JP2008311180A - Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly - Google Patents

Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly Download PDF

Info

Publication number
JP2008311180A
JP2008311180A JP2007160153A JP2007160153A JP2008311180A JP 2008311180 A JP2008311180 A JP 2008311180A JP 2007160153 A JP2007160153 A JP 2007160153A JP 2007160153 A JP2007160153 A JP 2007160153A JP 2008311180 A JP2008311180 A JP 2008311180A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrode
membrane
catalyst layer
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007160153A
Other languages
Japanese (ja)
Inventor
Miho Umehira
美保 梅比良
Kazuhiro Sumioka
和宏 隅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007160153A priority Critical patent/JP2008311180A/en
Publication of JP2008311180A publication Critical patent/JP2008311180A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell capable of producing high reaction gas and achieving oxidized gas penetration power and a moisture control function. <P>SOLUTION: In a membrane electrode assembly in which an electrode catalyst layer with a bulk density of 14-20 mg/cm<SP>3</SP>holding a polymer electrolyte membrane and catalyst and including carbon powder and a polymer electrolyte, and a porous electrode base material where ≥80% of a pore volume exists in a range of 1 to 100 micrometers of pore diameters and a peak of the pore diameters exists in a range of 10 to 50 micrometers are laminated in sequence, the bulk density of the electrode catalyst layer can be achieved by performing elimination of a solvent of the polymer electrolyte solution while being left under existence of gas of the solvent of the polymer electrolyte solution. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体高分子型燃料電池に用いられる膜電極接合体、その製造方法及び該膜電極接合体を用いた燃料電池等に関するものである。   The present invention relates to a membrane electrode assembly used for a polymer electrolyte fuel cell, a manufacturing method thereof, a fuel cell using the membrane electrode assembly, and the like.

固体高分子型燃料電池はプロトン伝導性の高分子電解質膜を用いることを特徴としており、水素等の燃料ガスと酸素等の酸化ガスを電気化学的に反応させることにより起電力を得る装置である。固体高分子型燃料電池は、自家発電装置や、自動車等の移動体用の発電装置として利用可能である。   A polymer electrolyte fuel cell is characterized by using a proton-conducting polymer electrolyte membrane, and is an apparatus for obtaining an electromotive force by electrochemically reacting a fuel gas such as hydrogen and an oxidizing gas such as oxygen. . The polymer electrolyte fuel cell can be used as a self-power generation device or a power generation device for a moving body such as an automobile.

このような固体高分子型燃料電池は、水素イオン(プロトン)を選択的に伝導する高分子電解質膜を有する。また、貴金属系触媒を担持したカーボン粉末を主成分とする触媒層とガス拡散性を有する多孔質電極基材とを有するガス拡散電極が、触媒層側を内側にして、高分子電解質膜の両面に接合された構造となっている。   Such a polymer electrolyte fuel cell has a polymer electrolyte membrane that selectively conducts hydrogen ions (protons). Further, a gas diffusion electrode having a catalyst layer mainly composed of carbon powder supporting a noble metal catalyst and a porous electrode base material having gas diffusibility is provided on both sides of the polymer electrolyte membrane with the catalyst layer side inside. It is the structure joined to.

このような高分子電解質膜と少なくとも1枚、好ましくは2枚のガス拡散電極からなる接合体は膜電極接合体(MEA : Membrane Electrode Assembly)と呼ばれている。また、高分子電解質膜の両面に2枚のガス拡散電極を接合したMEAの両外側には燃料ガスまたは酸化ガスを供給し、かつ生成ガスおよび過剰ガスを排出することを目的としたガス流路を形成したセパレーターが設置されている。   Such a joined body composed of a polymer electrolyte membrane and at least one, preferably two, gas diffusion electrodes is called a membrane electrode assembly (MEA: MEMBRANE ELECTRODE ASSEMBLY). Also, a gas flow path for supplying fuel gas or oxidizing gas to both sides of the MEA in which two gas diffusion electrodes are joined to both surfaces of the polymer electrolyte membrane, and for discharging generated gas and excess gas The separator which formed is installed.

固体高分子型燃料電池のアノード及びカソードの各触媒層内における電極反応は、各反応ガスと、電極触媒と、電解質とが同時に存在する三相界面において進行する。そのため固体高分子型燃料電池においては、従来高分子電解質膜と同種あるいは異種のイオン電解質で被覆した比表面積の大きな金属触媒担持カーボン微粒子(例えば、カーボンブラック担体に白金を担持したもの等)を電極触媒層の構成材料として使用し、電極触媒層内の三相界面の三次元化を行なうことにより、三相界面の増大化が図られている。そして、上記のように形成された電極触媒層内には、構成材料となるカーボン微粒子の二次粒子間または三次粒子間に形成される微少な細孔からなる空隙部が三次元的に形成され、空隙部が三相界面へ供給される各反応ガスの拡散流路として機能する。   Electrode reactions in the catalyst layers of the anode and cathode of the polymer electrolyte fuel cell proceed at a three-phase interface where each reaction gas, electrode catalyst, and electrolyte simultaneously exist. Therefore, in a polymer electrolyte fuel cell, a metal catalyst-supporting carbon fine particle having a large specific surface area (for example, a platinum supported on a carbon black carrier) coated with the same or different ion electrolyte as that of a conventional polymer electrolyte membrane is used as an electrode. The three-phase interface is increased by using it as a constituent material of the catalyst layer and making the three-phase interface in the electrode catalyst layer three-dimensional. In the electrode catalyst layer formed as described above, voids composed of fine pores formed between the secondary particles or the tertiary particles of the carbon fine particles as the constituent material are three-dimensionally formed. The void functions as a diffusion flow path for each reaction gas supplied to the three-phase interface.

燃料電池セル内での反応が円滑に進行するためには、電極触媒層と多孔質電極基材からなるガス拡散電極は次の機能を持つ必要がある。第1に多孔質電極基材の外側に配置されたセパレーターに形成されたガス流路より電極触媒層中の貴金属系触媒に均一に燃料ガスまたは酸化ガスを供給する機能である。第2に電極触媒層で反応により生成した水を、多孔質電極基材を通して排出する機能である。第3に電極触媒層での反応に必要な電子または生成される電子を多孔質電極基材を通してセパレーターへ導電する機能である。   In order for the reaction in the fuel cell to proceed smoothly, the gas diffusion electrode composed of the electrode catalyst layer and the porous electrode base material needs to have the following functions. The first function is to supply the fuel gas or the oxidizing gas uniformly to the noble metal catalyst in the electrode catalyst layer from the gas flow path formed in the separator disposed outside the porous electrode substrate. The second function is to discharge water produced by the reaction in the electrode catalyst layer through the porous electrode substrate. The third function is to conduct electrons necessary for the reaction in the electrode catalyst layer or generated electrons to the separator through the porous electrode substrate.

そのため、ガス拡散電極には高い反応ガスおよび酸化ガス透過能と水の排出性、電子導電性が求められている。   Therefore, the gas diffusion electrode is required to have high reactive gas and oxidant gas permeability, water dischargeability, and electronic conductivity.

加えて、一般的な固体高分子型燃料電池で用いられる高分子電解質膜は、含水状態でプロトン伝導性を示すことより、ガス拡散電極には生成水の排水のみでなく、高分子電解質膜の保水という相反する機能が求められている。ガス拡散電極を構成する多孔質電極基材のガス透気度を高くし生成水の排水能を高くしたものでは、高分子電解質膜が乾燥することによりプロトン伝導抵抗が増大し、発電性能が低下する。逆に多孔質電極基材のガス透気度を低くし高分子電解質膜の保水能を高めたものでは、生成水の排水不良によって反応ガスおよび酸化ガスの拡散が阻害されるフラッディングにより発電性能が低下する。   In addition, the polymer electrolyte membrane used in a general solid polymer fuel cell exhibits proton conductivity in a water-containing state, so that not only the generated water drainage but also the polymer electrolyte membrane in the gas diffusion electrode. The contradictory function of water retention is required. In the case where the gas permeability of the porous electrode base material constituting the gas diffusion electrode is increased and the drainage capacity of the generated water is increased, the proton conduction resistance increases and the power generation performance decreases as the polymer electrolyte membrane dries. To do. On the contrary, in the case where the gas permeability of the porous electrode substrate is lowered and the water retention capacity of the polymer electrolyte membrane is increased, the power generation performance is improved by flooding in which the diffusion of the reaction gas and the oxidizing gas is hindered due to poor drainage of the generated water descend.

触媒層の細孔径、細孔分布、細孔率を制御しようとする技術として、例えば特許文献1(特開2002−110202号公報)には、アノードとカソードと、前記アノードと前記カソードとの間に配置された高分子電解質膜とを有しており、かつ、前記アノードと前記カソードとが、ガス拡散多孔質電極基材と、当該ガス拡散多孔質電極基材と前記高分子電解質膜との間に配置される触媒とイオン交換樹脂とを含有する電極触媒層とをそれぞれ備える固体高分子型燃料電池であって、前記アノードと前記カソードの少なくとも一方の前記電極触媒層は、全細孔容積に対する細孔径10〜30μmの細孔容積の割合が20〜60%であることを特徴とする固体高分子型燃料電池が開示されている。また、特許文献2(特開2005−310714号公報)には、メタノールなどの液体燃料を用いる固体高分子型燃料電池における燃料極(アノード)側拡散層(液体燃料拡散層という)として、細孔率が20〜65%であり、直径が50〜800nmの範囲にある細孔の体積が液体燃料拡散層の全細孔体積の30%以上で、かつ100〜800nmの範囲に細孔直径の分布ピークがある細孔分布を有し、前記燃料拡散層はファイバー状担持触媒と粒子状触媒を含み、ファイバー状担持触媒はヘリングボーンまたはプレートレット構造を持つカーボンナノファイバー及び前記カーボンナノファイバーに担持された触媒粒子を含有し、前記粒子状担持触媒は、カーボンブラック粒子及び前記カーボンブラック粒子及び前記カーボンブラック粒子に担持された触媒粒子を含有することを特徴とする液体燃料型固体高分子燃料電池用アノード電極が開示される。
特開2002−110202号公報 特開2005−310714号公報
As a technique for controlling the pore diameter, pore distribution, and porosity of the catalyst layer, for example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-110202) discloses a technique between an anode and a cathode and between the anode and the cathode. And the anode and the cathode are formed of a gas diffusion porous electrode substrate, the gas diffusion porous electrode substrate, and the polymer electrolyte membrane. A polymer electrolyte fuel cell comprising a catalyst disposed between and an electrode catalyst layer containing an ion exchange resin, wherein at least one of the anode and the cathode has a total pore volume. A solid polymer fuel cell is disclosed, wherein the ratio of the pore volume of 10 to 30 μm pore diameter to 20 to 60% is 20-60%. Patent Document 2 (Japanese Patent Laid-Open No. 2005-310714) discloses pores as a fuel electrode (anode) side diffusion layer (referred to as a liquid fuel diffusion layer) in a polymer electrolyte fuel cell using a liquid fuel such as methanol. The ratio of the pore diameter in the range of 20 to 65%, the diameter in the range of 50 to 800 nm is 30% or more of the total pore volume of the liquid fuel diffusion layer, and the pore diameter is in the range of 100 to 800 nm. The fuel diffusion layer includes a fibrous supported catalyst and a particulate catalyst, and the fibrous supported catalyst is supported on the carbon nanofiber having a herringbone or platelet structure and the carbon nanofiber. The particulate supported catalyst contains carbon black particles, the carbon black particles, and the carbon black particles. An anode electrode for liquid fueled solid polymer fuel cell, wherein is disclosed that contains a supported catalyst particles.
JP 2002-110202 A JP 2005-310714 A

ガス拡散電極には、固体高分子型燃料電池内での生成水の排水と、プロトン伝導抵抗を低減するための高分子電解質膜の保水という固体高分子型燃料電池内部での水分管理機能、および高い反応ガスおよび酸化ガス透過能が必要である。この水分管理機能、ガス透過能発現、燃料電池性能向上のために、ガス拡散電極の嵩密度、細孔径、細孔分布の最適化を行なうことが有効である。つまり、ガス拡散電極を構成する触媒層の嵩密度、細孔径、細孔分布と、多孔質電極基材の嵩密度、細孔径、細孔分布を最適化することが必要である。   The gas diffusion electrode has a water management function inside the polymer electrolyte fuel cell, such as drainage of generated water in the polymer electrolyte fuel cell and water retention of the polymer electrolyte membrane to reduce proton conduction resistance, and A high reactive gas and oxidizing gas permeability is required. In order to improve the moisture management function, gas permeability, and fuel cell performance, it is effective to optimize the bulk density, pore diameter, and pore distribution of the gas diffusion electrode. That is, it is necessary to optimize the bulk density, pore diameter and pore distribution of the catalyst layer constituting the gas diffusion electrode and the bulk density, pore diameter and pore distribution of the porous electrode substrate.

特許文献1、2は、電極触媒層においてのみ細孔率、細孔径、細孔分布を制御したものであり、多孔質電極基材との組み合わせであるガス拡散電極としての反応ガスおよび酸化ガス透過能と水の排出性を向上させるという点で十分でない。   Patent Documents 1 and 2 control the porosity, pore diameter, and pore distribution only in the electrode catalyst layer, and pass through the reaction gas and oxidizing gas as a gas diffusion electrode in combination with a porous electrode substrate. It is not enough in terms of improving performance and water discharge.

本発明はこれら上記従来の技術の課題を解決するもので、多孔質電極基材と電極触媒層からなるガス拡散電極が、燃料電池内部において、高い反応ガスおよび酸化ガス透過能と水分管理機能を発現させる燃料電池を提供することを目的とするものである。   The present invention solves the above-mentioned problems of the prior art, and a gas diffusion electrode comprising a porous electrode base material and an electrode catalyst layer has a high reactive gas and oxidizing gas permeability and moisture management function inside the fuel cell. An object of the present invention is to provide a fuel cell to be developed.

本発明者らは上記課題を解決するべく鋭意検討した結果、本発明に到達したものである。すなわち、本発明は、
高分子電解質膜、触媒を担持した炭素粉末と高分子電解質とを含む電極触媒層及び多孔質電極基材とをこの順に積層してなる膜電極接合体であって、
前記電極触媒層は、嵩密度が14〜20mg/cmの範囲であり、
前記多孔質電極基材は、細孔径が1〜100μmの範囲に細孔容積の80%以上存在し、細孔径ピークが10〜50μmの範囲に存在する多孔質電極基材である膜電極接合体に関する。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reached the present invention. That is, the present invention
A membrane electrode assembly comprising a polymer electrolyte membrane, an electrode catalyst layer containing a carbon powder supporting a catalyst and a polymer electrolyte, and a porous electrode substrate, which are laminated in this order,
The electrode catalyst layer has a bulk density of 14 to 20 mg / cm 3 ,
The porous electrode substrate is a porous electrode substrate in which 80% or more of the pore volume is present in the pore diameter range of 1 to 100 μm and the pore diameter peak is in the range of 10 to 50 μm. About.

また、本発明は、上記電極触媒層の嵩密度を達成するため、触媒を担持した炭素粉末と高分子電解質溶液とを含んでなる組成物を任意の基材に成膜し、前記高分子電解質溶液の溶媒を除去する際に、前記高分子電解質溶液の溶媒のガスの存在下に放置することで行い、得られた電極触媒層を高分子電解質膜に転写し、さらに、前記の多孔質電極基材を前記電極触媒層と重なるように積層することで膜電極接合体を製造する方法に関する。   In order to achieve the bulk density of the electrode catalyst layer, the present invention forms a film comprising a composition comprising a carbon powder carrying a catalyst and a polymer electrolyte solution on an arbitrary substrate, and the polymer electrolyte When removing the solvent of the solution, it is performed by leaving it in the presence of a solvent gas of the polymer electrolyte solution, and the obtained electrode catalyst layer is transferred to the polymer electrolyte membrane, and further, the porous electrode The present invention relates to a method for producing a membrane electrode assembly by laminating a base material so as to overlap the electrode catalyst layer.

本発明によれば、アノード、カソードを問わず、電極触媒層をイソプロピルアルコール等の雰囲気中で乾燥することで、嵩密度の高い電極触媒層が得られ、これを特定の多孔質電極基材と組み合わせた膜電極接合体を用いることにより、保水性と排水性のバランスに優れ、固体高分子型燃料電池の発電特性を向上させることができる。   According to the present invention, an electrode catalyst layer having a high bulk density can be obtained by drying the electrode catalyst layer in an atmosphere of isopropyl alcohol or the like regardless of whether it is an anode or a cathode. By using the combined membrane electrode assembly, the balance between water retention and drainage is excellent, and the power generation characteristics of the polymer electrolyte fuel cell can be improved.

以下、本発明の実施形態について、図面を参照にしながら、さらに詳細に説明する。図1は本発明で提案する電極触媒層と多孔質電極基材の組み合わせを有する膜電極接合体を用いた固体高分子型燃料電池の概略的構成図である。以下の例では、高分子電解質膜の両側に電極触媒層と多孔質電極基材からなるガス拡散電極を設けた構造について説明するが、本発明における膜電極接合体の最小単位は、高分子電解質膜のいずれか一方にガス拡散電極を設けた構造である。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a polymer electrolyte fuel cell using a membrane electrode assembly having a combination of an electrode catalyst layer and a porous electrode base material proposed in the present invention. In the following example, a structure in which a gas diffusion electrode comprising an electrode catalyst layer and a porous electrode substrate is provided on both sides of a polymer electrolyte membrane will be described. The minimum unit of the membrane electrode assembly in the present invention is a polymer electrolyte. In this structure, a gas diffusion electrode is provided on either one of the films.

図1に示されるように、本実施形態にかかる固体高分子型燃料電池は、プロトン伝導性を有する高分子電解質膜1の片面に酸化ガス用触媒からなるカソード側触媒層2を、もう片面には燃料ガス用触媒からなるアノード側触媒層3を備えており、それぞれの触媒層の外側には炭素短繊維からなるカソード側多孔質電極基材4,アノード側多孔質電極基材5が備えられている。さらに、これらの高分子電解質膜1、触媒層2,3、多孔質電極基材4,5からなる膜電極接合体6を挟持するようにカソード側ガス流路13が形成されたカソード側セパレーター、アノード側ガス流路14が形成されたアノード側セパレーター8を備えている。   As shown in FIG. 1, the polymer electrolyte fuel cell according to this embodiment includes a cathode-side catalyst layer 2 made of an oxidizing gas catalyst on one side of a polymer electrolyte membrane 1 having proton conductivity, and the other side. Comprises an anode side catalyst layer 3 made of a catalyst for fuel gas, and a cathode side porous electrode base material 4 made of short carbon fibers 4 and an anode side porous electrode base material 5 are provided outside each catalyst layer. ing. Furthermore, a cathode side separator in which a cathode side gas flow path 13 is formed so as to sandwich a membrane electrode assembly 6 composed of the polymer electrolyte membrane 1, the catalyst layers 2 and 3, and the porous electrode base materials 4 and 5, An anode side separator 8 in which an anode side gas flow path 14 is formed is provided.

また、それぞれのセパレーター7,8には、酸化ガス導入部9と排出部10、燃料ガス導入部11と排出部12が備えられている。燃料ガスは導入部11から導入され、セパレーター8に形成されたガス流路14から多孔質電極基材5を介して触媒層3に供給され、プロトンと電子に解離される。電子は触媒層3から多孔質電極基材5を介してセパレーター8に伝導され、外部の負荷に供給される。   Each separator 7, 8 is provided with an oxidizing gas introducing part 9 and a discharging part 10, and a fuel gas introducing part 11 and a discharging part 12. The fuel gas is introduced from the introduction part 11 and supplied to the catalyst layer 3 through the porous electrode substrate 5 from the gas flow path 14 formed in the separator 8 and dissociated into protons and electrons. Electrons are conducted from the catalyst layer 3 to the separator 8 through the porous electrode substrate 5 and supplied to an external load.

またプロトンは高分子電解質膜1中を伝導し、カソードへ移動する。一方酸化ガスは導入部9から導入され、セパレーター7に形成されたガス流路13から多孔質電極基材4を介して触媒層2に供給され、高分子電解質膜1中を伝導してきたプロトンと結合して水を生成する。このようにして所望の起電力が取り出せる。   Protons are conducted through the polymer electrolyte membrane 1 and move to the cathode. On the other hand, the oxidizing gas is introduced from the introduction part 9 and supplied to the catalyst layer 2 through the porous electrode substrate 4 from the gas flow path 13 formed in the separator 7, and protons conducted in the polymer electrolyte membrane 1. Combine to produce water. In this way, a desired electromotive force can be taken out.

本発明にかかる多孔質電極基材4,5としては、導電性、ガス透過性を有する炭素多孔質材料、または金、ステンレスなどの金属多孔質材料を用いることが好ましい。固体高分子型燃料電池では、内部が酸性雰囲気となっているため、耐酸性を有する炭素多孔質材料がより好ましい。炭素多孔質材料としては、炭素多孔質フィルムや、複数の炭素繊維が集合してなる織物や、複数本の炭素短繊維が集合してなる抄紙体が好ましく、表面平滑性が高く、電気的接触が良好で、かつ高分子電解質膜への突き刺さりによる短絡が低減される複数本の炭素短繊維が集合してなる抄紙体がより好ましい。   As the porous electrode substrates 4 and 5 according to the present invention, it is preferable to use a carbon porous material having conductivity and gas permeability, or a metal porous material such as gold or stainless steel. In the polymer electrolyte fuel cell, since the inside is an acidic atmosphere, a carbon porous material having acid resistance is more preferable. The carbon porous material is preferably a carbon porous film, a woven fabric formed by aggregating a plurality of carbon fibers, or a paper body formed by aggregating a plurality of carbon short fibers, and has a high surface smoothness and electrical contact. A papermaking body formed by aggregating a plurality of short carbon fibers that is good in that the short circuit due to the piercing of the polymer electrolyte membrane is reduced is more preferable.

抄紙体を構成する炭素短繊維としては、どのようなものでも用いることができるがポリアクリロニトリル(以後PANと略す。)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維から選ばれる1つ以上の炭素繊維を含むことが好ましく、PAN系炭素繊維を含むことがより好ましい。   Any carbon short fiber can be used as the paper body, but it is selected from polyacrylonitrile (hereinafter abbreviated as PAN) carbon fiber, pitch carbon fiber, rayon carbon fiber, and phenolic carbon fiber. It is preferable to include one or more carbon fibers, and it is more preferable to include PAN-based carbon fibers.

炭素短繊維の平均径は、表面平滑性、導電性の付与のためには3〜30μm程度が好ましく、4〜20μmがより好ましく、4〜8μmがさらに好ましい。また、異なる平均径の炭素短繊維を2種類以上用いることも、表面平滑性、導電性の両立のために好ましい   The average diameter of the short carbon fibers is preferably about 3 to 30 μm, more preferably 4 to 20 μm, and even more preferably 4 to 8 μm for imparting surface smoothness and conductivity. It is also preferable to use two or more types of short carbon fibers having different average diameters in order to achieve both surface smoothness and conductivity.

炭素短繊維の長さは、抄紙時の分散性、および機械的強度を高めるために、2mm以上12mm以下が好ましく、3mm以上9mm以下がさらに好ましい。炭素短繊維を互いに結着させるための炭素材としては、樹脂を加熱によって炭素化して得られる炭素材を用いることができる。このために用いる樹脂としては、炭素化した段階で多孔質電極基材の炭素繊維を結着することのできる公知の樹脂から適宜選んで用いることができる。炭素化後に導電性物質として残存しやすいという観点から、フェノール樹脂、エポキシ樹脂、フラン樹脂、ピッチ等が好ましく、加熱による炭素化の際の炭化率の高いフェノール樹脂が特に好ましい。   The length of the short carbon fiber is preferably 2 mm or more and 12 mm or less, and more preferably 3 mm or more and 9 mm or less in order to improve the dispersibility during papermaking and the mechanical strength. As a carbon material for binding the short carbon fibers to each other, a carbon material obtained by carbonizing a resin by heating can be used. The resin used for this purpose can be appropriately selected from known resins capable of binding the carbon fibers of the porous electrode substrate at the stage of carbonization. From the viewpoint of easily remaining as a conductive substance after carbonization, a phenol resin, an epoxy resin, a furan resin, pitch, and the like are preferable, and a phenol resin having a high carbonization rate upon carbonization by heating is particularly preferable.

次に本発明で提案する膜電極接合体6について図1を参照しながら説明する。
高分子電解質膜1としては、プロトン解離性の基、例えば−OH基、−OSOH基、―COOH基、−SOH基等が導入された高分子を用いることが好ましく、パーフルオロスルホン酸系の膜を用いることが、化学的安定性、プロトン伝導性の点よりさらに好ましい。
触媒としては、白金、白金合金、パラジウム、マグネシウム、バナジウム等があるが、白金、白金合金を用いることが好ましい。
Next, the membrane electrode assembly 6 proposed in the present invention will be described with reference to FIG.
As the polymer electrolyte membrane 1, it is preferable to use a polymer into which proton dissociable groups such as —OH group, —OSO 3 H group, —COOH group, —SO 3 H group and the like are introduced. It is more preferable to use an acid film from the viewpoint of chemical stability and proton conductivity.
Examples of the catalyst include platinum, a platinum alloy, palladium, magnesium, vanadium, etc., but it is preferable to use platinum or a platinum alloy.

また、電極触媒層を形成する際、嵩密度、細孔径や細孔分布は、触媒を担持した炭素粉末と高分子電解質からなる溶液の濃度、粘度、分散度、もしくは層形成時の乾燥速度、乾燥雰囲気などにより制御することができる。特に層形成時の乾燥速度、乾燥雰囲気にて制御することが好ましい。さらに触媒層形成方法としてはスクリーン印刷法、ドクターブレード法などが挙げられるが、これらに限定されるものではない。   Further, when forming the electrode catalyst layer, the bulk density, pore diameter and pore distribution are the concentration, viscosity, dispersity of the solution comprising the carbon powder supporting the catalyst and the polymer electrolyte, or the drying speed at the time of layer formation, It can be controlled by a dry atmosphere or the like. In particular, it is preferable to control the drying speed and the drying atmosphere during layer formation. Furthermore, examples of the catalyst layer forming method include a screen printing method and a doctor blade method, but are not limited thereto.

本発明の提案する嵩密度を有する電極触媒層を形成するには、触媒を担持した炭素粉末と高分子電解質溶液とを含んでなる組成物を任意の基材に成膜し、前記高分子電解質溶液の溶媒を除去する際に、高分子電解質溶液の溶媒のガスの存在下に放置することで行い、得られた電極触媒層を高分子電解質膜に転写し、さらに、前記の多孔質電極基材を前記電極触媒層と重なるように積層することで膜電極接合体を製造することが好ましい。
高分子電解質溶液としては、ナフィオン(登録商標)などの固体高分子を水と低級アルコールの混合溶媒に溶解又は分散させたものが使用されており、このうち、低級アルコールの溶媒のガスの存在下に放置することで、低級アルコールの穏和な蒸散により嵩密度の高い電極触媒層が得られる。
In order to form an electrode catalyst layer having a bulk density proposed by the present invention, a composition comprising a carbon powder carrying a catalyst and a polymer electrolyte solution is formed on an arbitrary substrate, and the polymer electrolyte is formed. When removing the solvent of the solution, it is performed by leaving it in the presence of a solvent gas of the polymer electrolyte solution, the obtained electrode catalyst layer is transferred to the polymer electrolyte membrane, and the porous electrode substrate It is preferable to manufacture a membrane electrode assembly by laminating a material so as to overlap the electrode catalyst layer.
As the polymer electrolyte solution, a solution obtained by dissolving or dispersing a solid polymer such as Nafion (registered trademark) in a mixed solvent of water and a lower alcohol is used, and among these, in the presence of a gas of a solvent of the lower alcohol. The electrode catalyst layer having a high bulk density can be obtained by mild evaporation of the lower alcohol.

溶媒のガス雰囲気の濃度としては、特に制限されるものではないが、平衡状態となっていることが好ましい。   The concentration of the solvent in the gas atmosphere is not particularly limited, but is preferably in an equilibrium state.

放置する時間は、低級アルコールのガス存在下において電極触媒層が十分乾燥することが必要であり、1時間以上が好ましい。   The standing time is required to dry the electrode catalyst layer sufficiently in the presence of a lower alcohol gas, and is preferably 1 hour or longer.

触媒を担持した炭素粉末と高分子電解質溶液とを含んでなる組成物を成膜する基材としては特に制限はないが、乾燥後の電極触媒層の剥離性に優れる樹脂フィルム、例えば、PTFE等のフッ素樹脂フィルムなどが好ましい。   There is no particular limitation on the base material on which the composition comprising the carbon powder carrying the catalyst and the polymer electrolyte solution is formed, but a resin film excellent in the peelability of the electrode catalyst layer after drying, such as PTFE, etc. Of these, a fluororesin film is preferred.

また、得られた電極触媒層を高分子電解質膜に転写するには、ホットプレス法などの加圧条件で転写するのが好ましい。   Further, in order to transfer the obtained electrode catalyst layer to the polymer electrolyte membrane, it is preferable to transfer the electrode catalyst layer under a pressing condition such as a hot press method.

固体高分子型燃料電池はカソード側において電極反応生成物としての水や高分子電解質膜を浸透した水が発生する。またアノード側では高分子電解質膜の乾燥を抑制するために加湿されたガスが供給される。このような点より本発明にかかる多孔質電極基材は、ガス透過性を確保するために撥水性の高分子を含むことが好ましい。撥水性の高分子としては、化学的に安定でかつ高い撥水性を有するポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂を用いることが好ましい。   In the polymer electrolyte fuel cell, water as an electrode reaction product and water penetrating the polymer electrolyte membrane are generated on the cathode side. On the anode side, a humidified gas is supplied to suppress drying of the polymer electrolyte membrane. From such a point, the porous electrode substrate according to the present invention preferably contains a water-repellent polymer in order to ensure gas permeability. Water-repellent polymers include chemically stable and highly water-repellent polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether. It is preferable to use a fluororesin such as a polymer (PFA).

多孔質電極基材への撥水性の高分子の導入法としては、撥水性の高分子の微粒子が分散した分散水溶液中に多孔質電極基材を浸漬させるディップ法、分散水溶液を噴霧するスプレー法などを用いることができるが、面内方向、厚み方向への導入量の均一性の高いディップ法が好ましい。   As a method for introducing a water-repellent polymer into the porous electrode substrate, a dip method in which the porous electrode substrate is immersed in a dispersion solution in which fine particles of the water-repellent polymer are dispersed, or a spray method in which the dispersion solution is sprayed However, a dipping method with a high uniformity of the introduction amount in the in-plane direction and the thickness direction is preferable.

撥水性の高分子の導入量は以下のように定義される。
撥水性の高分子の導入量=導入された撥水性高分子の単位面積当たりの重量/ガス拡散電極基材の単位面積当たりの重量
上記撥水性高分子の導入量は多孔質電極基材の水分管理機能発現のためには0〜50wt%が好ましく、ガス透過性、電気抵抗の観点より0〜40wt%がさらに好ましい。
The amount of water-repellent polymer introduced is defined as follows.
Introduction amount of the water-repellent polymer = weight per unit area of the introduced water-repellent polymer / weight per unit area of the gas diffusion electrode substrate The amount of the water-repellent polymer introduced is the water content of the porous electrode substrate In order to develop the management function, 0 to 50 wt% is preferable, and 0 to 40 wt% is more preferable from the viewpoint of gas permeability and electric resistance.

〔実施例1〕
(1)電極触媒ペースト作製
46.5質量%Pt担持カーボン粉末(田中貴金属株式会社製)2.5gと純水5.0g、5質量%Nafion溶液(Aldrich社製)22.5gを混合、攪拌を行い、電極触媒ペーストを得た。
[Example 1]
(1) Electrocatalyst paste preparation 2.5 g of P6.5-supported carbon powder (manufactured by Tanaka Kikinzoku Co., Ltd.) 2.5 g and pure water 5.0 g, 5 mass% Nafion solution (manufactured by Aldrich) 22.5 g were mixed and stirred. The electrode catalyst paste was obtained.

(2)多孔質電極基材の製造方法
長さ3mmにカットした平均直径4μmのPAN系炭素短繊維を30質量%と、長さ3mmにカットした平均直径7μmのPAN系炭素短繊維を70質量%とからなる炭素短繊維66質量%とバインダーとしてビニロン繊維(商品名:ビニロン、ユニチカ株式会社製)20質量%とポリビニルアルコール(PVA)(商品名:VBP105−1、クラレ株式会社製)14質量%を水中で分散させ、連続的に金網上に抄造し、乾燥させて炭素繊維紙を得た。
(2) Production method of porous electrode substrate 30% by mass of PAN-based carbon short fibers having an average diameter of 4 μm cut to a length of 3 mm and 70 mass of PAN-based carbon short fibers having an average diameter of 7 μm cut to a length of 3 mm % Carbon short fiber 66% by mass, vinylon fiber (trade name: Vinylon, manufactured by Unitika Ltd.) 20% by mass and polyvinyl alcohol (PVA) (trade name: VBP105-1, manufactured by Kuraray Co., Ltd.) 14% by mass % Was dispersed in water, continuously made on a wire mesh, and dried to obtain a carbon fiber paper.

この炭素繊維紙に、フェノール樹脂(商品名:フェノライトJ−325、大日本インキ化学株式会社製)のメタノール溶液を含浸させ、室温でメタノールを十分に乾燥させ、フェノール樹脂の不揮発分を、40質量%付着させたフェノール樹脂含浸炭素繊維紙を得た。   This carbon fiber paper is impregnated with a methanol solution of a phenol resin (trade name: Phenolite J-325, manufactured by Dainippon Ink and Chemicals), and the methanol is sufficiently dried at room temperature. A phenol resin-impregnated carbon fiber paper adhered by mass% was obtained.

このフェノール樹脂含浸炭素繊維紙を2枚重ねて250℃の温度で、1.0MPaの圧力を加えてロールプレスを行い、フェノール樹脂を硬化させ、不活性ガス(窒素)雰囲気中で、1900℃で連続的に炭素化して、炭素短繊維の抄紙体からなる多孔質電極基材を得た。得られた多孔質電極基材は厚みが115μm、嵩密度が0.31g/cmであった。また、水銀ポロシメーターにて気孔率、細孔径分布および細孔径ピークを求めたところ、気孔率が0.81、細孔径分布が1〜100μmの範囲にあり、細孔径ピークが10〜50μmの範囲に存在していた。ただし細孔径分布が1〜100μmの範囲にあるとは、多孔質電極基材の細孔容積が、細孔径1〜100μmの範囲に80%以上存在することを意味する。 Two sheets of this carbon fiber paper impregnated with phenol resin are stacked and roll pressed by applying a pressure of 1.0 MPa at a temperature of 250 ° C. to cure the phenol resin, and in an inert gas (nitrogen) atmosphere at 1900 ° C. Continuously carbonized to obtain a porous electrode substrate made of a short carbon fiber papermaking body. The obtained porous electrode substrate had a thickness of 115 μm and a bulk density of 0.31 g / cm 3 . Further, when the porosity, pore size distribution and pore size peak were determined with a mercury porosimeter, the porosity was 0.81, the pore size distribution was in the range of 1 to 100 μm, and the pore size peak was in the range of 10 to 50 μm. Existed. However, the pore size distribution being in the range of 1 to 100 μm means that the pore volume of the porous electrode substrate is 80% or more in the range of the pore diameter of 1 to 100 μm.

(3)多孔質電極基材への撥水性付与
多孔質電極基材を5.4cm×5.4cmに切り出し、20wt%PTFEディスパージョン(商品名:PTFEディスパージョン、三井−デュポンフロロケミカル株式会社製)に浸漬し、乾燥後、360℃で1時間熱処理した。これによって撥水性高分子化合物が含有された。
(3) Giving water repellency to the porous electrode base material The porous electrode base material is cut out to 5.4 cm × 5.4 cm, and 20 wt% PTFE dispersion (trade name: PTFE dispersion, manufactured by Mitsui-Dupont Fluorochemical Co., Ltd.) ), Dried and then heat treated at 360 ° C. for 1 hour. As a result, a water-repellent polymer compound was contained.

(4)膜電極接合体(MEA)の作製
高分子電解質膜としてNafion(商品名:Nafion112、DuPont社製)を用いた。上記(1)にて作製した電極触媒ペーストをドクターブレード法にてPTFEシート上へ5cm×5cmになるよう塗布した後、アノード側、カソード側ともにイソプロピルアルコール雰囲気中にて乾燥し、電極触媒層を得た。作製した電極触媒層中のPt量は0.12mg/cmであった。得られた触媒層の厚みと重量より嵩密度を算出した。結果を表1に示す。
(4) Production of membrane electrode assembly (MEA) Nafion (trade name: Nafion112, manufactured by DuPont) was used as a polymer electrolyte membrane. After applying the electrode catalyst paste prepared in (1) above onto a PTFE sheet by a doctor blade method so as to be 5 cm × 5 cm, both the anode side and the cathode side are dried in an isopropyl alcohol atmosphere, and the electrode catalyst layer is formed. Obtained. The amount of Pt in the produced electrode catalyst layer was 0.12 mg / cm 2 . The bulk density was calculated from the thickness and weight of the obtained catalyst layer. The results are shown in Table 1.

作製した電極触媒層を高分子電解質膜の両面に挟み、5MPaの荷重を掛け、135℃、8分間ホットプレスを行った後、PTFEシートを剥離し、両極に(4)にて作製した多孔質電極基材を挟んでガス拡散電極とし、MEAを得た。   The produced electrode catalyst layer was sandwiched between both surfaces of the polymer electrolyte membrane, a 5 MPa load was applied, and hot pressing was performed at 135 ° C. for 8 minutes, and then the PTFE sheet was peeled off. An MEA was obtained by using a gas diffusion electrode with the electrode substrate interposed therebetween.

〔実施例2〕
電極触媒層の乾燥雰囲気を、アノードは大気中、カソードはイソプロピルアルコール雰囲気にて行った点を除いて、実施例1と同様に評価した。結果を表1に示す。
[Example 2]
The dry atmosphere of the electrode catalyst layer was evaluated in the same manner as in Example 1 except that the anode was in the air and the cathode was in an isopropyl alcohol atmosphere. The results are shown in Table 1.

〔実施例3〕
電極触媒層の乾燥雰囲気を、アノードはイソプロピルアルコール雰囲気、カソードは大気中にて行った点を除いて、実施例1と同様に評価した。結果を表1に示す。
Example 3
The dry atmosphere of the electrode catalyst layer was evaluated in the same manner as in Example 1 except that the anode was in an isopropyl alcohol atmosphere and the cathode was in the air. The results are shown in Table 1.

〔比較例1〕
電極触媒層の乾燥雰囲気を、アノード、カソードともに大気中にて行った点を除いて、実施例1と同様に評価した。結果を表1に示す。
[Comparative Example 1]
Evaluation was performed in the same manner as in Example 1 except that the drying atmosphere of the electrode catalyst layer was performed in the air for both the anode and the cathode. The results are shown in Table 1.

Figure 2008311180
Figure 2008311180

〔実施例4〕
(3)燃料電池特性評価
実施例1で作製したMEAを蛇腹状のガス流路を有する2枚のカーボンセパレーターによって挟み、固体高分子型燃料電池(単セル)を形成した。
Example 4
(3) Evaluation of fuel cell characteristics The MEA produced in Example 1 was sandwiched between two carbon separators having a bellows-like gas flow path to form a polymer electrolyte fuel cell (single cell).

この単セルについて、電流密度−電圧特性を測定することによって燃料電池特性評価を行った。燃料ガスとして水素ガスを用い、酸化ガスとして空気を用いた。セル温度80℃、燃料ガス利用率60%、酸化ガス利用率40%とした。また、ガス加湿はバブラーにそれぞれ燃料ガスと酸化ガスを通すことによって行った。
加湿温度80℃、電流密度が0.5A/cmのときの燃料電池セルのセル電圧が0.555V、セルの内部抵抗が3.01mΩであった。
また、加湿温度60℃、電流密度が0.5A/cmのときの燃料電池セルのセル電圧が0.482V、セルの内部抵抗が6.62mΩであり、良好な特性を示した。
About this single cell, the fuel cell characteristic evaluation was performed by measuring a current density-voltage characteristic. Hydrogen gas was used as the fuel gas, and air was used as the oxidizing gas. The cell temperature was 80 ° C., the fuel gas utilization rate was 60%, and the oxidizing gas utilization rate was 40%. Gas humidification was performed by passing fuel gas and oxidizing gas through a bubbler.
When the humidification temperature was 80 ° C. and the current density was 0.5 A / cm 2 , the cell voltage of the fuel cell was 0.555 V, and the internal resistance of the cell was 3.01 mΩ.
Further, when the humidification temperature was 60 ° C. and the current density was 0.5 A / cm 2 , the cell voltage of the fuel cell was 0.482 V, and the internal resistance of the cell was 6.62 mΩ, which showed good characteristics.

〔実施例5〕
実施例2で作製したMEAを用いた点を除いて、実施例4と同様に単セルを形成し、同様に評価した。
加湿温度80℃、電流密度が0.5A/cmのときの燃料電池セルのセル電圧が0.555V、セルの内部抵抗が3.16mΩであった。
また、加湿温度60℃、電流密度が0.5A/cmのときの燃料電池セルのセル電圧が0.477V、セルの内部抵抗が7.46mΩであり、良好な特性を示した。
Example 5
A single cell was formed in the same manner as in Example 4 except that the MEA produced in Example 2 was used, and was similarly evaluated.
When the humidification temperature was 80 ° C. and the current density was 0.5 A / cm 2 , the cell voltage of the fuel cell was 0.555 V, and the internal resistance of the cell was 3.16 mΩ.
Further, when the humidification temperature was 60 ° C. and the current density was 0.5 A / cm 2 , the cell voltage of the fuel battery cell was 0.477 V, and the internal resistance of the cell was 7.46 mΩ, which showed good characteristics.

〔実施例6〕
実施例3で作製したMEAを用いた点を除いて、実施例4と同様に単セルを形成し、同様に評価した。
加湿温度80℃、電流密度が0.5A/cmのときの燃料電池セルのセル電圧が0.536V、セルの内部抵抗が3.07mΩであった。
また、加湿温度60℃、電流密度が0.5A/cmのときの燃料電池セルのセル電圧が0.462V、セルの内部抵抗が6.77mΩであり、良好な特性を示した。
Example 6
A single cell was formed in the same manner as in Example 4 except that the MEA produced in Example 3 was used, and was similarly evaluated.
When the humidification temperature was 80 ° C. and the current density was 0.5 A / cm 2 , the cell voltage of the fuel cell was 0.536 V, and the internal resistance of the cell was 3.07 mΩ.
Further, when the humidification temperature was 60 ° C. and the current density was 0.5 A / cm 2 , the cell voltage of the fuel battery cell was 0.462 V, and the internal resistance of the cell was 6.77 mΩ, which showed good characteristics.

〔比較例2〕
比較例1で作製したMEAを用いた点を除いて、実施例4と同様に単セルを形成し、同様にして評価した。
加湿温度80℃、電流密度が0.5A/cmのときの燃料電池セルのセル電圧が0.542V、セルの内部抵抗が3.03mΩであった。
また、加湿温度60℃、電流密度が0.5A/cmのときの燃料電池セルのセル電圧が0.438V、セルの内部抵抗が8.17mΩであり、加湿器温度によって、大きな性能低下が見られた。
[Comparative Example 2]
A single cell was formed in the same manner as in Example 4 except that the MEA produced in Comparative Example 1 was used, and evaluated in the same manner.
When the humidification temperature was 80 ° C. and the current density was 0.5 A / cm 2 , the cell voltage of the fuel cell was 0.542 V, and the internal resistance of the cell was 3.03 mΩ.
In addition, when the humidification temperature is 60 ° C. and the current density is 0.5 A / cm 2 , the cell voltage of the fuel cell is 0.438 V, and the internal resistance of the cell is 8.17 mΩ. It was seen.

Figure 2008311180
Figure 2008311180

本発明の固体高分子型燃料電池の一形態を示す模式的断面図である。It is a typical sectional view showing one form of a polymer electrolyte fuel cell of the present invention.

符号の説明Explanation of symbols

1:高分子電解質膜
2:カソード側触媒層
3:アノード側触媒層
4:カソード側多孔質電極基材
5:アノード側多孔質電極基材
6:膜電極接合体(MEA)
7:カソード側セパレーター
8:アノード側セパレーター
9:酸化ガス導入部
10:酸化ガス排出部
11:燃料ガス導入部
12:燃料ガス排出部
13:カソード側ガス流路
14:アノード側ガス流路
1: Polymer electrolyte membrane 2: Cathode side catalyst layer 3: Anode side catalyst layer 4: Cathode side porous electrode substrate 5: Anode side porous electrode substrate 6: Membrane electrode assembly (MEA)
7: Cathode side separator 8: Anode side separator 9: Oxidizing gas introduction part 10: Oxidizing gas discharge part 11: Fuel gas introduction part 12: Fuel gas discharge part 13: Cathode side gas flow path 14: Anode side gas flow path

Claims (9)

高分子電解質膜、触媒を担持した炭素粉末と高分子電解質とを含む電極触媒層及び多孔質電極基材とをこの順に積層してなる膜電極接合体であって、
前記電極触媒層は、嵩密度が14〜20mg/cmの範囲であり、
前記多孔質電極基材は、細孔径が1〜100μmの範囲に細孔容積の80%以上存在し、細孔径ピークが10〜50μmの範囲に存在する多孔質電極基材であることを特徴とする膜電極接合体。
A membrane electrode assembly comprising a polymer electrolyte membrane, an electrode catalyst layer containing a carbon powder supporting a catalyst and a polymer electrolyte, and a porous electrode substrate, which are laminated in this order,
The electrode catalyst layer has a bulk density of 14 to 20 mg / cm 3 ,
The porous electrode substrate is a porous electrode substrate in which 80% or more of the pore volume is present in a pore diameter range of 1 to 100 μm and a pore diameter peak is present in a range of 10 to 50 μm. Membrane electrode assembly.
高分子電解質膜の両側に、触媒を担持した炭素粉末と高分子電解質とを含む電極触媒層、さらに両側の電極触媒層に2枚の多孔質電極基材をそれぞれ積層してなる膜電極接合体であって、
前記電極触媒層の少なくとも一方は、嵩密度が14〜20mg/cmの範囲であり、
前記2枚の多孔質電極基材は、細孔径が1〜100μmの範囲に細孔容積の80%以上存在し、細孔径ピークが10〜50μmの範囲に存在する多孔質電極基材であることを特徴とする膜電極接合体。
Membrane / electrode assembly comprising an electrode catalyst layer containing a carbon powder carrying a catalyst and a polymer electrolyte on both sides of a polymer electrolyte membrane, and two porous electrode substrates laminated on both electrode catalyst layers. Because
At least one of the electrode catalyst layers has a bulk density in the range of 14 to 20 mg / cm 3 ,
The two porous electrode substrates are porous electrode substrates having a pore diameter in the range of 1 to 100 μm and 80% or more of the pore volume and a pore diameter peak in the range of 10 to 50 μm. A membrane electrode assembly characterized by the above.
前記電極触媒層の両方が、嵩密度が14〜20mg/cmの範囲にある請求項2に記載の膜電極接合体。 The membrane electrode assembly according to claim 2, wherein both of the electrode catalyst layers have a bulk density in the range of 14 to 20 mg / cm 3 . 前記多孔質電極基材は、炭素繊維抄紙体である請求項1乃至3のいずれか1項に記載の膜電極接合体。   The membrane electrode assembly according to any one of claims 1 to 3, wherein the porous electrode substrate is a carbon fiber papermaking body. 触媒を担持した炭素粉末と高分子電解質溶液とを含んでなる組成物を任意の基材に成膜し、前記高分子電解質溶液の溶媒を除去して電極触媒層を得、これを高分子電解質膜の側面に転写し、さらに多孔質電極基材を前記電極触媒層と重なるように積層する膜電極接合体の製造方法であって、前記高分子電解質膜の側面に転写される電極触媒層が、前記高分子電解質溶液の溶媒の除去を前記高分子電解質溶液の溶媒のガスの存在下に放置することで行い、嵩密度14〜20mg/cmの範囲とした電極触媒層であり、前記多孔質電極基材が、細孔径が1〜100μmの範囲に細孔容積の80%以上存在し、細孔径ピークが10〜50μmの範囲に存在する多孔質電極基材であることを特徴とする膜電極接合体の製造方法。 A composition comprising a carbon powder carrying a catalyst and a polymer electrolyte solution is formed on an arbitrary substrate, and the solvent of the polymer electrolyte solution is removed to obtain an electrode catalyst layer. A method for producing a membrane / electrode assembly in which a porous electrode base material is laminated so as to be superimposed on the electrode catalyst layer, the electrode catalyst layer being transferred to the side surface of the polymer electrolyte membrane, And removing the solvent of the polymer electrolyte solution by leaving it in the presence of a gas of the solvent of the polymer electrolyte solution, the electrode catalyst layer having a bulk density of 14 to 20 mg / cm 3 , A porous electrode substrate in which the porous electrode substrate is present in which the pore diameter is in the range of 1 to 100 μm and 80% or more of the pore volume and the pore diameter peak is in the range of 10 to 50 μm Manufacturing method of electrode assembly. 触媒を担持した炭素粉末と高分子電解質溶液とを含んでなる組成物を任意の基材に成膜し、前記高分子電解質溶液の溶媒を除去して電極触媒層を得、これを高分子電解質膜の両側面に転写し、さらに多孔質電極基材を前記電極触媒層と重なるように積層する膜電極接合体の製造方法であって、前記高分子電解質膜の両側面に転写される電極触媒層の少なくとも一方が、前記高分子電解質溶液の溶媒の除去を前記高分子電解質溶液の溶媒のガスの存在下に放置することで行い、嵩密度14〜20mg/cmの範囲とした電極触媒層であり、前記多孔質電極基材が、細孔径が1〜100μmの範囲に細孔容積の80%以上存在し、細孔径ピークが10〜50μmの範囲に存在する多孔質電極基材であることを特徴とする膜電極接合体の製造方法。 A composition comprising a carbon powder carrying a catalyst and a polymer electrolyte solution is formed on an arbitrary substrate, and the solvent of the polymer electrolyte solution is removed to obtain an electrode catalyst layer. A method for producing a membrane electrode assembly, which is transferred to both side surfaces of a membrane and further laminated with a porous electrode base material so as to overlap the electrode catalyst layer, and is transferred to both side surfaces of the polymer electrolyte membrane The electrode catalyst layer in which at least one of the layers is removed by leaving the solvent of the polymer electrolyte solution in the presence of a gas of the solvent of the polymer electrolyte solution, and has a bulk density of 14 to 20 mg / cm 3. The porous electrode substrate is a porous electrode substrate in which 80% or more of the pore volume is present in the pore diameter range of 1 to 100 μm and the pore diameter peak is in the range of 10 to 50 μm. For manufacturing a membrane electrode assembly 前記高分子電解質膜の両側面に転写される電極触媒層の両方が、前記高分子電解質溶液の溶媒の除去を前記高分子電解質溶液の溶媒のガスの存在下に放置することで行い、嵩密度14〜20mg/cmの範囲とした電極触媒層である請求項6に記載の膜電極接合体の製造方法。 Both of the electrode catalyst layers transferred to both sides of the polymer electrolyte membrane are removed by leaving the solvent of the polymer electrolyte solution in the presence of a gas of the solvent of the polymer electrolyte solution, and the bulk density The method for producing a membrane / electrode assembly according to claim 6, wherein the electrode catalyst layer has a range of 14 to 20 mg / cm 3 . 前記多孔質電極基材は、炭素繊維抄紙体である請求項5乃至7のいずれか1項に記載の膜電極接合体の製造方法。   The method for producing a membrane / electrode assembly according to any one of claims 5 to 7, wherein the porous electrode substrate is a carbon fiber papermaking body. 請求項1乃至4のいずれか1項に記載の膜電極接合体を用いた固体高分子型燃料電池。   A polymer electrolyte fuel cell using the membrane electrode assembly according to any one of claims 1 to 4.
JP2007160153A 2007-06-18 2007-06-18 Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly Pending JP2008311180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007160153A JP2008311180A (en) 2007-06-18 2007-06-18 Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007160153A JP2008311180A (en) 2007-06-18 2007-06-18 Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly

Publications (1)

Publication Number Publication Date
JP2008311180A true JP2008311180A (en) 2008-12-25

Family

ID=40238590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160153A Pending JP2008311180A (en) 2007-06-18 2007-06-18 Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP2008311180A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119017A1 (en) * 2008-03-24 2009-10-01 三洋電機株式会社 Membrane electrode assembly and fuel cell
JP2010033910A (en) * 2008-07-29 2010-02-12 Dainippon Printing Co Ltd Method of manufacturing catalyst layer of polymer electrolyte fuel cell, and catalyst layer-electrolyte film laminate
JP2013016476A (en) * 2011-06-09 2013-01-24 Toray Ind Inc Gas diffusion electrode base material and production method therefor
JP2015026448A (en) * 2013-07-24 2015-02-05 日産自動車株式会社 Conductive sheet, fuel cell, and process of manufacturing a conductive sheet
JP2017204449A (en) * 2016-05-13 2017-11-16 トヨタ自動車株式会社 Fuel cell
JP6332541B1 (en) * 2017-10-31 2018-05-30 凸版印刷株式会社 Electrocatalyst layer
WO2019088096A1 (en) * 2017-10-31 2019-05-09 凸版印刷株式会社 Electrode catalyst layer and solid polymer fuel cell
JP2019083186A (en) * 2017-10-31 2019-05-30 凸版印刷株式会社 Electrode catalyst layer
JP2021192392A (en) * 2018-05-07 2021-12-16 凸版印刷株式会社 Electrode catalyst layer
JP7315079B2 (en) 2018-05-07 2023-07-26 凸版印刷株式会社 Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119017A1 (en) * 2008-03-24 2009-10-01 三洋電機株式会社 Membrane electrode assembly and fuel cell
JP2009231146A (en) * 2008-03-24 2009-10-08 Sanyo Electric Co Ltd Membrane-electrode assembly and fuel cell
US8440364B2 (en) 2008-03-24 2013-05-14 Sanyo Electric Co., Ltd. Membrane electrode assembly and fuel cell
JP2010033910A (en) * 2008-07-29 2010-02-12 Dainippon Printing Co Ltd Method of manufacturing catalyst layer of polymer electrolyte fuel cell, and catalyst layer-electrolyte film laminate
JP2013016476A (en) * 2011-06-09 2013-01-24 Toray Ind Inc Gas diffusion electrode base material and production method therefor
JP2015026448A (en) * 2013-07-24 2015-02-05 日産自動車株式会社 Conductive sheet, fuel cell, and process of manufacturing a conductive sheet
JP2017204449A (en) * 2016-05-13 2017-11-16 トヨタ自動車株式会社 Fuel cell
US10673075B2 (en) 2016-05-13 2020-06-02 Toyota Jidosha Kabushiki Kaisha Fuel cell catalyst layer for improving power generation
JP6332541B1 (en) * 2017-10-31 2018-05-30 凸版印刷株式会社 Electrocatalyst layer
WO2019088096A1 (en) * 2017-10-31 2019-05-09 凸版印刷株式会社 Electrode catalyst layer and solid polymer fuel cell
JP2019083167A (en) * 2017-10-31 2019-05-30 凸版印刷株式会社 Electrode catalyst layer
JP2019083186A (en) * 2017-10-31 2019-05-30 凸版印刷株式会社 Electrode catalyst layer
JP2021192392A (en) * 2018-05-07 2021-12-16 凸版印刷株式会社 Electrode catalyst layer
JP7140256B2 (en) 2018-05-07 2022-09-21 凸版印刷株式会社 Electrocatalyst layer
JP7315079B2 (en) 2018-05-07 2023-07-26 凸版印刷株式会社 Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
JP2008311180A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
CA2368258C (en) Gas diffusion substrates
JP2006252948A (en) Humidity adjusting film
JP4133654B2 (en) Polymer electrolyte fuel cell
WO2011013711A1 (en) Gas diffusion layer member for solid polymer fuel cells, and solid polymer fuel cell
JP4612569B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
JP5915283B2 (en) Gas diffusion layer and fuel cell using the same
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
JP4959945B2 (en) Polymer electrolyte fuel cell
JP2008034295A (en) Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it
JP2007012424A (en) Gas diffusion electrode, membrane-electrode joined body and its manufacturing method, and solid polymer fuel cell
JP2007214019A (en) Membrane electrode assembly for fuel cell and gas diffusion layer for fuel cell
JP6571961B2 (en) ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE COMPLEX FOR FUEL CELL, AND FUEL CELL
JP2004296176A (en) Solid polymer fuel cell
JP2007214019A5 (en)
JP4942362B2 (en) Membrane-electrode assembly and polymer electrolyte fuel cell using the same
KR20170036632A (en) Membrane-electrode assembly for fuel cell, method for manufacturing of the same, and fuel cell comprising the same
JP2007234359A (en) Membrane electrode assembly for solid polymer fuel cell
JP5311538B2 (en) Method for producing porous carbon electrode substrate
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP2008311181A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP5391968B2 (en) Gas diffusion layer for polymer electrolyte fuel cell and method for producing the same
JP2008027811A (en) Membrane/electrode assembly for fuel cell
JP5339261B2 (en) Fuel cell
JP4872202B2 (en) Fuel cell and fuel cell manufacturing method