JPH06267545A - Phosphoric acid type fuel cell - Google Patents

Phosphoric acid type fuel cell

Info

Publication number
JPH06267545A
JPH06267545A JP5055407A JP5540793A JPH06267545A JP H06267545 A JPH06267545 A JP H06267545A JP 5055407 A JP5055407 A JP 5055407A JP 5540793 A JP5540793 A JP 5540793A JP H06267545 A JPH06267545 A JP H06267545A
Authority
JP
Japan
Prior art keywords
phosphoric acid
catalyst
pores
fuel cell
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5055407A
Other languages
Japanese (ja)
Inventor
Akio Honchi
章夫 本地
Hiroshi Kawagoe
博 川越
Masanori Yamaguchi
雅教 山口
Shohei Uozumi
昇平 魚住
Akira Kato
加藤  明
Hiroshi Miyadera
博 宮寺
Seiichiro Ono
征一郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5055407A priority Critical patent/JPH06267545A/en
Publication of JPH06267545A publication Critical patent/JPH06267545A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain an optimum distribution of an electrolyte inside a battery, and to increase the area of a three-phase interface to be the area of reaction, by specifying the volume of the catalyst layer of a positive electrode corresponding to the diameter of a pore with the diameter not larger than 100mum. CONSTITUTION:As a gas diffusion layer 6, a porous plate which consists of a carbon structure to which a polytetrafluoroethylene (PTFE) is coated is used, and a catalyst layer 5 consisting of a catalyst and PTFE is provided on one side surface of the diffusion layer 6, it is baked in the air, and a positive electrode is manufactured. Of the pores with the diameter less than 100mum of the catalyst layer 5, the volume of the pores with the diameter less than 0.1mum, and the volume of the pores with the diameter 0.1 to 1.0mum are made 42%, and the volume of the pores with the diameter 10 to 100mum is made 11% or more. As a result, an optimum distribution of the electrolyte is obtained by the positive electrode catalyst layer 5 and the gas diffusion layer 6 to compose the fuel cell, and the control of the porosity. Consequently, a high performance of fuel cell in which the area of a three-phase interface to be the area of reaction is increased can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリン酸を電解質とするリ
ン酸型燃料電池に関する。
BACKGROUND OF THE INVENTION The present invention relates to a phosphoric acid fuel cell using phosphoric acid as an electrolyte.

【0002】[0002]

【従来の技術】燃料電池システムの効率向上のために
は、燃料電池本体の性能向上を図る必要がある。燃料電
池反応は電極に設けられた触媒層内の三相(反応ガス−
電解質−触媒活性成分)界面で進むため、触媒層細孔内
における電解質の分布が非常に重要になる。特に、正極
の酸素還元反応速度は小さいため、性能が電解質の分布
の影響を強く受ける。そのため、リン酸を電解質とする
燃料電池の電極には撥水性材料としてポリテトラフルオ
ロエチレン(以下PTFE)が加えられている。そし
て、PTFEの添加量,焼成条件が最適化され、電解質
の触媒層内分布が制御されている。これに関しては、た
とえば電池便覧、丸善(1990)、p.373におい
て記載されている。
2. Description of the Related Art In order to improve the efficiency of a fuel cell system, it is necessary to improve the performance of the fuel cell body. The fuel cell reaction is carried out in three phases (reaction gas-
The distribution of the electrolyte in the pores of the catalyst layer is very important because it proceeds at the interface between the electrolyte and the catalytically active component. Especially, since the oxygen reduction reaction rate of the positive electrode is small, the performance is strongly influenced by the distribution of the electrolyte. Therefore, polytetrafluoroethylene (hereinafter referred to as PTFE) is added as a water-repellent material to the electrode of a fuel cell using phosphoric acid as an electrolyte. The amount of PTFE added and the firing conditions are optimized to control the electrolyte distribution in the catalyst layer. In this regard, for example, Battery Handbook, Maruzen (1990), p. 373.

【0003】[0003]

【発明が解決しようとする課題】しかし、多種の触媒に
ついて性能評価すると、PTFEの添加量が同一、かつ
焼成条件が同一であっても、触媒によって電池性能が異
なることがわかった。その原因として、電極の触媒層,
マトリックス等の細孔の分布状態の相違が考えられた。
そこで、種々の電極触媒層について細孔分布を測定した
ところ、電池性能との間に相関性が認められた。
However, when the performance of various catalysts was evaluated, it was found that the cell performance varies depending on the catalyst even if the amount of PTFE added is the same and the firing conditions are the same. As the cause, the catalyst layer of the electrode,
It was considered that the distribution of pores in the matrix was different.
Therefore, when the pore distributions of various electrode catalyst layers were measured, a correlation was observed with the cell performance.

【0004】本発明の目的は、燃料電池を構成する正極
触媒層,ガス拡散層等の細孔分布並びに気孔率の制御に
より、電極内部における電解質の最適分布を得て、反応
の場となる三相界面の領域を増大させた高性能燃料電池
を提供することにある。
The object of the present invention is to obtain the optimum distribution of the electrolyte inside the electrode by controlling the pore distribution and porosity of the positive electrode catalyst layer, the gas diffusion layer, etc. constituting the fuel cell, and to provide a reaction site. It is to provide a high performance fuel cell having an increased area of the phase interface.

【0005】[0005]

【課題を解決するための手段】電池は正極,マトリック
ス,負極から構成され、正極及び負極はガス拡散層と触
媒層から成る。電解質は正極,負極の触媒層、及びマト
リックスに保持されるが、マトリックスの細孔は100
%電解質で埋まる。一方、電極触媒層では、反応ガスの
拡散が無いと反応が進行しないため、反応ガスの拡散路
を閉塞することなく電解質で満たされなければならな
い。このことが、電池高性能化を難しくしている点であ
る。特に、負極の反応速度は大きいため、反応面積が多
少変化しても性能に与える影響は小さいが、正極の反応
速度は小さいため、反応面積の大小がそのまま性能の高
低を引き起こしてしまう。従って、正極触媒層内部での
電解質の分布が重要となる。
A battery is composed of a positive electrode, a matrix and a negative electrode, and the positive electrode and the negative electrode are composed of a gas diffusion layer and a catalyst layer. The electrolyte is retained in the positive and negative electrode catalyst layers and the matrix, but the pores of the matrix are 100
% Filled with electrolyte. On the other hand, in the electrode catalyst layer, the reaction does not proceed without the diffusion of the reaction gas, so that the electrolyte must be filled with the electrolyte without blocking the diffusion path of the reaction gas. This makes it difficult to improve the battery performance. In particular, since the reaction rate of the negative electrode is high, even if the reaction area changes a little, the influence on the performance is small. However, since the reaction rate of the positive electrode is small, the reaction area size directly causes the performance to be high or low. Therefore, the distribution of the electrolyte inside the positive electrode catalyst layer is important.

【0006】そこで、上述の課題を解決するため、正極
の触媒層の細孔分布を測定した。電解質であるリン酸を
超音波洗浄して除去したのち、細孔分布を水銀ポロシメ
ータにより測定した。また、細孔分布は使用する触媒の
粒子径分布(二次粒子径分布)や白金担持量等により変化
することから、触媒を種々変えて細孔分布を測定すると
ともに、そのときの正極単極性能、並びに電池性能を評
価した。その結果、100μm以上の触媒層細孔容積の
うち、直径0.1μm以下、並びに0.1〜1.0μm の
範囲の細孔の容積が小さく、かつ10〜100μmの範
囲の細孔の容積が大きくなるに従い正極単極性能が高く
なることがわかった。高性能電極を得るためには、直径
0.1μm 以下、並びに0.1〜1.0μmの範囲の細孔
の容積が42%以下、10〜100μmの範囲の細孔の
容積が11%以上、必要であることが明らかになった。
また、同様に電池を組んで電池性能を評価した。この場
合にも正極単極性能と同様の結果が得られた。
Therefore, in order to solve the above problems, the pore distribution of the catalyst layer of the positive electrode was measured. After removing the phosphoric acid as the electrolyte by ultrasonic cleaning, the pore distribution was measured by a mercury porosimeter. In addition, since the pore size distribution changes depending on the particle size distribution (secondary particle size distribution) of the catalyst used and the amount of platinum supported, the pore size distribution can be measured by variously changing the catalyst and the positive electrode single electrode at that time. Performance and battery performance were evaluated. As a result, of the catalyst layer pore volume of 100 μm or more, the diameter of the pores was 0.1 μm or less, and the volume of the pores in the range of 0.1 to 1.0 μm was small, and the volume of the pores in the range of 10 to 100 μm was small. It was found that the larger the size, the higher the performance of the positive electrode single electrode. In order to obtain a high-performance electrode, the diameter of the pores is 0.1 μm or less, and the volume of pores in the range of 0.1 to 1.0 μm is 42% or less, and the volume of pores in the range of 10 to 100 μm is 11% or more, It became clear that it was necessary.
In addition, a battery was assembled in the same manner and the battery performance was evaluated. Also in this case, the same result as the positive electrode single electrode performance was obtained.

【0007】また、触媒は通常粉末であり、これにポリ
テトラフルオロエチレン(OTEF)を加えて、触媒層を
形成する。触媒粉末は二次粒子を形成しており、その二
次粒子の大きさ、あるいは粒子径の分布状態により、触
媒層の細孔分布に違いが生じる。従って、使用する触媒
粉末の二次粒子径の分布も触媒層細孔を最適化する上で
非常に重要な因子となる。触媒によっては、調製時に粒
子同士が凝集して生じた大きな二次粒子を含んでいる場
合もある。この場合には、細孔分布状態が触媒層の内部
で不均一となり、結果として性能が不十分という状態を
もたらす。そこで、性能を十分に引き出すためには、大
きな二次粒子を含んでいないことが必要である。これを
確認するため、大きな二次粒子を含んだ触媒粉末に、超
音波を照射して二次粒子を解砕し、照射時間を変えるこ
とで、粒径分布を変えた触媒を調製した。これらを用い
て、正極単極性能を測定した。その結果、粒径分布が正
規分布に近い触媒粉末を用いると性能が向上することが
わかった。予想したように、大きい二次粒子を含む触媒
粉末を用いた正極の性能は低かった。
The catalyst is usually powder, and polytetrafluoroethylene (OTEF) is added thereto to form a catalyst layer. The catalyst powder forms secondary particles, and the distribution of pores in the catalyst layer varies depending on the size of the secondary particles or the distribution state of the particle diameters. Therefore, the distribution of the secondary particle diameter of the catalyst powder used is also a very important factor in optimizing the pores of the catalyst layer. Some catalysts may contain large secondary particles formed by aggregation of particles during preparation. In this case, the state of pore distribution becomes non-uniform inside the catalyst layer, resulting in a state of insufficient performance. Therefore, in order to bring out the performance sufficiently, it is necessary not to include large secondary particles. In order to confirm this, a catalyst powder containing large secondary particles was irradiated with ultrasonic waves to disintegrate the secondary particles, and the irradiation time was changed to prepare a catalyst having a different particle size distribution. The positive electrode single electrode performance was measured using these. As a result, it was found that the performance was improved by using a catalyst powder having a particle size distribution close to the normal distribution. As expected, the performance of the positive electrode using the catalyst powder containing large secondary particles was poor.

【0008】さらに、触媒層に隣接するガス拡散層及び
リン酸リザーバの細孔分布,撥水性等が触媒層のリン酸
分布に影響を与えることから、ガス拡散層及びリン酸リ
ザーバにおいても最適化した。ガス拡散層は、リン酸の
触媒層からガス拡散層への移動を抑制して、触媒層に十
分なリン酸を保持させ、かつガス拡散層では十分なガス
拡散性を維持させるため、撥水性をPTFEコーティン
グで高め、またPTFE量についても種々検討し、最適量を
明らかにした。リン酸リザーバでは、リン酸が正極側に
移動し易いことから、正極のリン酸リザーバには撥水性
を高めるため、PTFE処理を施した。
Further, since the pore distribution and water repellency of the gas diffusion layer and the phosphoric acid reservoir adjacent to the catalyst layer affect the phosphoric acid distribution of the catalyst layer, the gas diffusion layer and the phosphoric acid reservoir are also optimized. did. The gas diffusion layer suppresses the migration of phosphoric acid from the catalyst layer to the gas diffusion layer, retains sufficient phosphoric acid in the catalyst layer, and maintains sufficient gas diffusivity in the gas diffusion layer. Was increased by PTFE coating, and the amount of PTFE was also investigated variously to clarify the optimum amount. In the phosphoric acid reservoir, since phosphoric acid easily moves to the positive electrode side, the phosphoric acid reservoir of the positive electrode was treated with PTFE in order to enhance water repellency.

【0009】[0009]

【作用】電極、特に正極触媒層内部の電解質分布が性能
に大きく影響を及ぼす。これは、電池反応が反応ガス−
電解質−触媒活性成分の三相界面(前記三者が共存する
領域)でのみ反応が進行するためである。電池性能を向
上させるためには、この反応領域を増大させる必要があ
る。触媒層に電解質が吸収される場合、材料表面の撥水
性の度合の影響を受けるが、まず触媒層の細孔のうち直
径の小さい微細孔に毛管力で吸収される。微細孔が電解
質で満たされると、順次、大きい細孔が電解質によって
満たされていく。しかし、ある程度の大きさの細孔にな
ると、毛管力では電解質が満たされなくなり、電解質の
吸収はある細孔径のところで停止する。これにより、触
媒層内にガス拡散通路が確保され、三相界面が形成され
る。しかし、触媒層細孔の分布状態により、三相界面領
域に違いが生じ、性能が異なってくる。電解質で満たさ
れることの無い大きい細孔の容積が小さいと、ガスの拡
散不良のために性能が低くなり、一方電解質で満たされ
ることの無い大きい細孔の容積が大きすぎると、電解質
が不足状態になり、性能低下を引き起こす。一般的な触
媒を用いて触媒層を形成した場合、直径の小さい細孔は
主として触媒の有する細孔であり、触媒層内には十分に
存在する。しかし、直径の大きい細孔はPTFE、並び
にPTFEと触媒が形成するものであり、一般的に全細
孔容積に占める割合が少ない。従って、直径の大きい細
孔の割合が大きい触媒層が好ましいと考えられた。
The electrolyte distribution in the electrode, especially in the positive electrode catalyst layer, has a great influence on the performance. This is because the battery reaction is the reaction gas
This is because the reaction proceeds only at the three-phase interface of the electrolyte-catalyst active component (the region where the above three coexist). In order to improve the battery performance, it is necessary to increase this reaction area. When the electrolyte is absorbed by the catalyst layer, it is affected by the degree of water repellency of the surface of the material, but is first absorbed by the fine pores of the catalyst layer having a small diameter by capillary force. When the fine pores are filled with the electrolyte, the large pores are sequentially filled with the electrolyte. However, when the pores have a certain size, the electrolyte is not filled by the capillary force, and the absorption of the electrolyte stops at a certain pore diameter. As a result, a gas diffusion passage is secured in the catalyst layer and a three-phase interface is formed. However, the distribution of the catalyst layer pores causes a difference in the three-phase interface region, resulting in different performance. If the volume of large pores that will not be filled with electrolyte is small, the performance will be poor due to poor gas diffusion, while if the volume of large pores that will not be filled with electrolyte will be too large, the electrolyte will be insufficient. Causes performance degradation. When the catalyst layer is formed by using a general catalyst, the small-diameter pores are mainly the pores of the catalyst and are sufficiently present in the catalyst layer. However, pores having a large diameter are formed by PTFE and PTFE and a catalyst, and generally account for a small proportion of the total pore volume. Therefore, it was considered that a catalyst layer having a large proportion of pores with a large diameter was preferable.

【0010】そこで、活性成分である白金の担持方法,
調製法等の異なる触媒について、電極を作製し、触媒層
細孔分布と性能の間の相関性を調べると、予想通り、直
径の大きい細孔の占める割合が大きい触媒層を有する電
極が高い正極単極性能、及び電池性能を示すことが明ら
かとなった。ガスの拡散性が向上して、三相界面領域が
広がったためと推測される。
Therefore, a method for supporting platinum as an active ingredient,
When electrodes were prepared for catalysts with different preparation methods and the correlation between the catalyst layer pore distribution and performance was examined, as expected, a positive electrode with a high electrode having a catalyst layer with a large proportion of pores with a large diameter It was clarified that it exhibits monopolar performance and battery performance. It is presumed that the gas diffusivity was improved and the three-phase interface region was expanded.

【0011】また、直径の大きい細孔(電解質で満たさ
れない細孔)は前述のようにPTFE、並びにPTFE
と触媒により形成される。触媒粒子が凝集して大きい二
次粒子が形成されていると、細孔分布が変化するととも
に、PTFEとの混合が不十分になる。結果として、リ
ン酸分布のバランスが崩れたり、電解質を含んだ触媒と
大きい細孔との距離が遠くなることになり、ガスが十分
に触媒に到達できなくなる。そのため、三相界面領域が
減少して、性能低下を引き起こす。従って、触媒粉末は
理想的には正規分布を示すことが好ましく、また、粉末
粒径のピーク位置も重要な因子となるのである。
Further, the large-diameter pores (pores not filled with the electrolyte) are made of PTFE and PTFE as described above.
And formed by the catalyst. When the catalyst particles aggregate to form large secondary particles, the pore distribution changes and the mixing with PTFE becomes insufficient. As a result, the distribution of phosphoric acid is unbalanced, the distance between the catalyst containing the electrolyte and the large pores increases, and the gas cannot reach the catalyst sufficiently. As a result, the three-phase interface region is reduced, causing performance degradation. Therefore, the catalyst powder ideally preferably exhibits a normal distribution, and the peak position of the powder particle size is also an important factor.

【0012】[0012]

【実施例】【Example】

〈実施例1〉ガス拡散層として炭素繊維からなる多孔質
板にPTFEを2.5 重量%コーティングしたものを用
い、その片面に触媒とポリテトラフルオロエチレン(PT
FE)からなる触媒層を設け、空気中360℃で30分間
焼成し、正極を作製した。触媒としては、白金を炭素粉
末上に20〜30重量%担持した粉末数種を使用した。
触媒層中のPTFE含有量は約45%とした。この正極
の触媒層に、電池運転時と同様の量のリン酸を吸収させ
たのち、正極単極性能を測定した。温度は200℃とし、
正極のガス拡散層側には空気を過剰に供給した。また、
正極単極性能測定後、電極を水洗して含まれているリン
酸を除去し、触媒層とガス拡散層を分離して、触媒層の
細孔分布を水銀ポロシメータにより測定した。図1は正
極における触媒層細孔分布と単極性能の関係を表す図で
ある。細孔分布は、細孔の大きさにより四つに分けた。
すなわち直径0.1μm以下,0.1〜1.0μm,1.0
〜10μm、並びに10〜100μmに分割した。それ
ぞれの範囲における細孔容積を100μm以下の細孔容
積で割った値を指標として用いた。図1から明らかなよ
うに細孔分布と性能の間に相関が認められ、直径0.1
μm 以下、並びに0.1〜1.0μmの細孔容積が小さ
いほど、また10〜100μmの細孔容積が大きいほ
ど、高い性能を示す。直径0.1μm 以下、及び0.1
〜1.0μmの細孔容積が42%以下,10〜100μ
mの細孔容積が11%以上、が適している。なお、電極
中の白金の表面積がほぼ同じ試料で比較した。またPT
FE含有量、並びに焼成条件も同一であるため、性能は
細孔分布により支配されていると考えられる。
Example 1 As a gas diffusion layer, a porous plate made of carbon fiber coated with 2.5 wt% of PTFE was used, and the catalyst and polytetrafluoroethylene (PT
A catalyst layer made of FE) was provided and baked in air at 360 ° C. for 30 minutes to prepare a positive electrode. As the catalyst, several powders in which platinum was supported on carbon powder in an amount of 20 to 30% by weight were used.
The PTFE content in the catalyst layer was about 45%. After absorbing the same amount of phosphoric acid into the catalyst layer of this positive electrode as during battery operation, the positive electrode single electrode performance was measured. The temperature is 200 ℃,
Air was excessively supplied to the gas diffusion layer side of the positive electrode. Also,
After the positive electrode single electrode performance measurement, the electrode was washed with water to remove the contained phosphoric acid, the catalyst layer and the gas diffusion layer were separated, and the pore distribution of the catalyst layer was measured by a mercury porosimeter. FIG. 1 is a diagram showing the relationship between the pore size distribution of the catalyst layer in the positive electrode and the unipolar performance. The pore distribution was divided into four according to the size of the pores.
That is, the diameter is 0.1 μm or less, 0.1 to 1.0 μm, 1.0
It was divided into 10 μm and 10 to 100 μm. The value obtained by dividing the pore volume in each range by the pore volume of 100 μm or less was used as an index. As is clear from Fig. 1, there is a correlation between the pore size distribution and the performance, and the diameter is 0.1
Higher performance is shown when the pore volume is less than or equal to μm, and the pore volume of 0.1 to 1.0 μm is small, and the pore volume of 10 to 100 μm is large. Diameter less than 0.1 μm, and 0.1
Pore volume of up to 1.0 μm is 42% or less, 10 to 100 μm
It is suitable that the pore volume of m is 11% or more. It should be noted that the samples having substantially the same surface area of platinum in the electrodes were compared. Also PT
Since the FE content and the firing conditions are the same, it is considered that the performance is governed by the pore distribution.

【0013】なお、ガス拡散層のPTFEコーティング
量を2.0〜3.0重量%の間で変化させても同様の結果
が得られた。このガス拡散層の気孔率は75%以上であ
り、直径1.0μm 以上の細孔の容積が全細孔容積の9
0%以上を占めていた。
Similar results were obtained even when the amount of PTFE coating on the gas diffusion layer was varied between 2.0 and 3.0% by weight. The gas diffusion layer has a porosity of 75% or more, and the volume of pores having a diameter of 1.0 μm or more is 9% of the total pore volume.
It accounted for 0% or more.

【0014】〈実施例2〉触媒の二次粒子の大きさ及び
分布が性能に影響すると考え、触媒に水を添加し、超音
波処理した。超音波処理前後の触媒粒子の粒径分布を、
レーザ光源及びハロゲン光源を用いた前方散乱及び側方
散乱による粒度分析計により測定した。その結果を図2
に示す。図2は触媒粉末の粒径分布を表す図である。超
音波処理しない場合には、直径10μm以上の部分にシ
ョルダが認められ、二次粒子同士が凝集していると考え
られる。しかし、触媒に超音波処理を施すと、このショ
ルダが、処理時間の増大につれて小さくなって行くこと
がわかる。また、1時間以上の超音波処理により分布の
ピークも鋭くなる。
Example 2 Considering that the size and distribution of the secondary particles of the catalyst affect the performance, water was added to the catalyst and ultrasonic treatment was carried out. The particle size distribution of the catalyst particles before and after ultrasonic treatment,
It was measured by a particle size analyzer by forward scattering and side scattering using a laser light source and a halogen light source. The result is shown in Figure 2.
Shown in. FIG. 2 is a diagram showing the particle size distribution of the catalyst powder. When ultrasonic treatment is not carried out, shoulders are recognized in a portion having a diameter of 10 μm or more, and it is considered that secondary particles are agglomerated with each other. However, when the catalyst is subjected to ultrasonic treatment, this shoulder becomes smaller as the treatment time increases. Further, the peak of the distribution becomes sharper by the ultrasonic treatment for 1 hour or more.

【0015】そこで、次に超音波処理による性能の変化
を調べるため、超音波処理した触媒を用いて、実施例1
と同様にして正極単極性能を測定した。図3は超音波処
理時間と正極単極性能の関係を表す図である。図からわ
かるように、超音波処理時間の増大により正極単極性能
が向上している。この場合、触媒の相違点は超音波処理
だけであり、触媒粒径の分布状態が変化して性能が向上
したといえる。従って、性能向上のためには、図2の超
音波処理1時間及び3時間後の粒径分布を示す触媒を用
いれば良い。超音波処理1時間及び3時間後の粒径分布
では、10μm以上の粒子の割合はそれぞれ1.4%及
び0.3%であった。
Then, in order to investigate the change in performance due to ultrasonic treatment, a catalyst treated with ultrasonic treatment was used in Example 1.
The positive electrode single electrode performance was measured in the same manner as. FIG. 3 is a diagram showing the relationship between ultrasonic treatment time and positive electrode single electrode performance. As can be seen from the figure, the positive electrode single electrode performance is improved by increasing the ultrasonic treatment time. In this case, the only difference between the catalysts is the ultrasonic treatment, and it can be said that the catalyst particle size distribution changes and the performance is improved. Therefore, in order to improve the performance, a catalyst having a particle size distribution after 1 hour and 3 hours of ultrasonic treatment in FIG. 2 may be used. In the particle size distributions after 1 hour and 3 hours of ultrasonic treatment, the proportion of particles having a size of 10 μm or more was 1.4% and 0.3%, respectively.

【0016】〈実施例3〉実施例1で最も高い性能を示
した正極を用いて、一辺が600mmの大型セルを作製し
た。図4はリン酸型燃料電池の構造を表す図である。リ
ン酸電解質を保持するマトリックス4の両側に正極触媒
層5及び負極触媒層3が配置される。その外側には正極
ガス拡散層6及び負極ガス拡散層2、並びに正極リン酸
リザーバ7及び負極リン酸リザーバ1が、順次配置され
る。実際にはこの電池をセパレータで挾み、多数積層し
て用いるが本実施例では、単一の電池により性能評価し
た。なお、リン酸電解質を保持するマトリックスには、
炭化珪素とPTFEからなるものを用いた。また、負極
ガス拡散層は正極のものと同一である。リン酸リザーバ
に関しては、正極ではPTFE処理してあるが、負極で
は未処理である。リン酸は正極側に移動し易いため、正
極側のリン酸リザーバの撥水性を高めてある。この電池
を205℃に昇温した。燃料ガスとして水素60%,二
酸化炭素15%,水蒸気25%のガスを利用率80%で
供給した。また、酸化剤ガスとして空気を利用率約50
%で供給した。なお、利用率は電流密度が300mA/
cm2 をベースとしたときの値である。その結果、正極単
極性能から予測される電池性能が得られることを確認す
ることができた。
Example 3 Using the positive electrode having the highest performance in Example 1, a large cell having a side of 600 mm was produced. FIG. 4 is a diagram showing the structure of a phosphoric acid fuel cell. The positive electrode catalyst layer 5 and the negative electrode catalyst layer 3 are arranged on both sides of the matrix 4 holding the phosphoric acid electrolyte. The positive electrode gas diffusion layer 6 and the negative electrode gas diffusion layer 2, and the positive electrode phosphoric acid reservoir 7 and the negative electrode phosphoric acid reservoir 1 are sequentially arranged on the outer side thereof. In practice, this battery is sandwiched between separators and used in a number of layers, but in this example, the performance was evaluated using a single battery. In addition, the matrix holding the phosphoric acid electrolyte,
A material composed of silicon carbide and PTFE was used. The negative electrode gas diffusion layer is the same as that of the positive electrode. Regarding the phosphoric acid reservoir, the positive electrode is treated with PTFE, but the negative electrode is not treated. Since phosphoric acid easily moves to the positive electrode side, the water repellency of the phosphoric acid reservoir on the positive electrode side is enhanced. The battery was heated to 205 ° C. A gas of hydrogen 60%, carbon dioxide 15%, and water vapor 25% was supplied as a fuel gas at a utilization rate of 80%. Also, air is used as the oxidant gas at a utilization rate of about 50.
Supplied in%. In addition, the current density is 300 mA /
The value is based on cm 2 . As a result, it was confirmed that the battery performance predicted from the positive electrode single-pole performance was obtained.

【0017】[0017]

【発明の効果】本発明のリン酸型燃料電池では、触媒層
内部においてガス拡散性が向上し、三相界面の領域が大
きくなることによって、高い電池性能が得られる。
EFFECTS OF THE INVENTION In the phosphoric acid fuel cell of the present invention, the gas diffusivity inside the catalyst layer is improved and the area of the three-phase interface is enlarged, so that high cell performance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】正極における触媒層細孔分布と単極性能の関係
を表す特性図。
FIG. 1 is a characteristic diagram showing a relationship between a catalyst layer pore size distribution and a single electrode performance in a positive electrode.

【図2】触媒粉末の粒径分布を表す特性図。FIG. 2 is a characteristic diagram showing a particle size distribution of catalyst powder.

【図3】超音波処理時間と正極単極性能の関係を表す特
性図。
FIG. 3 is a characteristic diagram showing a relationship between ultrasonic treatment time and positive electrode single electrode performance.

【図4】本発明の実施例3におけるリン酸型燃料電池の
構造を表す斜視図。
FIG. 4 is a perspective view showing the structure of a phosphoric acid fuel cell according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…負極リン酸リザーバ、2…負極ガス拡散層、3…負
極触媒層、4…リン酸電解質を保持するマトリックス、
5…正極触媒層、6…正極ガス拡散層、7…正極リン酸
リザーバ。
DESCRIPTION OF SYMBOLS 1 ... Negative electrode phosphoric acid reservoir, 2 ... Negative electrode gas diffusion layer, 3 ... Negative electrode catalyst layer, 4 ... Matrix holding a phosphoric acid electrolyte,
5 ... Positive electrode catalyst layer, 6 ... Positive electrode gas diffusion layer, 7 ... Positive electrode phosphoric acid reservoir.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 魚住 昇平 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 加藤 明 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 宮寺 博 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小野 征一郎 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Shohei Uozumi 7-1 Omika-cho, Hitachi-city, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Akira Kato 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd., Hitachi Research Laboratory (72) Inventor Hiroshi Miyadera 1-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Seiichiro Ono Hitachi City, Ibaraki Prefecture Kokubun 1-1-1 Machi Kokubun Plant, Hitachi, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】触媒層とガス拡散層から成る正極及び負極
が、触媒層側をリン酸電解質に面して、リン酸電解質を
挾んで配置され、正極のガス拡散層には酸化剤ガスが、
負極のガス拡散層には燃料ガスが供給されるリン酸型燃
料電池において、前記正極の触媒層の直径100μm以
下の細孔のうち、直径0.1μm 以下の細孔の容積、並
びに直径0.1μmから1.0μmの細孔の容積が42%
以下であり、10μmから100μmの細孔の容積が1
1%以上であることを特徴とするリン酸型燃料電池。
1. A positive electrode and a negative electrode composed of a catalyst layer and a gas diffusion layer are arranged with the catalyst layer side facing the phosphoric acid electrolyte and sandwiching the phosphoric acid electrolyte, and the gas diffusion layer of the positive electrode contains an oxidant gas. ,
In a phosphoric acid fuel cell in which fuel gas is supplied to the gas diffusion layer of the negative electrode, the volume of pores having a diameter of 0.1 μm or less and the diameter of 0.1 μm or less among the pores having a diameter of 100 μm or less of the catalyst layer of the positive electrode. 42% of the volume of pores from 1 μm to 1.0 μm
And the volume of pores of 10 μm to 100 μm is 1
A phosphoric acid fuel cell, which is 1% or more.
【請求項2】請求項1において、前記酸化剤ガスが空
気,燃料ガスが水素を主成分とするガスであり、前記触
媒層が触媒とポリテトラフルオロエチレンから構成さ
れ、触媒の主成分が白金及び炭素であるリン酸型燃料電
池。
2. The oxidant gas according to claim 1, wherein the oxidant gas is air, and the fuel gas is a gas containing hydrogen as a main component, the catalyst layer is composed of a catalyst and polytetrafluoroethylene, and the main component of the catalyst is platinum. And a phosphoric acid fuel cell that is carbon.
【請求項3】請求項2において、前記触媒の二次粒子が
直径0.2〜15μm の範囲にあり、かつ10μm以上
の二次粒子の割合が1.5% 以下であるリン酸型燃料電
池。
3. The phosphoric acid fuel cell according to claim 2, wherein the secondary particles of the catalyst are in the range of 0.2 to 15 μm in diameter, and the ratio of secondary particles of 10 μm or more is 1.5% or less. .
【請求項4】請求項3において、前記触媒の10μm以
上の二次粒子の割合が0.5% 以下であるリン酸型燃料
電池。
4. The phosphoric acid fuel cell according to claim 3, wherein the proportion of secondary particles of 10 μm or more in the catalyst is 0.5% or less.
【請求項5】請求項2において、前記触媒が超音波処理
により二次粒子が解砕されたものであるリン酸型燃料電
池。
5. The phosphoric acid fuel cell according to claim 2, wherein the catalyst has secondary particles crushed by ultrasonic treatment.
【請求項6】請求項1において、前記ガス拡散層が炭素
繊維をシート状に成型したものに、ポリテトラフルオロ
エチレンを2.2〜3.3重量%コーティングしたもので
あり、前記ガス拡散層の気孔率が75%以上であり、直
径1.0μm 以上の細孔の容積が、全細孔容積の90%
以上であるリン酸型燃料電池。
6. The gas diffusion layer according to claim 1, wherein the gas diffusion layer is formed by molding carbon fibers into a sheet shape and coated with 2.2 to 3.3% by weight of polytetrafluoroethylene. Has a porosity of 75% or more, and the volume of pores with a diameter of 1.0 μm or more is 90% of the total pore volume.
The above is a phosphoric acid fuel cell.
【請求項7】請求項1において、前記正極のガス拡散層
の外側にはポリテトラフルオロエチレンをコーティング
した溝付き多孔質炭素板が配置されて酸化剤ガスの、前
記負極のガス拡散層の外側にはポリテトラフルオロエチ
レンをコーティングしない溝付き多孔質炭素板が配置さ
れて燃料ガスの、それぞれ流路を形成すると共に、集電
並びにリン酸を貯蔵するリン酸型燃料電池。
7. The porous carbon plate with grooves coated with polytetrafluoroethylene is arranged outside the gas diffusion layer of the positive electrode, and the oxidant gas is outside the gas diffusion layer of the negative electrode according to claim 1. A phosphoric acid fuel cell in which a porous carbon plate with a groove not coated with polytetrafluoroethylene is arranged to form channels for fuel gas, and to collect current and store phosphoric acid.
JP5055407A 1993-03-16 1993-03-16 Phosphoric acid type fuel cell Pending JPH06267545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5055407A JPH06267545A (en) 1993-03-16 1993-03-16 Phosphoric acid type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5055407A JPH06267545A (en) 1993-03-16 1993-03-16 Phosphoric acid type fuel cell

Publications (1)

Publication Number Publication Date
JPH06267545A true JPH06267545A (en) 1994-09-22

Family

ID=12997700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5055407A Pending JPH06267545A (en) 1993-03-16 1993-03-16 Phosphoric acid type fuel cell

Country Status (1)

Country Link
JP (1) JPH06267545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785588A3 (en) * 1996-01-19 2000-05-03 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electrode or electrode-electrolyte membrane joint body for fuel cell and electrode for fuel cell
JP2005026174A (en) * 2003-07-01 2005-01-27 Honda Motor Co Ltd Solid polymer type fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785588A3 (en) * 1996-01-19 2000-05-03 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electrode or electrode-electrolyte membrane joint body for fuel cell and electrode for fuel cell
JP2005026174A (en) * 2003-07-01 2005-01-27 Honda Motor Co Ltd Solid polymer type fuel cell

Similar Documents

Publication Publication Date Title
Broka et al. Modelling the PEM fuel cell cathode
JP3245929B2 (en) Fuel cell and its application device
US4078119A (en) Method for catalyzing a fuel cell electrode and an electrode so produced
JPH08227716A (en) Electrode constituent raw material for high-molecular solid electrolyte type fuel cell and manufacture thereof
CN1988225A (en) Gas diffusion layer for proton exchanging film fuel cell and its preparing method
CN113241448B (en) Gradient microporous gas diffusion layer of proton exchange membrane fuel cell and preparation method thereof
CN100438166C (en) Fuel cell
JP2003157857A (en) Electrode catalyst body for fuel cell, air electrode for fuel cell using it, and evaluating method of its catalystic activity
JPH0888007A (en) Solid polymer fuel cell and its electrode
US3979227A (en) Method for catalyzing a fuel cell electrode and an electrode so produced
JP3573771B2 (en) Fuel cell
CN100486015C (en) Method for preparing self-humidifying proton exchange membrane fuel cell membrane electrode with water diffusing area
Chan et al. Catalyst layer models for proton exchange membrane fuel cells
JP2005510631A (en) Electrophoretically deposited hydrophilic coating for fuel cell diffuser / current collector
JPH06267545A (en) Phosphoric acid type fuel cell
JPH08148152A (en) Solid polymeric fuel cell electrode and manufacture thereof
JP2002500806A (en) Electrolytic reactor such as fuel cell with zeolite membrane
KR20150004680A (en) Membrane-electrode assembly for fuel cell and fuel cell stack including same
JPH0766812B2 (en) Gas diffusion electrode for fuel cells
JPH0218861A (en) Electrode catalyzer layer for fuel cell
JPH05315000A (en) Polymer solid electrolyte-type fuel cell
CN107887611A (en) A kind of low platinum loading electrodes preparation method of high temperature membrane cell high-performance
JPS60165062A (en) Fuel cell
JPH0218862A (en) Manufacture of electrode catalyzer layer for fuel cell
JPH03252058A (en) Electrode catalyst layer for fuel cell