JP3275652B2 - Electrode for polymer electrolyte fuel cell and fuel cell using the same - Google Patents

Electrode for polymer electrolyte fuel cell and fuel cell using the same

Info

Publication number
JP3275652B2
JP3275652B2 JP24723195A JP24723195A JP3275652B2 JP 3275652 B2 JP3275652 B2 JP 3275652B2 JP 24723195 A JP24723195 A JP 24723195A JP 24723195 A JP24723195 A JP 24723195A JP 3275652 B2 JP3275652 B2 JP 3275652B2
Authority
JP
Japan
Prior art keywords
electrode
polymer electrolyte
solid polymer
fuel cell
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24723195A
Other languages
Japanese (ja)
Other versions
JPH0992293A (en
Inventor
裕子 福岡
誠 内田
靖 菅原
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17160408&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3275652(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24723195A priority Critical patent/JP3275652B2/en
Publication of JPH0992293A publication Critical patent/JPH0992293A/en
Application granted granted Critical
Publication of JP3275652B2 publication Critical patent/JP3275652B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料として純水素、ま
たはメタノール及び化石燃料からの改質水素などの還元
剤と、空気や酸素などの酸化剤を用いる燃料電池に関す
るものであり、特に固体高分子型燃料電池用電極および
それを用いた固体高分子型燃料電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell using a reducing agent, such as pure hydrogen or reformed hydrogen from methanol and fossil fuel, and an oxidizing agent, such as air or oxygen, as a fuel. The present invention relates to a polymer fuel cell electrode and a polymer electrolyte fuel cell using the same.

【0002】[0002]

【従来の技術】固体高分子型燃料電池(PEFC)は電
解質に固体高分子電解質であるイオン交換膜を用いてお
り、水素を燃料とした場合、負極では(化1)の反応が
起こる。
2. Description of the Related Art A polymer electrolyte fuel cell (PEFC) uses an ion exchange membrane, which is a solid polymer electrolyte, as an electrolyte. When hydrogen is used as a fuel, a reaction of formula (1) occurs at the negative electrode.

【0003】[0003]

【化1】 Embedded image

【0004】また、酸素を酸化剤とした場合、正極では
(化2)の反応が起こり、水が生成される。
When oxygen is used as an oxidizing agent, a reaction of the formula (2) occurs at the positive electrode, and water is generated.

【0005】[0005]

【化2】 Embedded image

【0006】PEFCは常温・常圧で1A/cm2以上
の高出力が得られる高性能の燃料電池である。この高出
力を実現するには電極触媒であるPt粒子と固体高分子
電解質との接触面積、すなわち反応面積の増加と、反応
ガスを供給するガスチャネルの形成を考慮した電極設計
が重要となる。
[0006] PEFC is a high-performance fuel cell capable of obtaining a high output of 1 A / cm 2 or more at normal temperature and normal pressure. To achieve this high output, it is important to design an electrode in consideration of an increase in the contact area between Pt particles as an electrode catalyst and the solid polymer electrolyte, that is, a reaction area, and formation of a gas channel for supplying a reaction gas.

【0007】PEFCと類似の貴金属をカーボンに担持
した触媒を電極に用いるリン酸型燃料電池(PAFC)
用電極の場合、J.Electroanal.Che
m.,195(1985)81では、直径0.1μm以
下の微細な細孔に電解液が保持され、直径が0.1μm
より大きい細孔は反応ガスの供給路になるとされてい
る。特開平6−267545号では、リン酸型燃料電池
の正極として触媒層の細孔直径0.1μm以下、及び
0.1〜1.0μmの容積はそれぞれ42%以下、10
〜100μmの容積は11%以上が有効としている。
A phosphoric acid type fuel cell (PAFC) using a catalyst in which a noble metal similar to PEFC is supported on carbon for an electrode
In the case of an electrode for Electroanal. Che
m. , 195 (1985) 81, an electrolytic solution is held in fine pores having a diameter of 0.1 μm or less, and a diameter of 0.1 μm
The larger pores are said to be a supply path for the reaction gas. In JP-A-6-267545, the pore diameter of the catalyst layer is 0.1 μm or less and the volume of 0.1 to 1.0 μm is 42% or less, respectively, as the positive electrode of the phosphoric acid fuel cell.
A volume of 容積 100 μm is effective at 11% or more.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、PEF
Cの場合では分子レベルで嵩の高い高分子を電解質に用
いているために、上記従来の低分子であるリン酸のよう
な電解液を用いた燃料電池とは形成される反応場は異な
ると考えられる。このため、前記特開平6−26754
5号はリン酸型燃料電池用電極のものであり、PEFC
用電極の設計指針とはならない。また、これまでPEF
Cに適した電極の細孔構造に関する検討は行われていな
かった。このため、より高性能なPEFCを実現するた
めに、Pt触媒と固体高分子電解質との接触面積が大き
く、かつ反応ガスの供給能が高いPEFC用電極の最適
な細孔構造を得ることが必要であった。
SUMMARY OF THE INVENTION However, PEF
In the case of C, since a polymer having a bulk at the molecular level is used for the electrolyte, the reaction field formed is different from that of the conventional fuel cell using an electrolyte such as phosphoric acid, which is a low molecule. Conceivable. For this reason, Japanese Unexamined Patent Application Publication No.
No. 5 relates to an electrode for a phosphoric acid type fuel cell,
It does not serve as a guideline for designing electrodes. Also, until now, PEF
There has been no study on the pore structure of the electrode suitable for C. Therefore, in order to realize a higher performance PEFC, it is necessary to obtain an optimal pore structure of a PEFC electrode having a large contact area between the Pt catalyst and the solid polymer electrolyte and having a high reaction gas supply capability. Met.

【0009】本発明は、上記の課題を解決するものであ
り、PEFC用電極の触媒層の細孔分布について検討を
行い、PEFC用電極の最適な細孔構造を得ることによ
り、高性能なPEFC用電極およびそれを用いたPEF
Cを提供することを目的とする。
The present invention has been made to solve the above-mentioned problems. The present invention examines the pore distribution of the catalyst layer of a PEFC electrode, and obtains an optimal pore structure of the PEFC electrode to obtain a high-performance PEFC electrode. Electrode and PEF using the same
C is intended to be provided.

【0010】[0010]

【課題を解決する手段】本発明の固体高分子型燃料電池
用電極は、固体高分子電解質と貴金属触媒を担持した炭
素粉末とからなる触媒層を、ガス拡散層の片面に形成し
た電極であって、前記触媒層は直径0.04〜1.0μ
mの細孔部を有し、前記細孔部の比容積は0.06cm
3/g以上であり、前記細孔部に前記固体高分子電解質
を分布させたことを特徴とする。
The electrode for a polymer electrolyte fuel cell of the present invention is an electrode in which a catalyst layer comprising a solid polymer electrolyte and a carbon powder supporting a noble metal catalyst is formed on one surface of a gas diffusion layer. The catalyst layer has a diameter of 0.04 to 1.0 μm.
m, having a specific volume of 0.06 cm.
3 / g or more, and the solid polymer electrolyte is
Are distributed.

【0011】さらに、固体高分子電解質膜の両面に配し
た電極の少なくとも一方に前記電極を用いた固体高分子
型燃料電池である。
Further, there is provided a polymer electrolyte fuel cell using the electrodes on at least one of the electrodes arranged on both sides of the polymer electrolyte membrane.

【0012】[0012]

【作用】PEFC用電極では固体高分子電解質は直径
0.04〜1.0μmの細孔部に分布しているといえ
る。つまり、この細孔部が反応場として機能するものと
考えられる。また、この細孔部はリン酸型燃料電池の場
合と同様に、水素および酸素の反応ガスの供給路(ガス
チャンネル)としても機能すると考えられる。よって、
PEFCでは、反応場はガスチャンネルとしても機能す
る直径0.04〜1.0μmの細孔部に存在するといえ
る。
In the electrode for PEFC, it can be said that the solid polymer electrolyte is distributed in pores having a diameter of 0.04 to 1.0 μm. That is, it is considered that the pores function as a reaction field. Further, it is considered that the pores also function as a supply path (gas channel) for a reaction gas of hydrogen and oxygen as in the case of the phosphoric acid type fuel cell. Therefore,
In PEFC, it can be said that the reaction field exists in pores having a diameter of 0.04 to 1.0 μm which also function as gas channels.

【0013】このため、Pt触媒と固体固体高分子電解
質との接触面積、すなわち反応面積が大きく、かつ反応
ガスの供給能が高くなるようなPEFCに最適の細孔分
布を求めることにより、より高性能なPEFC用電極及
びPEFCを提供することができる。
[0013] For this reason, by obtaining the optimum pore distribution for the PEFC in which the contact area between the Pt catalyst and the solid polymer electrolyte, that is, the reaction area is large, and the supply capability of the reaction gas is high, a higher pore distribution is obtained. A high-performance PEFC electrode and PEFC can be provided.

【0014】[0014]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】(実施例1)固体固体高分子電解質のアル
コール溶液としてアルドリッチ・ケミカル社製の5%N
afion溶液を固体固体高分子電解質量が0.1〜
1.4mg/cm2となるようにn−酢酸ブチルと混合
撹拌して4種類の高分子電解質のコロイド状分散液を生
成した。このコロイド状分散液にPt触媒を20〜30
重量%担持させた炭素粉末を添加し、Pt触媒を担持さ
せた炭素粉末の表面にコロイドを吸着させた。この分散
液を超音波分散器を用いてペースト状とした。このペー
ストをあらかじめ30〜60重量%のフッ素樹脂により
被覆されたカーボンペーパー上に塗着し、本発明の電極
を作製した。
Example 1 A 5% N solution manufactured by Aldrich Chemical Company as an alcohol solution of a solid polymer electrolyte was used.
afion solution with a solid polymer electrolyte mass of 0.1 to
The resultant was mixed and stirred with n-butyl acetate at a concentration of 1.4 mg / cm 2 to produce colloidal dispersions of four types of polymer electrolytes. A Pt catalyst is added to this colloidal dispersion liquid for 20 to 30 minutes.
The carbon powder supported by weight% was added, and the colloid was adsorbed on the surface of the carbon powder supported by the Pt catalyst. This dispersion was made into a paste using an ultrasonic disperser. This paste was applied on carbon paper previously coated with 30 to 60% by weight of a fluororesin to prepare an electrode of the present invention.

【0016】これら固体高分子電解質量を変化させた電
極の細孔構造を明確にするため、細孔分布を水銀圧入法
により測定した。
In order to clarify the pore structure of the electrode in which the mass of the solid polymer electrolyte was changed, the pore distribution was measured by a mercury intrusion method.

【0017】図1にPt担持炭素粉末を用いて電極の固
体高分子電解質量を変化させた場合の細孔分布の変化を
示す。図より、固体高分子電解質量の変化によってピー
クを持つ直径0.04〜1.0μm部分の細孔比容積
(微分値)が変化していることがわかる。なお、1.0
μm以上の細孔比容積も変化しているが、この部分はカ
ーボンペーパーに起因する細孔部である。
FIG. 1 shows the change in pore distribution when the solid polymer electrolyte mass of the electrode is changed using Pt-supported carbon powder. From the figure, it can be seen that the specific pore volume (differential value) of the portion having a peak of 0.04 to 1.0 μm has a change due to the change in the solid polymer electrolyte mass. Note that 1.0
Although the specific volume of pores of μm or more also changes, this portion is a pore portion caused by carbon paper.

【0018】図2に固体高分子電解質量と直径0.04
〜1.0μmにある細孔比容積の関係を示す。図より、
固体高分子電解質の増加によって直径0.04〜1.0
μmにある細孔比容積は減少することから、固体高分子
電解質はこの細孔部に分布したといえる。
FIG. 2 shows the mass of the solid polymer electrolyte and the diameter of 0.04.
The relationship of the specific pore volume in the range of ~ 1.0 µm is shown. From the figure,
Due to the increase of the solid polymer electrolyte, the diameter is 0.04 to 1.0.
Since the specific volume of pores in μm decreases, it can be said that the solid polymer electrolyte was distributed in these pores.

【0019】つまり、この細孔部が反応場として機能す
ると考えられる。また、この直径0.04〜1.0μm
にある細孔は、リン酸型燃料電池の場合と同様に、水素
及び酸素の反応ガスの供給路(ガスチャネル)として機
能すると考えられる。よって、PEFCでは反応場はガ
スチャネルとしても機能する直径0.04〜1.0μm
の細孔部に存在するといえる。
That is, it is considered that the pores function as a reaction field. In addition, the diameter is 0.04 to 1.0 μm
Is considered to function as a supply channel (gas channel) for a reaction gas of hydrogen and oxygen, as in the case of the phosphoric acid type fuel cell. Therefore, in PEFC, the reaction field has a diameter of 0.04 to 1.0 μm which also functions as a gas channel.
It can be said that it exists in the fine pore portion.

【0020】(実施例2)実施例1と同様の方法で電極
を作製した。この時、Pt触媒の担体である炭素粉末と
して比表面積や一次粒子径の異なる9種類の炭素粉末を
用いた。また、固体高分子電解質量は、1.0mg/c
2とした。
Example 2 An electrode was manufactured in the same manner as in Example 1. At this time, nine types of carbon powders having different specific surface areas and primary particle diameters were used as carbon powders serving as a carrier of the Pt catalyst. The solid polymer electrolyte mass is 1.0 mg / c
It was m 2.

【0021】この電極をデュポン社製固体高分子電解質
膜Nafion115の両面に温度120〜200℃、
圧力50〜100kg/cm2でホットプレスし、本発
明の単電池を作製した。
This electrode was applied to both surfaces of a solid polymer electrolyte membrane Nafion 115 manufactured by DuPont at a temperature of 120 to 200 ° C.
Hot pressing was performed at a pressure of 50 to 100 kg / cm 2 to produce a unit cell of the present invention.

【0022】電極の細孔分布は水銀圧入法により測定し
た。また、単電池の放電試験は燃料として水素−酸素を
用い、常圧、セル温度50℃で行った。
The pore distribution of the electrode was measured by a mercury intrusion method. Further, the discharge test of the unit cell was performed at a normal pressure and a cell temperature of 50 ° C. using hydrogen-oxygen as fuel.

【0023】図3に本実施例の電極の直径0.04〜
1.0μmにある細孔比容積と単電池の850mVにお
ける電流密度の関係を示す。この結果、細孔比容積の増
加に伴って取り出せる電流密度は増加した。活性化分極
の支配域である850mVにおける電流密度が増加して
いることから、細孔比容積とともに反応面積が増加した
といえる。
FIG. 3 shows the electrode of this embodiment having a diameter of 0.04 to 0.04.
The relationship between the specific pore volume at 1.0 μm and the current density at 850 mV of the cell is shown. As a result, the current density that can be taken out increased as the specific volume of the pores increased. Since the current density at 850 mV, which is the region where activation polarization is dominant, increases, it can be said that the reaction area increases along with the specific pore volume.

【0024】なお、点Aのカーボンはこの直線から逸脱
している。これは電極触媒層の固体高分子電解質添加量
は1.0mg/cm2と一定であるので、細孔比容積が
大きいために固体高分子電解質の連続性が低下して反応
面積が減少したためである。固体高分子電解質量を1.
5mg/cm2として最適化すれば細孔比容積が大きく
なるのに伴って反応面積を増加させ電流密度も増加し、
直線上にのる。(点A’)。
Note that the carbon at point A deviates from this straight line. This is because the addition amount of the solid polymer electrolyte in the electrode catalyst layer is constant at 1.0 mg / cm 2, and the continuity of the solid polymer electrolyte is reduced due to the large pore specific volume, and the reaction area is reduced. is there. The solid polymer electrolyte mass was 1.
If optimized as 5 mg / cm 2 , the reaction area increases and the current density increases as the pore specific volume increases,
Ride on a straight line. (Point A ').

【0025】図4に本実施例の電極の直径0.04〜
1.0μmの細孔比容積と単電池の400mA/cm2
における電圧値の関係を示す。細孔比容積が0.04c
3/g以上で高い電圧を示し、0.06cm3/g以上
では電圧はほぼ一定となった。
FIG. 4 shows the electrode of the present embodiment having a diameter of 0.04 to 0.04.
A pore specific volume of 1.0 μm and a cell of 400 mA / cm 2
Shows the relationship of the voltage values at Pore specific volume is 0.04c
The voltage was high at m 3 / g or more, and the voltage was almost constant at 0.06 cm 3 / g or more.

【0026】図5に本実施例の電極の直径0.04〜
1.0μmの細孔比容積と単電池の800mA/cm2
における電圧値の関係を示す。細孔比容積が0.06c
3/g以上で高い電池電圧を示した。一方、0.04
〜0.06cm3/gの範囲では細孔比容積に対する電
池電圧は電池によりバラツキが見られた。
FIG. 5 shows the electrode of the present embodiment having a diameter of 0.04 to 0.04.
1.0 μm pore specific volume and 800 mA / cm 2 of cell
Shows the relationship of the voltage values at Pore specific volume is 0.06c
A high battery voltage was exhibited at m 3 / g or more. On the other hand, 0.04
In the range of 0.00.06 cm 3 / g, the battery voltage with respect to the specific pore volume varied depending on the battery.

【0027】400および800mA/cm2では濃度
分極が支配的となるため、反応面積だけでなく反応ガス
の供給能が重要となる。直径0.04〜1.0μmにあ
る細孔はガスチャネルとしても機能するので、細孔比容
積が0.04cm3/g以下ではガス供給能が低いため
に電池電圧が低くなったと考えられる。
At 400 and 800 mA / cm 2 , the concentration polarization becomes dominant, so not only the reaction area but also the ability to supply the reaction gas is important. Since the pores having a diameter of 0.04 to 1.0 μm also function as gas channels, it is considered that when the pore specific volume is 0.04 cm 3 / g or less, the gas supply ability is low, and the battery voltage has decreased.

【0028】また、高電流密度域ではガス供給能と同時
に生成水の排出能も重要となる。このため800mA/
cm2における0.04〜0.06cm3/gの範囲での
電池による電圧のバラツキは、各炭素粉末の親水性/疎
水性による生成水の排出能が異なるためと考えられる。
よって炭素粉末の性質に依存させないためには高電流密
度域では0.06cm3/g以上の細孔比容積が必要と
なる。
In the high current density region, the ability to supply the gas and the ability to discharge the produced water are also important. For this reason, 800 mA /
It is considered that the variation in the voltage of the battery in the range of 0.04 to 0.06 cm 3 / g in cm 2 is due to the difference in the ability of each carbon powder to discharge generated water due to the hydrophilicity / hydrophobicity.
Therefore, in order not to depend on the properties of the carbon powder, a specific pore volume of 0.06 cm 3 / g or more is required in a high current density region.

【0029】なお、本実施例では固体高分子電解質とし
て、テトラフルオロエチレンとパーフルオロビニルエー
テルとの共重合体からなる高分子の代表例として、米国
アルドリッチケミカル社製の5%Nafion溶液を用
いたが、プロトン交換基を持つ固体高分子電解質であれ
ば上記実施例に限定されるものではなく、分子構造のこ
となる高分子、例えばパーフルオロビニルエーテル類及
び側鎖分子長の異なる高分子やスチレンとビニルベンゼ
ンとの共重合体からなる高分子を用いても同様の効果が
得られた。
In this embodiment, a 5% Nafion solution manufactured by Aldrich Chemical Co., USA, was used as a solid polymer electrolyte as a typical example of a polymer composed of a copolymer of tetrafluoroethylene and perfluorovinyl ether. The solid polymer electrolyte having a proton exchange group is not limited to the above examples, but may be a polymer having a different molecular structure, such as perfluorovinyl ethers and polymers having different side chain molecular lengths, or styrene and vinyl. Similar effects were obtained by using a polymer composed of a copolymer with benzene.

【0030】また、本実施例の電極作製法は一例を示し
たものであり、これに限定されるものではない。
Further, the electrode manufacturing method of this embodiment is an example, and the present invention is not limited to this.

【0031】さらに、本実施例では燃料電池の一例とし
て電解質に固体高分子電解質膜を用いた水素−酸素燃料
電池を取り上げたが、メタノール、天然ガス、ナフサな
どを燃料とする改質水素を用いた燃料電池、又は酸化剤
として空気を用いた燃料電池に適用することも可能であ
る。
Further, in this embodiment, a hydrogen-oxygen fuel cell using a solid polymer electrolyte membrane as an electrolyte is taken up as an example of a fuel cell, but reformed hydrogen using methanol, natural gas, naphtha or the like as a fuel is used. It is also possible to apply the present invention to a conventional fuel cell or a fuel cell using air as an oxidant.

【0032】[0032]

【発明の効果】以上のように本発明によれば、PEFC
に適した細孔構造を明らかにすることにより、Pt触媒
の固体高分子電解質との接触面積が大きく、かつ反応ガ
スの供給能が高い、より高性能なPEFC用電極及びそ
れを用いたPEFCを実現することができる。
As described above, according to the present invention, PEFC
By elucidating the pore structure suitable for Pt, the contact area of the Pt catalyst with the solid polymer electrolyte is large, and the reaction gas supply ability is high. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の電極の固体高分子電解質量と
細孔分布の関係を示す図
FIG. 1 is a diagram showing the relationship between the solid polymer electrolyte mass and pore distribution of an electrode according to an example of the present invention

【図2】本発明の実施例の電極の固体高分子電解質量と
細孔比容積の関係を示す図
FIG. 2 is a diagram showing the relationship between the mass of solid polymer electrolyte and the specific volume of pores of an electrode according to an example of the present invention.

【図3】本発明の実施例の電極の細孔比容積と単電池特
性との関係を示す図(その1)
FIG. 3 is a diagram showing the relationship between the specific pore volume of the electrode of the embodiment of the present invention and the cell characteristics (part 1).

【図4】本発明の実施例の電極の細孔比容積と単電池特
性との関係を示す図(その2)
FIG. 4 is a diagram showing the relationship between the specific pore volume of the electrode of the embodiment of the present invention and the cell characteristics (part 2).

【図5】本発明の実施例の電極の細孔比容積と単電池特
性との関係を示す図(その3)
FIG. 5 is a view showing the relationship between the specific volume of pores of an electrode according to an embodiment of the present invention and cell characteristics (part 3).

フロントページの続き (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平8−221310(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 H01M 8/10 Continuation of the front page (72) Inventor Nobuo Eda 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-8-221310 (JP, A) (58) Fields investigated .Cl. 7 , DB name) H01M 4/86 H01M 8/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体高分子電解質と貴金属触媒を担持し
た炭素粉末とからなる触媒層を、ガス拡散層の片面に形
成した電極であって、前記触媒層は直径0.04〜1.
0μmの細孔部を有し、前記細孔部の比容積は0.06
cm3/g以上であり、前記細孔部に前記固体高分子電
解質を分布させたことを特徴とする固体高分子型燃料電
池用電極。
1. An electrode in which a catalyst layer composed of a solid polymer electrolyte and a carbon powder supporting a noble metal catalyst is formed on one surface of a gas diffusion layer, wherein the catalyst layer has a diameter of 0.04 to 1.
It has pores of 0 μm, and the specific volume of the pores is 0.06
cm3 / g or more, and the solid polymer
Solid polymer fuel cell characterized by distribution of decomposition
Pond electrode.
【請求項2】 固体高分子電解質膜の両面に電極を配し
た固体高分子型燃料電池であって、前記電極のうち少な
くとも一方は、固体高分子電解質と貴金属触媒を担持し
た炭素粉末とからなる触媒層を、ガス拡散層の片面に形
成した電極であって、前記触媒層は直径0.04〜1.
0μmの細孔部を有し、前記細孔部の比容積は0.06
cm3/g以上であり、前記細孔部に前記固体高分子電
解質を分布させたことを特徴とする固体高分子型燃料電
池。
2. A solid polymer electrolyte fuel cell comprising electrodes disposed on both sides of a solid polymer electrolyte membrane, wherein at least one of the electrodes comprises a solid polymer electrolyte and a carbon powder carrying a noble metal catalyst. An electrode having a catalyst layer formed on one side of a gas diffusion layer, wherein the catalyst layer has a diameter of 0.04 to 1.
It has pores of 0 μm, and the specific volume of the pores is 0.06
cm3 / g or more, and the solid polymer
Solid polymer fuel cell characterized by distribution of decomposition
pond.
JP24723195A 1995-09-26 1995-09-26 Electrode for polymer electrolyte fuel cell and fuel cell using the same Expired - Lifetime JP3275652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24723195A JP3275652B2 (en) 1995-09-26 1995-09-26 Electrode for polymer electrolyte fuel cell and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24723195A JP3275652B2 (en) 1995-09-26 1995-09-26 Electrode for polymer electrolyte fuel cell and fuel cell using the same

Publications (2)

Publication Number Publication Date
JPH0992293A JPH0992293A (en) 1997-04-04
JP3275652B2 true JP3275652B2 (en) 2002-04-15

Family

ID=17160408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24723195A Expired - Lifetime JP3275652B2 (en) 1995-09-26 1995-09-26 Electrode for polymer electrolyte fuel cell and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP3275652B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071631A (en) * 2006-09-14 2008-03-27 Toyota Motor Corp Catalyst structure for fuel cell, membrane-electrode assembly, and fuel cell
WO2010087070A1 (en) * 2009-01-30 2010-08-05 株式会社 東芝 Direct methanol fuel cell and cathode for direct methanol fuel cell

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4780814B2 (en) * 1998-12-15 2011-09-28 三洋電機株式会社 Fuel cell
DE19909930B4 (en) * 1999-03-06 2004-09-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Manufacture of tubular PEM fuel cells and ion exchange membranes
JP4649705B2 (en) * 2000-05-29 2011-03-16 旭硝子株式会社 Polymer electrolyte fuel cell
CN1288779C (en) 2000-07-03 2006-12-06 松下电器产业株式会社 Polyelectrolyte fuel cell
JP2002110202A (en) * 2000-10-02 2002-04-12 Asahi Glass Co Ltd Solid high polymer fuel cell and manufacturing method therefor
US7094492B2 (en) 2001-10-11 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
JP4727912B2 (en) * 2003-06-26 2011-07-20 本田技研工業株式会社 Fuel cell stack
JP4133654B2 (en) * 2003-07-01 2008-08-13 本田技研工業株式会社 Polymer electrolyte fuel cell
CN100350659C (en) * 2003-11-26 2007-11-21 日立麦克赛尔株式会社 Power generating element for liquid fuel cell, method for producing the same, and liquid fuel cell using the same
JP4872194B2 (en) * 2004-07-21 2012-02-08 ソニー株式会社 Liquid fuel direct fuel cell
JP5313495B2 (en) 2005-03-15 2013-10-09 パナソニック株式会社 Proton conductor, electrode and fuel cell using the same
JP5303979B2 (en) * 2008-03-24 2013-10-02 大日本印刷株式会社 Catalyst layer transfer film for polymer electrolyte fuel cells
JP5174128B2 (en) * 2010-11-15 2013-04-03 三洋電機株式会社 Gas diffusion layer, fuel cell electrode and fuel cell
JP6061329B2 (en) 2012-02-02 2017-01-18 国立大学法人九州大学 Catalyst layer structure and method for preparing the same
KR20140078402A (en) * 2012-12-17 2014-06-25 삼성전자주식회사 Membrane electrode assembly and fuel cell including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071631A (en) * 2006-09-14 2008-03-27 Toyota Motor Corp Catalyst structure for fuel cell, membrane-electrode assembly, and fuel cell
JP4506740B2 (en) * 2006-09-14 2010-07-21 トヨタ自動車株式会社 Catalyst structure for fuel cell, membrane electrode assembly, fuel cell, and method for producing catalyst structure for fuel cell
US8293404B2 (en) 2006-09-14 2012-10-23 Toyota Jidosha Kabushiki Kaisha Catalyst structure body for fuel cell, manufacture method therefor, membrane-electrode assembly, and fuel cell
WO2010087070A1 (en) * 2009-01-30 2010-08-05 株式会社 東芝 Direct methanol fuel cell and cathode for direct methanol fuel cell

Also Published As

Publication number Publication date
JPH0992293A (en) 1997-04-04

Similar Documents

Publication Publication Date Title
JP3275652B2 (en) Electrode for polymer electrolyte fuel cell and fuel cell using the same
US7232627B2 (en) Electrode for solid polymer fuel cell
JP4607708B2 (en) Fuel cell electrode, fuel cell, and fuel cell manufacturing method
JP3981684B2 (en) ELECTRIC POWER ELEMENT FOR LIQUID FUEL CELL, MANUFACTURING METHOD THEREOF, AND LIQUID FUEL CELL USING THE SAME
US8105732B2 (en) Direct oxidation fuel cell
EP1519433A1 (en) Diffusion electrode for fuel cell
JPH10302805A (en) Cemented body of solid high polymer electrolyte film and electrolyte, its manufacture, and fuel cell using it
JP2006202740A (en) Direct methanol type fuel cell
JP2006260909A (en) Membrane electrode assembly and polymer electrolyte fuel cell using the same
JP2012253039A (en) Use of sacrificial material for slowing down corrosion of catalyst carrier at fuel cell electrode
US8283089B2 (en) Direct oxidation fuel cell
JP3459615B2 (en) Electrode for fuel cell and fuel cell
JPH0888007A (en) Solid polymer fuel cell and its electrode
KR20040087920A (en) Catalyst powder, catalyst electrode and electrochemical device
JPH09167622A (en) Electrode catalyst and solid polymer type fuel cell using same
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
JP5094069B2 (en) Polymer electrolyte fuel cell and electronic device using the same
KR100578969B1 (en) Electrode for fuel cell and fuel cell comprising same
CN100506373C (en) Improved pemfc electrocatalyst based on mixed carbon supports
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP2006049115A (en) Fuel cell
US20040265665A1 (en) PEMFC electrocatalyst based on mixed carbon supports
WO2018139286A1 (en) Fuel cell catalyst layer and electrolyte film–electrode assembly
JP3495668B2 (en) Fuel cell manufacturing method
JP2008004402A (en) Anode for direct methanol fuel cell, and direct methanol fuel cell using it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 12

EXPY Cancellation because of completion of term