JP4133654B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4133654B2
JP4133654B2 JP2003270230A JP2003270230A JP4133654B2 JP 4133654 B2 JP4133654 B2 JP 4133654B2 JP 2003270230 A JP2003270230 A JP 2003270230A JP 2003270230 A JP2003270230 A JP 2003270230A JP 4133654 B2 JP4133654 B2 JP 4133654B2
Authority
JP
Japan
Prior art keywords
catalyst
electrode
carrier
catalyst layer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003270230A
Other languages
Japanese (ja)
Other versions
JP2005026174A (en
Inventor
薫 福田
一郎 田中
順二 松尾
雅樹 谷
長之 金岡
英樹 海藤
恵子 江藤
あゆみ 龍
多田  智之
井上  昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Tanaka Kikinzoku Kogyo KK
Original Assignee
Honda Motor Co Ltd
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Tanaka Kikinzoku Kogyo KK filed Critical Honda Motor Co Ltd
Priority to JP2003270230A priority Critical patent/JP4133654B2/en
Publication of JP2005026174A publication Critical patent/JP2005026174A/en
Application granted granted Critical
Publication of JP4133654B2 publication Critical patent/JP4133654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、固体高分子形燃料電池に係り、特に、黒鉛化担体触媒を用いた固体高分子形燃料電池に関するものである。   The present invention relates to a polymer electrolyte fuel cell, and more particularly to a polymer electrolyte fuel cell using a graphitized support catalyst.

固体高分子形燃料電池は、平板状の電極構造体の両側にセパレータが積層されて構成されている。電極構造体は、一般に、カソード側の電極触媒層とアノード側の電極触媒層との間に高分子電解膜が挟まれ、各電極触媒層の外側にガス拡散層がそれぞれ積層された積層体である。このような燃料電池によると、例えば、アノード側に配されたセパレータのガス通路に燃料ガスを流し、カソード側に配されたセパレータのガス通路に酸化性ガスを流すと、電気化学反応が起こって電流が発生する。   A polymer electrolyte fuel cell is configured by stacking separators on both sides of a flat electrode structure. An electrode structure is generally a laminate in which a polymer electrolyte membrane is sandwiched between an electrode catalyst layer on the cathode side and an electrode catalyst layer on the anode side, and a gas diffusion layer is laminated outside each electrode catalyst layer. is there. According to such a fuel cell, for example, when a fuel gas is caused to flow through the gas passage of the separator disposed on the anode side and an oxidizing gas is caused to flow through the gas passage of the separator disposed on the cathode side, an electrochemical reaction occurs. Electric current is generated.

燃料電池の作動中においては、ガス拡散層は電気化学反応によって生成した電子を電極触媒層とセパレータとの間で伝達させると同時に燃料ガスおよび酸化性ガスを拡散させる。また、アノード側の電極触媒層は燃料ガスに化学反応を起こさせプロトン(H)と電子を発生させ、一方、カソード側の電極触媒層は酸素とプロトンと電子から水を生成し、さらに、電解膜はプロトンをイオン伝導させる。そして、正負の電極触媒層を通して電力が取り出される。 During operation of the fuel cell, the gas diffusion layer transmits electrons generated by the electrochemical reaction between the electrode catalyst layer and the separator, and simultaneously diffuses the fuel gas and the oxidizing gas. The anode-side electrode catalyst layer causes a chemical reaction to the fuel gas to generate protons (H + ) and electrons, while the cathode-side electrode catalyst layer generates water from oxygen, protons, and electrons, The electrolytic membrane causes protons to conduct ions. Then, electric power is taken out through the positive and negative electrode catalyst layers.

上記のアノード側で起こるプロトンおよび電子の生成は、触媒、担体および電解質という三相の共存下で行われる。すなわち、プロトンが伝導する電解質と電子が伝導する担体が共存し、さらに触媒が共存することで水素ガスが酸化される。   The generation of protons and electrons occurring on the anode side is performed in the presence of a three-phase catalyst, carrier and electrolyte. That is, an electrolyte that conducts protons and a carrier that conducts electrons coexist, and the catalyst coexists to oxidize hydrogen gas.

電極触媒層は、一般に、表面にPt等の触媒粒子を担持させた担体とイオン伝導性ポリマーからなる電解質とを溶媒に混合して触媒ペーストを調製し、この触媒ペーストを、膜やカーボンペースト、またはテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)シートに塗布乾燥させることにより形成している。   The electrode catalyst layer is generally prepared by mixing a carrier having a catalyst particle such as Pt supported on the surface and an electrolyte made of an ion conductive polymer in a solvent to prepare a catalyst paste. Alternatively, it is formed by coating and drying on a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) sheet.

また、燃料電池における担体としては、触媒を担持する担体を黒鉛化することにより、担体触媒の耐久性を良好とする技術が知られている。さらに、担体としては、電極触媒層の撥水性および耐食性に優れることから、[002]面の平均格子面間隔d002、結晶子の大きさLc(002)、および、比表面積を特定の範囲に規定したカーボン粒子が報告されている(例えば、特許文献1〜4参照。)。 Further, as a carrier in a fuel cell, a technique for improving the durability of the carrier catalyst by graphitizing the carrier carrying the catalyst is known. Furthermore, since the electrode catalyst layer is excellent in water repellency and corrosion resistance as a support, the average lattice spacing d 002 of the [002] plane, the crystallite size Lc (002), and the specific surface area are within a specific range. Defined carbon particles have been reported (for example, see Patent Documents 1 to 4).

特開2000−268828号公報JP 2000-268828 A 特開2001−357857号公報JP 2001-357857 A 特開2002−015745号公報JP 2002-015745 A 特開2003−036859号公報JP 2003-036859 A

しかしながら、従来のように、単に担体を加熱処理により黒鉛化しても、大きな凝集体が形成されて電極触媒層の厚さが不均一になり、高分子電解膜を変形させて、発電効率を低下させてしまうといった問題を有していた。また、担体の黒鉛化が進みすぎると、発電において供給されるガスや生成される水が通る電極触媒層中の細孔を良好に形成することができず、発電性能が劣ってしまうといった問題も有していた。このような黒鉛化の問題に対しては、カーボン粒子の[002]面の平均格子面間隔d002、結晶子の大きさLc(002)、および、比表面積を特定の範囲に規定しただけでは解決するには至っていない。 However, even if the support is simply graphitized by heat treatment as in the past, large aggregates are formed and the thickness of the electrode catalyst layer becomes non-uniform, deforming the polymer electrolyte membrane and reducing power generation efficiency. It had the problem of letting it go. In addition, if the support is excessively graphitized, the pores in the electrode catalyst layer through which the gas supplied and the water generated in power generation pass cannot be satisfactorily formed, resulting in poor power generation performance. Had. For such a graphitization problem, simply defining the average lattice spacing d 002 of the [002] plane of the carbon particles, the crystallite size Lc (002), and the specific surface area within a specific range. It has not been solved.

したがって、本発明は、担体の黒鉛化により優れた耐久性が得られるとともに、電極触媒層中の細孔の制御により優れた発電性能が得られる固体高分子形燃料電池を提供することを目的としている。   Accordingly, an object of the present invention is to provide a polymer electrolyte fuel cell that can obtain excellent durability by graphitization of a support and can obtain excellent power generation performance by controlling pores in an electrode catalyst layer. Yes.

本発明の固体高分子形燃料電池用電極は、触媒、担体、電解質および造孔剤からなる電極触媒層を有し、前記担体は、[002]面の平均格子面間隔d002が0.338〜0.355nmであり、比表面積が80〜250m/gであり、かさ密度が0.30〜0.45g/mlであり、前記電極触媒層中の0.01〜2.0μmの細孔容積が3.8μl/cm/mg−Pt以上であり、かつ0.01〜0.15μmの細孔容積が2.0μl/cm/mg−Pt以上であることを特徴としている。 The electrode for a polymer electrolyte fuel cell of the present invention has an electrode catalyst layer composed of a catalyst, a carrier, an electrolyte, and a pore forming agent, and the carrier has an average lattice plane distance d 002 of [002] plane of 0.338. ˜0.355 nm, specific surface area of 80 to 250 m 2 / g, bulk density of 0.30 to 0.45 g / ml, and 0.01 to 2.0 μm pores in the electrode catalyst layer The volume is 3.8 μl / cm 2 / mg-Pt or more, and the pore volume of 0.01 to 0.15 μm is 2.0 μl / cm 2 / mg-Pt or more.

また、本発明の固体高分子形燃料電池においては、触媒は、比表面積が75〜100m/gであり、触媒粒子の結晶子サイズが2〜5nmであり、担体は、触媒担持率が40〜60重量%であり、触媒担持後の[002]面の平均格子面間隔d002が0.338〜0.345nmであり、かつ、その平均格子面間隔の測定におけるX線回折のピークが単一なピークであることが好適な態様である。 In the polymer electrolyte fuel cell of the present invention, the catalyst has a specific surface area of 75 to 100 m 2 / g, the crystallite size of the catalyst particles is 2 to 5 nm, and the carrier has a catalyst loading ratio of 40. The average lattice spacing d 002 of the [002] plane after catalyst loading is 0.338 to 0.345 nm, and the peak of X-ray diffraction in the measurement of the average lattice spacing is simple. It is a preferred embodiment that it is a single peak.

本発明によれば、[002]面の平均格子面間隔d002を0.338〜0.355nm、比表面積を80〜250m/g、かさ密度を0.30〜0.45g/mlとした担体とともに、造孔剤を用いることにより、電極触媒層中の0.01〜2.0μmの細孔容積を3.8μl/cm/mg−Pt以上、かつ0.01〜0.15μmの細孔容積を2.0μl/cm/mg−Pt以上に制御し、優れた耐久性と優れた発電性能とを兼ね備えることができる。 According to the present invention, the average lattice spacing d 002 of the [002] plane is 0.338 to 0.355 nm, the specific surface area is 80 to 250 m 2 / g, and the bulk density is 0.30 to 0.45 g / ml. By using a pore-forming agent together with the carrier, the pore volume of 0.01 to 2.0 μm in the electrode catalyst layer is 3.8 μl / cm 2 / mg-Pt or more and 0.01 to 0.15 μm. The pore volume can be controlled to 2.0 μl / cm 2 / mg-Pt or more, and both excellent durability and excellent power generation performance can be obtained.

本発明の固体高分子形燃料電池は、高分子電解膜を挟むようにカソード側の電極触媒層とアノード側の電極触媒層とが積層され、さらに、これらの電極触媒層の外側にガス拡散層がそれぞれ積層されて電極構造体が形成されており、この電極構造体が、セパレータを介して多数積層されて構成されている。本発明においては、電極触媒層以外の構成要素は特に限定されるものではないので、以下、電極触媒層について詳細に説明する。   In the polymer electrolyte fuel cell of the present invention, a cathode-side electrode catalyst layer and an anode-side electrode catalyst layer are laminated so as to sandwich a polymer electrolyte membrane, and further, a gas diffusion layer is formed outside these electrode catalyst layers. Are stacked to form an electrode structure, and a large number of these electrode structures are stacked via separators. In the present invention, constituent elements other than the electrode catalyst layer are not particularly limited, and therefore the electrode catalyst layer will be described in detail below.

本発明の固体高分子形燃料電池における電極触媒層は、触媒、担体、電解質、および造孔剤から構成されている。本発明の電極触媒層は、特定の物性値を有する担体とともに、造孔剤を用いることにより、電極触媒層中の0.01〜2.0μmの細孔容積を3.8μl/cm/mg−Pt以上、かつ0.01〜0.15μmの細孔容積を2.0μl/cm/mg−Pt以上に制御している。この0.01〜0.15μmの細孔は、主に燃料ガスや酸化性ガスを供給するためのものであり、0.15〜2.0μmの細孔は、発電で生成された水を排出するためのものである。これらの細孔の容積を規定することにより良好な発電性能を発揮することができる。また、本発明の固体高分子形燃料電池は、従来の方法を用いて製造することができる。 The electrode catalyst layer in the polymer electrolyte fuel cell of the present invention is composed of a catalyst, a carrier, an electrolyte, and a pore former. The electrode catalyst layer of the present invention uses a pore-forming agent together with a carrier having specific physical property values, so that the pore volume of 0.01 to 2.0 μm in the electrode catalyst layer is 3.8 μl / cm 2 / mg. The pore volume of −Pt or more and 0.01 to 0.15 μm is controlled to 2.0 μl / cm 2 / mg-Pt or more. The pores of 0.01 to 0.15 μm are mainly for supplying fuel gas and oxidizing gas, and the pores of 0.15 to 2.0 μm discharge water generated by power generation. Is to do. By defining the volume of these pores, good power generation performance can be exhibited. The polymer electrolyte fuel cell of the present invention can be produced using a conventional method.

以下、本発明における各構成要素について説明する。
(1)触媒
本発明における触媒は、白金および白金合金であることが好ましく、白金合金としては、ルテニウム、ロジウム、パラジウムオスミウム、イリジウム、金、銀、クロム、鉄、コバルト、ニッケル、モリブデン、タングステン、アルミニウム、ケイ素、亜鉛、錫等と白金との合金が挙げられる。また、本発明における触媒は、比表面積が75〜100m/gであることが好ましい。この比表面積が75m/g未満であると、細孔量が減少することで電池特性が低下してしまい、一方、100m/gを超えると、耐久性に問題を有してしまう。さらに、本発明における触媒は、触媒粒子の結晶子サイズが2〜5nmであることが好ましい。この結晶子サイズが2nm未満であると、触媒活性が低下してしまい、一方、5nmを超えると、触媒表面積が減少することで電池特性が低下してしまう。
Hereinafter, each component in the present invention will be described.
(1) Catalyst The catalyst in the present invention is preferably platinum and a platinum alloy. Examples of the platinum alloy include ruthenium, rhodium, palladium osmium, iridium, gold, silver, chromium, iron, cobalt, nickel, molybdenum, tungsten, An alloy of platinum with aluminum, silicon, zinc, tin, or the like can be given. Moreover, it is preferable that the specific surface area of the catalyst in this invention is 75-100 m < 2 > / g. If the specific surface area is less than 75 m 2 / g, the amount of pores decreases and the battery characteristics deteriorate. On the other hand, if the specific surface area exceeds 100 m 2 / g, there is a problem in durability. Furthermore, the catalyst in the present invention preferably has a crystallite size of the catalyst particles of 2 to 5 nm. When the crystallite size is less than 2 nm, the catalytic activity is lowered. On the other hand, when the crystallite size is more than 5 nm, the battery surface characteristics are lowered due to a decrease in the catalyst surface area.

(2)担体
本発明における担体としては、カーボンブラック等のカーボン粒子を好適に用いることができ、このカーボン粒子を、2000〜3000℃、熱処理により黒鉛化することによって、[002]面の平均格子面間隔d002が0.338〜0.355nmであり、比表面積が80〜250m/gであり、かさ密度が0.30〜0.45g/mlである黒鉛化担体触媒とすることができる。なお、この黒鉛化の熱処理については、装置等によって温度および時間を適宜選択することが好ましい。d002が0.338nm未満では、電圧が低く、電池特性が悪くなってしまう。一方、d002が0.355nmを超えると、電極担体の耐久性が劣ってしまう。また、比表面積が80m/g未満では、触媒の分散性が劣ってしまい、一方、比表面積が250m/gを超えると、担体の反応点が多くなり、担体が腐食しやすく耐久性が劣ってしまう。さらに、かさ密度が0.30g/ml未満では、ペーストの粘度が上昇し、一方、かさ密度が0.45g/mlを超えると、ペーストの粘度が低く、どちらの場合も、分散性が悪く、良好に攪拌できず不均一な電極となってしまう。
(2) Carrier As the carrier in the present invention, carbon particles such as carbon black can be suitably used, and the carbon particles are graphitized by heat treatment at 2000 to 3000 ° C. to obtain an average lattice of [002] plane. A graphitized support catalyst having an interplanar distance d 002 of 0.338 to 0.355 nm, a specific surface area of 80 to 250 m 2 / g, and a bulk density of 0.30 to 0.45 g / ml can be obtained. . Regarding the heat treatment for graphitization, it is preferable to appropriately select the temperature and time by an apparatus or the like. The d 002 of less than 0.338 nm, low voltage, battery characteristics is deteriorated. On the other hand, if d 002 exceeds 0.355Nm, durability of the electrode carrier will inferior. On the other hand, when the specific surface area is less than 80 m 2 / g, the dispersibility of the catalyst is inferior. On the other hand, when the specific surface area exceeds 250 m 2 / g, the reaction points of the support increase, and the support is easily corroded and has durability. It will be inferior. Furthermore, if the bulk density is less than 0.30 g / ml, the viscosity of the paste increases, whereas if the bulk density exceeds 0.45 g / ml, the viscosity of the paste is low, and in both cases, the dispersibility is poor, Stirring cannot be performed well, resulting in a non-uniform electrode.

また、本発明における担体は、触媒担持率が40〜60重量%であり、触媒担持後の[002]面の平均格子面間隔d002が0.338〜0.345nmであり、かつ、その平均格子面間隔の測定におけるX線回折のピークが単一なピークであることが好適な態様である。触媒担持率が40重量%未満では、電池の厚みが厚くなることで電池特性が低下してしまい、一方、60重量%を超えると、触媒の分散性が悪くなってしまう。また、触媒担持後のd002が0.338nm未満では、細孔量が減少することで電池特性が低下してしまい、一方、0.345nmを超えると、耐久性に問題を有してしまう。さらに、X線回折のピークが単一でない場合には、電極としては、細孔量が減少することで電池特性が低下してしまい、また、触媒としては、担持が不均一であることで電池特性が低下してしまう。 The carrier in the present invention has a catalyst loading ratio of 40 to 60% by weight, an average lattice spacing d 002 of [002] plane after catalyst loading is 0.338 to 0.345 nm, and the average In a preferred embodiment, the X-ray diffraction peak in the measurement of the lattice spacing is a single peak. If the catalyst loading is less than 40% by weight, the battery characteristics increase due to the thick battery, while if it exceeds 60% by weight, the dispersibility of the catalyst deteriorates. On the other hand, if d 002 after catalyst loading is less than 0.338 nm, the amount of pores decreases, resulting in a decrease in battery characteristics. On the other hand, if d 002 exceeds 0.345 nm, there is a problem in durability. Furthermore, when the peak of the X-ray diffraction is not single, as the electrode, the battery characteristics deteriorate due to the decrease in the amount of pores, and as the catalyst, the battery is uneven due to non-uniform loading. The characteristics will deteriorate.

(3)電解質
本発明における電解質としては、フッ素樹脂系イオン交換樹脂等のイオン伝導性ポリマーを用いることができる。担体に対する電解質の重量比は、1.4以上にすることが望ましい。電解質の量が少ないと空孔率が増加してガス拡散性が向上するが、その一方で触媒を担持した担体が充分に被覆されなくなり、燃料ガスや酸化性ガスが活性化される点が減少して触媒の利用率が低下する。
(3) Electrolyte As the electrolyte in the present invention, an ion conductive polymer such as a fluororesin ion exchange resin can be used. The weight ratio of the electrolyte to the carrier is desirably 1.4 or more. If the amount of electrolyte is small, the porosity increases and gas diffusivity is improved. On the other hand, the carrier carrying the catalyst is not sufficiently covered, and the point where the fuel gas and oxidizing gas are activated is reduced. As a result, the utilization rate of the catalyst decreases.

(4)造孔剤
本発明における造孔剤は、直径が0.4μm以下の微細な繊維状物質であることが望ましい。このような微細な繊維状物質を造孔剤として触媒ペーストに添加することにより、繊維がピラーとなってプレス時の荷重を受け持ち、カーボンや固体高分子電解膜に必要以上の圧縮加重が作用することなく、ガスチャンネルが潰されずに保持されるため、発電効率が向上される。さらに、このような繊維状物質を用いる利点としては、プレス工程後の触媒層の空孔率を繊維状物質の添加量により自在に制御することが可能となる。
(4) Pore-forming agent The pore-forming agent in the present invention is desirably a fine fibrous material having a diameter of 0.4 μm or less. By adding such a fine fibrous material to the catalyst paste as a pore-forming agent, the fibers become pillars and take the load during pressing, and the compression load more than necessary acts on the carbon and the polymer electrolyte membrane. Since the gas channel is held without being crushed, the power generation efficiency is improved. Furthermore, as an advantage of using such a fibrous substance, the porosity of the catalyst layer after the pressing step can be freely controlled by the amount of the fibrous substance added.

上記の繊維状物質としては、アルミナウィスカー、シリカウィスカー等の無機繊維、気相成長カーボン(炭素ウィスカー)等の炭素繊維、ナイロンやポリイミド等の高分子繊維が挙げられるが、これらの中でも、微細で、かつ電子伝導性を有する炭素ウィスカーが好ましく用いられる。炭素ウィスカーは、触媒層を構成する触媒物質や、触媒物質を担持した電子伝導物質に絡みつくことにより、この電子伝導物質の点接触による導電パスに加えて新たな導電パスが発現し、このため、触媒層の電子伝導性が向上する。また、炭素ウィスカーは、電子伝導性を有するので、触媒物質の電極内での面積密度の向上を目的として、触媒物質を炭素ウィスカーの表面にも担持させて用いることもできる。   Examples of the fibrous material include inorganic fibers such as alumina whisker and silica whisker, carbon fibers such as vapor-grown carbon (carbon whisker), and polymer fibers such as nylon and polyimide. Carbon whiskers having electronic conductivity are preferably used. The carbon whisker is entangled with the catalyst material constituting the catalyst layer and the electron conductive material carrying the catalyst material, so that a new conductive path is developed in addition to the conductive path due to the point contact of this electron conductive material. The electron conductivity of the catalyst layer is improved. In addition, since the carbon whisker has electronic conductivity, the catalytic material can be supported on the surface of the carbon whisker for the purpose of improving the area density of the catalytic material in the electrode.

また、本発明における繊維状物質は、自身が撥水性を有するもの、または表面が撥水化処理されているものであることを好ましい形態としている。前述の如く、繊維状物質は絡み合って電極触媒層中に存在することにより空孔が生じやすく、この空孔がガスチャンネルとして機能する。燃料電池にあっては、発電に伴いカソード側の電極触媒層内では水蒸気が生成し、その水蒸気は電極触媒層の表面側に形成される拡散層を通って系外に排出される。ここで、その水蒸気が結露すると水がガスチャンネルを閉塞し、ガスの流動性を著しく低下させる。そこで、繊維状物質が撥水性を有していたり表面が撥水化処理されていたりすれば、結露が防止されて空孔すなわちガスチャンネルの閉塞が防止され、ガスの透過性が確保される。   In addition, the fibrous substance in the present invention preferably has a water repellent property or a surface that has been subjected to a water repellent treatment. As described above, since the fibrous material is entangled and exists in the electrode catalyst layer, pores are easily generated, and these pores function as gas channels. In the fuel cell, water vapor is generated in the electrode catalyst layer on the cathode side with power generation, and the water vapor is discharged out of the system through the diffusion layer formed on the surface side of the electrode catalyst layer. Here, when the water vapor is condensed, the water closes the gas channel, and the fluidity of the gas is remarkably lowered. Therefore, if the fibrous material has water repellency or the surface has been subjected to water repellency treatment, dew condensation is prevented and the pores, that is, the gas channels are prevented from being blocked, and the gas permeability is ensured.

さらに、本発明における繊維状物質は、上記のように結露によるガスチャンネルの閉塞を防ぐ観点から、自身が親水性を有するもの、または表面が親水化処理されているものであってもよい。この形態によれば、発電によって生成した水蒸気が結露する状況になった場合、水が毛細管現象によって繊維状物質に広がり液滴が生じない。このため、水の投影面積が小さくなると同時に、水は乾いた部分に移動し、ガスチャンネルの閉塞が防止される。例えば、ガスチャンネルの下流側は湿度が高くなって結露が起こりやすいが、このような場所でも結露が防止され、発電性能は低下しにくい。また、毛細管現象によって、水が過剰な場所から水の不足している場所への水の速やかな移動が起こり、これによって電極内部では自発的な水不足の解消がなされる。その結果、加湿量に応じた電圧変動の発生が抑制されるといった効果が奏される。   Furthermore, the fibrous substance in the present invention may be one having a hydrophilic property or one having a hydrophilic surface as described above from the viewpoint of preventing the gas channel from being blocked due to condensation as described above. According to this embodiment, when the water vapor generated by the power generation is condensed, the water spreads to the fibrous material by the capillary phenomenon and no liquid droplet is generated. For this reason, the projected area of water is reduced, and at the same time, the water moves to a dry portion and the blockage of the gas channel is prevented. For example, although the humidity on the downstream side of the gas channel is high and condensation tends to occur, condensation is prevented even in such a place, and the power generation performance is unlikely to deteriorate. In addition, capillary action causes a rapid movement of water from a place where water is excessive to a place where water is insufficient, thereby eliminating spontaneous water shortage inside the electrode. As a result, there is an effect that the occurrence of voltage fluctuation according to the humidification amount is suppressed.

本発明に係る繊維状物質の電極触媒層への含有量は、触媒層の総量に対して5〜25重量%含有されていることが好ましい。その理由としては、含有量が5重量%未満では上記の各効果が発揮されにくくなり、一方、25重量%を超えると、体積当たりの触媒反応点の絶対量が少なくなって発電効率の低下を招くからである。   The content of the fibrous material according to the present invention in the electrode catalyst layer is preferably 5 to 25% by weight based on the total amount of the catalyst layer. The reason for this is that when the content is less than 5% by weight, the above-mentioned effects are hardly exhibited. On the other hand, when the content exceeds 25% by weight, the absolute amount of catalytic reaction points per volume decreases and the power generation efficiency decreases. Because it invites.

次に、具体的な実施例により本発明の効果を詳細に説明する。
1.電極構造体MEAの作製
<実施例1>
カーボンブラック(商品名:ケッチェンブラックEC、三菱化学社製)を2800℃の熱処理により黒鉛化した後、カーボンブラックとの重量比が1:1となるように白金を担持させて、黒鉛化担体触媒を作製した。次いで、この黒鉛化担体触媒10gと、20%イオン導伝性ポリマー溶液(商品名:ナフィオンDE2020、DuPont社製)35gと、針状炭素繊維(商品名:VGCF、昭和電工社製)1.7gとを混合し、カソード電極ペーストを調製した。次に、このカソード電極ペーストを、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)製のシート上にPt量を0.3mg/cmとなるように塗布乾燥し、カソード電極シートC1を作製した。
Next, the effects of the present invention will be described in detail by way of specific examples.
1. Production of Electrode Structure MEA <Example 1>
After graphitizing carbon black (trade name: Ketjen Black EC, manufactured by Mitsubishi Chemical Corp.) by heat treatment at 2800 ° C., platinum is supported so that the weight ratio with respect to carbon black is 1: 1. A catalyst was prepared. Next, 10 g of this graphitized support catalyst, 35 g of a 20% ion conductive polymer solution (trade name: Nafion DE2020, manufactured by DuPont), and 1.7 g of acicular carbon fiber (trade name: VGCF, manufactured by Showa Denko KK) Were mixed to prepare a cathode electrode paste. Next, this cathode electrode paste is applied and dried on a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) sheet so that the amount of Pt is 0.3 mg / cm 2 , thereby producing a cathode electrode sheet C1. did.

一方、イオン導伝性ポリマー(商品名:DE2021、DuPont社製)40gと、カーボンブラックと触媒の重量比を46:54としたPt−Ru担持カーボン粒子(商品名:TEC61E54、Pt:Ru=1:1.5、田中貴金属工業社製)10.9gとを混合し、アノード触媒ペーストを調製した。このアノード触媒ペーストをFEPシート上に触媒量を0.15mg/cmとなるように塗布乾燥し、アノード電極シートA1とした。 On the other hand, 40 g of ion-conducting polymer (trade name: DE2021, manufactured by DuPont) and Pt—Ru-supported carbon particles (trade name: TEC61E54, Pt: Ru = 1) with a weight ratio of carbon black to catalyst of 46:54. : 1.5, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) 10.9 g was mixed to prepare an anode catalyst paste. This anode catalyst paste was applied onto an FEP sheet and dried so that the amount of catalyst was 0.15 mg / cm 2 , thereby obtaining an anode electrode sheet A1.

また、エチレングリコールに、テフロン(登録商標)粉末(商品名:L170J、旭硝子社製)12gと、カーボンブラック粉末(商品名:バルカンXC72、Cabot社製)18gとを混合し、下地層ペーストとした。次いで、カーボンペーパー(商品名:TGP−H−060、東レ社製)上に、下地層ペーストを2.3mg/cm塗布乾燥し、アノードおよびカソード拡散層とした。 Further, 12 g of Teflon (registered trademark) powder (trade name: L170J, manufactured by Asahi Glass Co., Ltd.) and 18 g of carbon black powder (trade name: Vulcan XC72, manufactured by Cabot) were mixed with ethylene glycol to obtain a base layer paste. . Next, 2.3 mg / cm 2 of the base layer paste was applied and dried on carbon paper (trade name: TGP-H-060, manufactured by Toray Industries, Inc.) to obtain an anode and a cathode diffusion layer.

次に、前記カソード電極シートC1およびアノード電極シートA1を、温度140℃、一体化圧力30kg/cmにて、デカール法により高分子電解膜(ナフィオン製)の両面に転写し、膜−電極複合体CCMを作製し、このCCMを挟み込むように、上記のアノードおよびカソード拡散層をそれぞれ積層し、実施例1の電極構造体MEAを形成した。なお、デカール法による転写とは、電極シートを高分子電解膜に熱圧着した後にFEPシートを剥離することを言う。 Next, the cathode electrode sheet C1 and the anode electrode sheet A1 were transferred onto both surfaces of a polymer electrolyte membrane (made by Nafion) by a decal method at a temperature of 140 ° C. and an integrated pressure of 30 kg / cm 2 , and the membrane-electrode composite A body CCM was produced, and the anode and cathode diffusion layers were laminated so as to sandwich the CCM, thereby forming the electrode structure MEA of Example 1. The transfer by the decal method means that the FEP sheet is peeled after the electrode sheet is thermocompression bonded to the polymer electrolyte membrane.

<実施例2>
実施例1のカソード電極シートの作製工程において、カーボンブラックの熱処理の温度を2800℃から2000℃に変更して、カソード電極シートC2を作製した以外は、実施例1と同様にして実施例2の電極構造体MEAを作製した。
<Example 2>
In the production process of the cathode electrode sheet of Example 1, the temperature of the heat treatment of carbon black was changed from 2800 ° C. to 2000 ° C., and the cathode electrode sheet C 2 was produced in the same manner as in Example 1, except that the cathode electrode sheet C 2 was produced. An electrode structure MEA was produced.

<比較例1>
実施例1のカソード電極シートの作製工程において、カーボンブラックの熱処理の温度を2800℃から3200℃に変更して、カソード電極シートC3を作製した以外は、実施例1と同様にして比較例1の電極構造体MEAを作製した。
<Comparative Example 1>
In the production process of the cathode electrode sheet of Example 1, the temperature of the heat treatment of carbon black was changed from 2800 ° C. to 3200 ° C., and the cathode electrode sheet C3 was produced in the same manner as in Example 1 except that the cathode electrode sheet C3 was produced. An electrode structure MEA was produced.

<比較例2>
実施例1のカソード電極シートの作製工程において、カーボンブラックに対する熱処理を行わずに、カソード電極シートC4を作製した以外は、実施例1と同様にして比較例2の電極構造体MEAを作製した。
<Comparative example 2>
An electrode structure MEA of Comparative Example 2 was produced in the same manner as in Example 1 except that, in the production process of the cathode electrode sheet of Example 1, the cathode electrode sheet C4 was produced without performing heat treatment on carbon black.

<比較例3>
実施例1のカソード電極シートの作製工程において、1−プロピルアルコール30gをさらに混合してカソード電極ペーストを調製し、カソード電極シートC5を作製した以外は、実施例1と同様にして比較例3の電極構造体MEAを作製した。
<Comparative Example 3>
In the production process of the cathode electrode sheet of Example 1, 30 g of 1-propyl alcohol was further mixed to prepare a cathode electrode paste, and the cathode electrode sheet C5 was produced. An electrode structure MEA was produced.

<比較例4>
実施例1のカソード電極シートの作製工程において、針状炭素繊維を1.7gから1.5gに変更してカソード電極ペーストを調製し、カソード電極シートC6を作製した以外は、実施例1と同様にして比較例4の電極構造体MEAを作製した。
<Comparative example 4>
In the production process of the cathode electrode sheet of Example 1, the same procedure as in Example 1 except that the cathode electrode paste was prepared by changing the acicular carbon fiber from 1.7 g to 1.5 g to produce the cathode electrode sheet C6. Thus, an electrode structure MEA of Comparative Example 4 was produced.

<比較例5>
実施例1のカソード電極シートの作製工程において、針状炭素繊維を1.7gから1.5gに変更し、1−プロピルアルコール30gをさらに混合してカソード電極ペーストを調製し、カソード電極シートC7を作製した以外は、実施例1と同様にして比較例5の電極構造体MEAを作製した。
<Comparative Example 5>
In the production process of the cathode electrode sheet of Example 1, the acicular carbon fiber was changed from 1.7 g to 1.5 g, 30 g of 1-propyl alcohol was further mixed to prepare a cathode electrode paste, and the cathode electrode sheet C7 was prepared. An electrode structure MEA of Comparative Example 5 was produced in the same manner as Example 1 except that it was produced.

2.発電性能評価
上記のようにして作製された実施例1〜2および比較例1〜5について、黒鉛化単体触媒の[002]面の平均格子面間隔d002、比表面積、かさ密度、および、0.01〜2.0μmおよび0.01〜0.15μmの細孔容積を測定し、これらの結果を表1に示した。また、実施例1および比較例3〜5については、黒鉛化担体触媒の細孔径に対する細孔容積を示す線図を図1に示した。なお、この細孔容積は、水銀圧入法により測定したものである。
2. Power Generation Performance Evaluation For Examples 1-2 and Comparative Examples 1-5 produced as described above, the average lattice spacing d 002 of the [002] plane of the graphitized single catalyst, specific surface area, bulk density, and 0 The pore volumes of 0.01 to 2.0 μm and 0.01 to 0.15 μm were measured, and the results are shown in Table 1. Moreover, about Example 1 and Comparative Examples 3-5, the diagram which shows the pore volume with respect to the pore diameter of a graphitization support catalyst was shown in FIG. The pore volume is measured by mercury porosimetry.

さらに、実施例1〜2および比較例1〜5の電極構造体MEAの両面に水素ガスおよび空気を供給し、セル温度:70℃、加湿量:アノード80RH%、カソード80RH%、利用率:アノード50%、カソード50%の条件下で、電流密度:1A/cmの発電を行い、この時の端子電圧を測定した(初期電圧)。また、上記条件で電流密度のみを0.05A/cmとし、1000時間発電を行った後、初期電圧の測定と同様に電流密度1A/cmの時の端子電圧を測定した。これらの結果を表1に示した。 Further, hydrogen gas and air were supplied to both surfaces of the electrode structures MEA of Examples 1-2 and Comparative Examples 1-5, cell temperature: 70 ° C., humidification amount: anode 80RH%, cathode 80RH%, utilization rate: anode Electric power was generated at a current density of 1 A / cm 2 under the conditions of 50% and cathode 50%, and the terminal voltage at this time was measured (initial voltage). In addition, under the above conditions, only the current density was set to 0.05 A / cm 2, and after 1000 hours of power generation, the terminal voltage at a current density of 1 A / cm 2 was measured in the same manner as the initial voltage measurement. These results are shown in Table 1.

Figure 0004133654
Figure 0004133654

図1に示すように、実施例1における黒鉛化担体触媒は、0.01〜2.0μmの細孔容積が4.00μl/cm/mg−Ptであり、かつ0.01〜0.15μmの細孔容積が2.10μl/cm/mg−Ptであるのに対して、比較例3における黒鉛化担体触媒では、0.01〜0.15μmの細孔容積が小さすぎ、比較例4における黒鉛化担体触媒では、0.01〜2.0μmの細孔容積が小さすぎ、比較例5における黒鉛化担体触媒では、0.01〜2.0μmの細孔容積および0.01〜0.15μmの細孔容積がともに小さすぎることが示されている。 As shown in FIG. 1, the graphitized carrier catalyst in Example 1 has a pore volume of 0.01 to 2.0 μm of 4.00 μl / cm 2 / mg-Pt and 0.01 to 0.15 μm. In contrast to the graphitized support catalyst in Comparative Example 3, the pore volume of 0.01 to 0.15 μm was too small, and the pore volume of Comparative Example 4 was 2.10 μl / cm 2 / mg-Pt. In the graphitized support catalyst at 0.01 to 2.0 μm, the pore volume of 0.01 to 2.0 μm is too small, and in the graphitized support catalyst in Comparative Example 5, the pore volume of 0.01 to 2.0 μm and 0.01 to 0. Both 15 μm pore volumes have been shown to be too small.

また、表1から明らかなように、実施例1および2は、黒鉛化担体触媒の物性値を特定の範囲に限定することによって、発電開始から1000時間経過後においても、高い端子電圧を維持することができることが示された。これに対し、黒鉛化担体触媒の物性値が本発明の範囲から逸脱した比較例1〜5は、発電開始から1000時間経過後には端子電圧が低下する、または、発電初期の端子電圧が不十分であることが示された。すなわち、比較例1では、比表面積が小さすぎ、かつかさ密度が大きすぎるため、比較例3では、0.01〜0.15μmの細孔容積が小さすぎるため、比較例4では、0.01〜2.0μmの細孔容積が小さすぎるため、比較例5では、0.01〜2.0μmの細孔容積および0.01〜0.15μmの細孔容積が小さすぎるため、初期の端子電圧が低く、これらの電極構造体は実用に供し得ないものであった。また、比較例2では、d002が大きすぎ、比表面積が大きすぎ、かつかさ密度が小さすぎるため、1000時間後の端子電圧が低下してしまい、この電極構造体は連続使用における発電性能が劣っていることが示された。 Further, as is apparent from Table 1, Examples 1 and 2 maintain a high terminal voltage even after 1000 hours from the start of power generation by limiting the physical property values of the graphitized support catalyst to a specific range. It was shown that it can. On the other hand, in Comparative Examples 1 to 5 in which the physical property values of the graphitized support catalyst deviated from the scope of the present invention, the terminal voltage decreased after 1000 hours from the start of power generation, or the terminal voltage at the initial stage of power generation was insufficient. It was shown that. That is, in Comparative Example 1, since the specific surface area is too small and the bulk density is too large, in Comparative Example 3, the pore volume of 0.01 to 0.15 μm is too small. Since the pore volume of .about.2.0 .mu.m is too small, in Comparative Example 5, the pore volume of 0.01 to 2.0 .mu.m and the pore volume of 0.01 to 0.15 .mu.m are too small. Therefore, these electrode structures cannot be put to practical use. Further, in Comparative Example 2, d 002 is too large, the specific surface area is too large, and the bulk density is too small, so that the terminal voltage after 1000 hours is lowered, and this electrode structure has power generation performance in continuous use. It was shown to be inferior.

黒鉛化担体触媒の細孔径に対する細孔容積を示す線図である。It is a diagram which shows the pore volume with respect to the pore diameter of a graphitization support catalyst.

Claims (2)

触媒、担体、電解質および造孔剤からなる電極触媒層を有し、前記担体は、[002]面の平均格子面間隔d002が0.338〜0.355nmであり、比表面積が80〜250m/gであり、かさ密度が0.30〜0.45g/mlであり、前記電極触媒層中の0.01〜2.0μmの細孔容積が3.8μl/cm/mg−Pt以上であり、かつ0.01〜0.15μmの細孔容積が2.0μl/cm/mg−Pt以上であることを特徴とする固体高分子形燃料電池。 It has an electrode catalyst layer composed of a catalyst, a carrier, an electrolyte and a pore-forming agent, and the carrier has an average lattice spacing d 002 of [002] plane of 0.338 to 0.355 nm and a specific surface area of 80 to 250 m. 2 / g, the bulk density is 0.30 to 0.45 g / ml, and the pore volume of 0.01 to 2.0 μm in the electrode catalyst layer is 3.8 μl / cm 2 / mg-Pt or more. And a pore volume of 0.01 to 0.15 μm is 2.0 μl / cm 2 / mg-Pt or more. 前記触媒は、比表面積が75〜100m/gであり、触媒粒子の結晶子サイズが2〜5nmであり、前記担体は、触媒担持率が40〜60重量%であり、触媒担持後の[002]面の平均格子面間隔d002が0.338〜0.345nmであり、かつ、その平均格子面間隔の測定におけるX線回折のピークが単一なピークであることを特徴とする請求項1に記載の固体高分子形燃料電池。 The catalyst has a specific surface area of 75 to 100 m 2 / g, the crystallite size of the catalyst particles is 2 to 5 nm, the carrier has a catalyst loading of 40 to 60% by weight, 002] plane average lattice spacing d 002 is 0.338 to 0.345 nm, and the peak of X-ray diffraction in the measurement of the average lattice spacing is a single peak. 2. The polymer electrolyte fuel cell according to 1.
JP2003270230A 2003-07-01 2003-07-01 Polymer electrolyte fuel cell Expired - Lifetime JP4133654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270230A JP4133654B2 (en) 2003-07-01 2003-07-01 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270230A JP4133654B2 (en) 2003-07-01 2003-07-01 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2005026174A JP2005026174A (en) 2005-01-27
JP4133654B2 true JP4133654B2 (en) 2008-08-13

Family

ID=34190245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270230A Expired - Lifetime JP4133654B2 (en) 2003-07-01 2003-07-01 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4133654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656053U (en) * 1993-01-08 1994-08-02 康永 末崎 Pattern plate sticking and peeling device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648788B2 (en) 2004-04-28 2010-01-19 Nissan Motor Co., Ltd. Membrane-electrode assembly for fuel cell and fuel cell using same
JP5044920B2 (en) * 2004-11-25 2012-10-10 日産自動車株式会社 Polymer electrolyte fuel cell
JP4575268B2 (en) * 2005-10-18 2010-11-04 株式会社東芝 Catalyst, electrode for fuel cell fuel electrode, and fuel cell
WO2007052650A1 (en) 2005-10-31 2007-05-10 Asahi Glass Company, Limited Method for producing membrane electrode assembly for solid polymer fuel cell
JP4910395B2 (en) * 2006-01-10 2012-04-04 トヨタ自動車株式会社 Fuel cell
JP5145831B2 (en) * 2007-09-12 2013-02-20 株式会社エクォス・リサーチ Fuel cell, diffusion layer for fuel cell and fuel cell system.
US9017837B2 (en) 2008-02-19 2015-04-28 Cabot Corporation High surface area graphitized carbon and processes for making same
JP5219571B2 (en) 2008-03-24 2013-06-26 三洋電機株式会社 Membrane electrode assembly and fuel cell
JP5328290B2 (en) 2008-10-22 2013-10-30 トヨタ自動車株式会社 Fuel cell electrode catalyst
JP5636631B2 (en) * 2009-01-30 2014-12-10 トヨタ自動車株式会社 Fuel cell
JP5362008B2 (en) * 2009-07-21 2013-12-11 株式会社東芝 Fuel cell
WO2011013206A1 (en) 2009-07-28 2011-02-03 株式会社 東芝 Direct methanol fuel cell and anode used therein
JP5682390B2 (en) * 2011-03-18 2015-03-11 凸版印刷株式会社 Electrode catalyst layer and production method thereof, membrane electrode assembly and production method thereof, polymer electrolyte fuel cell, composite particle and production method thereof
JP5810860B2 (en) 2011-11-17 2015-11-11 日産自動車株式会社 Fuel cell electrode catalyst layer
WO2015045852A1 (en) 2013-09-30 2015-04-02 日産自動車株式会社 Carbon powder for catalyst, catalyst using said carbon powder for catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell
CA2966143C (en) 2014-10-29 2023-08-22 Nissan Motor Co., Ltd. Electrode catalyst for fuel cell, method for producing the same, electrode catalyst layer for fuel cell comprising the catalyst, and membrane electrode assembly for fuel cell and fuel cell using the catalyst or the catalyst layer
JP6276870B2 (en) 2014-10-29 2018-02-07 日産自動車株式会社 Electrode catalyst layer for fuel cell, membrane electrode assembly for fuel cell and fuel cell using the catalyst layer
EP4057396A1 (en) 2021-03-11 2022-09-14 Heraeus Deutschland GmbH & Co. KG Method for producing a noble metal-containing graphitized carbon material and catalyst

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719608B2 (en) * 1986-06-05 1995-03-06 電気化学工業株式会社 Method for manufacturing material for gas diffusion electrode
GB9109751D0 (en) * 1991-05-04 1991-06-26 Johnson Matthey Plc Improved catalyst material
JPH06140047A (en) * 1992-10-21 1994-05-20 Fuji Electric Co Ltd Manufacture of carbon carrier for phosphoric acid type fuel cell catalyst
JPH06267545A (en) * 1993-03-16 1994-09-22 Hitachi Ltd Phosphoric acid type fuel cell
JPH0817440A (en) * 1994-07-04 1996-01-19 Tanaka Kikinzoku Kogyo Kk Electrode for polymer electrolyte-type electrochemical cell
JPH0888007A (en) * 1994-09-16 1996-04-02 Matsushita Electric Ind Co Ltd Solid polymer fuel cell and its electrode
JPH08130019A (en) * 1994-10-28 1996-05-21 Tanaka Kikinzoku Kogyo Kk Manufacture of electrode for polymer solid-electrolytic electrochemical cell
JP3275652B2 (en) * 1995-09-26 2002-04-15 松下電器産業株式会社 Electrode for polymer electrolyte fuel cell and fuel cell using the same
JPH09283154A (en) * 1996-04-10 1997-10-31 Asahi Glass Co Ltd Electrode for solid high molecular fuel cell
JP3874380B2 (en) * 1996-08-26 2007-01-31 エヌ・イーケムキャット株式会社 Carbon-supported platinum skeleton alloy electrocatalyst with vacancy-type lattice defects
JP2000012043A (en) * 1998-04-23 2000-01-14 Ne Chemcat Corp Electrode catalyst for solid high-polymer electrolyte- type fuel cell, and electrode, electrolyte film/electrode junction body and solid high-polymer electrolyte-type fuel cell using the catalyst
JP4780814B2 (en) * 1998-12-15 2011-09-28 三洋電機株式会社 Fuel cell
JP2000268828A (en) * 1999-03-18 2000-09-29 Asahi Glass Co Ltd Solid highpolymer type fuel cell
DE50013678D1 (en) * 1999-08-27 2006-12-14 Umicore Ag & Co Kg Electrocatalyst for fuel cells
CH710862B1 (en) * 1999-11-26 2016-09-15 Imerys Graphite & Carbon Switzerland Sa Process for the production of graphite powders with increased bulk density.
JP2001202970A (en) * 2000-01-17 2001-07-27 Asahi Glass Co Ltd Gas diffusion electrode for solid polymer electrolyte fuel cell and its manufacturing method
JP3459615B2 (en) * 2000-05-30 2003-10-20 三洋電機株式会社 Electrode for fuel cell and fuel cell
ATE435836T1 (en) * 2000-05-31 2009-07-15 Showa Denko Kk ELECTRICALLY CONDUCTIVE, FINE CARBON COMPOSITE, CATALYST FOR SOLID POLYMER FUEL CELLS AND FUEL BATTERIES
JP2002015745A (en) * 2000-06-28 2002-01-18 Asahi Glass Co Ltd Solid polymer fuel cell
JP2001357857A (en) * 2000-06-12 2001-12-26 Asahi Glass Co Ltd Solid high polymer type fuel cell and its manufacturing method
JP2002008677A (en) * 2000-06-16 2002-01-11 Asahi Glass Co Ltd Manufacturing method of solid polymer type fuel cell
KR100503390B1 (en) * 2000-08-16 2005-07-21 마쯔시다덴기산교 가부시키가이샤 Fuel cell
JP2002134119A (en) * 2000-10-19 2002-05-10 Japan Storage Battery Co Ltd Fuel cell and electrode for fuel cell
JP2002298855A (en) * 2001-03-30 2002-10-11 Honda Motor Co Ltd Solid macromolecule type fuel cell
EP1254711A1 (en) * 2001-05-05 2002-11-06 OMG AG & Co. KG Supported noble metal catalyst and preparation process thereof
JP2003036859A (en) * 2001-07-24 2003-02-07 Asahi Glass Co Ltd Solid polymer type fuel cell and its fabrication method
JP4147321B2 (en) * 2001-11-14 2008-09-10 本田技研工業株式会社 Electrode for polymer electrolyte fuel cell
JP4130792B2 (en) * 2002-11-25 2008-08-06 本田技研工業株式会社 Membrane-electrode structure and polymer electrolyte fuel cell using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656053U (en) * 1993-01-08 1994-08-02 康永 末崎 Pattern plate sticking and peeling device

Also Published As

Publication number Publication date
JP2005026174A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4133654B2 (en) Polymer electrolyte fuel cell
JP5188872B2 (en) Direct oxidation fuel cell
JP2006339124A (en) Membrane-electrode assembly for fuel cell, and solid polymer fuel cell using this
JP5915283B2 (en) Gas diffusion layer and fuel cell using the same
JP2008311180A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP4190478B2 (en) Polymer electrolyte fuel cell
US10873097B2 (en) Electrode for fuel cell, membrane electrode complex body for fuel cell, and fuel cell
JP2007214019A (en) Membrane electrode assembly for fuel cell and gas diffusion layer for fuel cell
JP4147321B2 (en) Electrode for polymer electrolyte fuel cell
JP4942362B2 (en) Membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP2006344428A (en) Solid polymer fuel cell
JP5354982B2 (en) Direct oxidation fuel cell
JP2005174835A (en) Electrode
JP5023591B2 (en) Membrane / electrode assembly for fuel cells
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP4180556B2 (en) Polymer electrolyte fuel cell
JP2008311181A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP4271127B2 (en) Electrode structure of polymer electrolyte fuel cell
JP2005243295A (en) Gas diffusion layer, and mea for fuel cell using the same
JP2010049931A (en) Direct methanol fuel cell, and cathode for direct methanol fuel cell
JP2006339125A (en) Solid polymer fuel cell
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
JP7002974B2 (en) Electrodes, membrane electrode assemblies, electrochemical cells, stacks, fuel cells, vehicles and flying objects
EP4074418A1 (en) Electrode catalyst for fuel cell, electrode catalyst layer for fuel cell, membrane/electrode assembly, and fuel cell
JP4043451B2 (en) Diffusion layer for fuel cell and fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term