP製、25BC)で挟持して評価セルに組み込んだ後、下記条件において、電流密度(Current density)が0.3A/cmでのセル電圧(Cell voltage)及び抵抗(Resistivity)を測定した。その結果、MEA(1)及び(2)のセル電圧は、それぞれ、0.64V及び0.66Vであり、本発明のMEA(1)は従来のMEA(2)と同等の発電性能を示すことが分かった。 For each MEA, after being sandwiched between gas diffusion layers (manufactured by SGL GROUP, 25BC) and incorporated into an evaluation cell, the cell voltage (Cell voltage) at a current density of 0.3 A / cm 2 under the following conditions: And resistance were measured. As a result, the cell voltages of the MEA (1) and (2) are 0.64 V and 0.66 V, respectively, and the MEA (1) of the present invention exhibits power generation performance equivalent to that of the conventional MEA (2). I understood.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 さらに、本出願は、2013年4月26日に出願された日本特許出願番号2013-093673号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 Furthermore, this application is based on Japanese Patent Application No. 2013-093673 filed on April 26, 2013, the disclosure of which is incorporated by reference in its entirety.

Claims (7)

  1.  高分子電解質および電極触媒を非導電性不織布または織物に保持してなるガス拡散電極体。 A gas diffusion electrode body in which a polymer electrolyte and an electrode catalyst are held in a non-conductive nonwoven fabric or woven fabric.
  2.  前記非導電性不織布または織物は、ガラス、高分子樹脂繊維およびセルロースからなる群より選択される少なくとも一種から形成される、請求項1に記載のガス拡散電極体。 The gas diffusion electrode body according to claim 1, wherein the non-conductive nonwoven fabric or woven fabric is formed of at least one selected from the group consisting of glass, polymer resin fibers, and cellulose.
  3.  前記非導電性不織布または織物の空孔径が、前記電極触媒の平均粒径の1.5~100倍である、請求項1または2に記載のガス拡散電極体。 The gas diffusion electrode body according to claim 1 or 2, wherein the pore diameter of the non-conductive nonwoven fabric or woven fabric is 1.5 to 100 times the average particle diameter of the electrode catalyst.
  4.  前記非導電性不織布または織物の空孔径が、100μm以下である、請求項1~3のいずれか1項に記載のガス拡散電極体。 The gas diffusion electrode body according to any one of claims 1 to 3, wherein the non-conductive nonwoven fabric or woven fabric has a pore diameter of 100 µm or less.
  5.  高分子電解質、電極触媒および溶剤を含むスラリーに非導電性不織布または織物を浸漬し;前記浸漬後の非導電性不織布または織物を200℃以下の温度で熱処理することを有する、請求項1~4のいずれか1項に記載のガス拡散電極体の製造方法。 The non-conductive nonwoven fabric or woven fabric is immersed in a slurry containing a polymer electrolyte, an electrode catalyst, and a solvent; and the non-conductive nonwoven fabric or woven fabric after the immersion is heat-treated at a temperature of 200 ° C. or lower. The manufacturing method of the gas diffusion electrode body of any one of these.
  6.  請求項1~4のいずれか1項に記載のガス拡散電極体を有する燃料電池用膜電極接合体。 A fuel cell membrane electrode assembly having the gas diffusion electrode body according to any one of claims 1 to 4.
  7.  請求項6に記載の燃料電池用膜電極接合体を含む燃料電池。 A fuel cell comprising the membrane electrode assembly for a fuel cell according to claim 6.
PCT/JP2014/058694 2013-04-26 2014-03-26 Gas diffusion electrode body, method for manufacturing same, membrane electrode assembly for fuel cell using same, and fuel cell WO2014174973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-093673 2013-04-26
JP2013093673A JP2016129085A (en) 2013-04-26 2013-04-26 Gas diffusion electrode body, manufacturing method thereof, and fuel cell membrane-electrode assembly arranged by use thereof and fuel cell

Publications (1)

Publication Number Publication Date
WO2014174973A1 true WO2014174973A1 (en) 2014-10-30

Family

ID=51791556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058694 WO2014174973A1 (en) 2013-04-26 2014-03-26 Gas diffusion electrode body, method for manufacturing same, membrane electrode assembly for fuel cell using same, and fuel cell

Country Status (2)

Country Link
JP (1) JP2016129085A (en)
WO (1) WO2014174973A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863300B2 (en) * 2018-01-11 2021-04-21 トヨタ自動車株式会社 Catalyst layer for fuel cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283865A (en) * 2000-03-31 2001-10-12 Toray Ind Inc Electrode catalyst layer, film-electrode complex and their manufacturing method and battery using same
WO2008018410A1 (en) * 2006-08-07 2008-02-14 Mitsubishi Gas Chemical Company, Inc. Electrode for fuel cell, method for producing the same, and fuel cell
JP2009518817A (en) * 2005-12-12 2009-05-07 ビーワイディー カンパニー リミテッド Method for producing catalyst-coated membrane
JP2009140927A (en) * 2007-12-04 2009-06-25 Hanwha Chem Corp Independent electrode catalyst layer for fuel cell and method of manufacturing membrane-electrode assembly using this
WO2009116630A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283865A (en) * 2000-03-31 2001-10-12 Toray Ind Inc Electrode catalyst layer, film-electrode complex and their manufacturing method and battery using same
JP2009518817A (en) * 2005-12-12 2009-05-07 ビーワイディー カンパニー リミテッド Method for producing catalyst-coated membrane
WO2008018410A1 (en) * 2006-08-07 2008-02-14 Mitsubishi Gas Chemical Company, Inc. Electrode for fuel cell, method for producing the same, and fuel cell
JP2009140927A (en) * 2007-12-04 2009-06-25 Hanwha Chem Corp Independent electrode catalyst layer for fuel cell and method of manufacturing membrane-electrode assembly using this
WO2009116630A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell

Also Published As

Publication number Publication date
JP2016129085A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
CN104094460B (en) Electrode catalyst layer for fuel cell
JP5877494B2 (en) Fuel cell electrode catalyst layer, fuel cell electrode, fuel cell membrane electrode assembly, and fuel cell
JP5488254B2 (en) Hydrophilic porous layer for fuel cell, gas diffusion electrode, production method thereof, and membrane electrode assembly
JP4819981B2 (en) Gas diffusion layer for fuel cells
JP5928013B2 (en) Electrolyte membrane-electrode assembly
JP6053251B2 (en) Solid polymer fuel cell gas diffusion layer
US10424795B2 (en) Gas diffusion substrate
JP5481820B2 (en) Microporous layer and gas diffusion layer having the same
JP6131696B2 (en) GAS DIFFUSION LAYER, METHOD FOR PRODUCING SAME, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL USING THE SAME, AND FUEL CELL
JP5915283B2 (en) Gas diffusion layer and fuel cell using the same
JP2017525105A (en) Membrane electrode assembly
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
JP2010153222A (en) Flexible type gas diffusion electrode substrate and membrane-electrode assembly
JP6205822B2 (en) Fuel cell
JP5884550B2 (en) Anode gas diffusion layer
JP2020057516A (en) Electrode layer, membrane electrode assembly including the electrode layer, and fuel cell
WO2014174973A1 (en) Gas diffusion electrode body, method for manufacturing same, membrane electrode assembly for fuel cell using same, and fuel cell
JP2008047472A (en) Electrode catalyst
JP2006294267A (en) Catalyst ink for fuel cell electrode formation
JP6572665B2 (en) Membrane electrode assembly and fuel cell including the same
JP5458774B2 (en) Electrolyte membrane-electrode assembly
JP2019179710A (en) Electrode catalyst layer for fuel cell and manufacturing method thereof
JP2019036524A (en) Electrode catalyst layer for fuel cell and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP