JPH0992303A - Manufacture of solid polymer type fuel cell electrode - Google Patents

Manufacture of solid polymer type fuel cell electrode

Info

Publication number
JPH0992303A
JPH0992303A JP7250930A JP25093095A JPH0992303A JP H0992303 A JPH0992303 A JP H0992303A JP 7250930 A JP7250930 A JP 7250930A JP 25093095 A JP25093095 A JP 25093095A JP H0992303 A JPH0992303 A JP H0992303A
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
electrode
sheet
conductive sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7250930A
Other languages
Japanese (ja)
Inventor
Shin Takeda
伸 武田
Kouichi Kuwaha
孝一 桑葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP7250930A priority Critical patent/JPH0992303A/en
Publication of JPH0992303A publication Critical patent/JPH0992303A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly apply an ion exchange resin solution to a conductive sheet preliminarily subjected to water repellent treatment by use of spin coating to exhibit high water repellency in an electrode, and manufacture a high durable electrode. SOLUTION: A catalyst layer 2 formed of carbon black of conductive powder, platinum of catalyst metal particle, and a water repelling agent is formed on the surface of a carbon sheet subjected to water repellent treatment, and placed on a rotating plate 3. While the rotating plate 3 is rotated at a prescribed speed, an ion exchange resin solution is dropped from a dropping device 6 arranged above the center of the catalyst layer 2, and after the dropping is ended, the rotating plate 3 is rotated at high speed. These application and drying are repeated, whereby the ion exchange resin solution can be uniformly applied to the whole surface of the conductive sheet, and the control of application quantity is also facilitated. Thus, high water repellency in electrode can be exhibited, and the durability of electrode can be also improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は固体高分子型燃料電
池電極の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a polymer electrolyte fuel cell electrode.

【0002】[0002]

【従来の技術】近年、環境及び資源に対する施策の重要
性が認識され、大気汚染防止、特に炭酸ガス排出による
温暖化の防止、脱石油、省資源及びエネルギー供給の高
効率化が強く求められており、これらの要求に応えるべ
く燃料電池の実用化に向けて研究が進められている。燃
料電池は40〜60%と発電効率が高く、さらに排熱回
収により総合効率が80%にも達すること、燃料として
天然ガス、水素、メタノール、LPG、石炭ガス化ガス
など資源と環境面から望ましい選択が可能であること、
騒音や排気ガスなどによる公害要素がほとんどないこと
等、の利点を備えるため、資源制約が少なく、環境負荷
の小さい新エネルギーとして大きな期待を寄せられてい
る。
2. Description of the Related Art In recent years, the importance of environmental and resource measures has been recognized, and there has been a strong demand for prevention of air pollution, in particular, prevention of global warming due to carbon dioxide emission, de-oiling, resource saving and high efficiency of energy supply. Therefore, in order to meet these demands, research is proceeding toward the practical application of fuel cells. Fuel cells have high power generation efficiency of 40 to 60%, and overall efficiency reaches 80% by recovering exhaust heat. It is desirable from the standpoint of resources such as natural gas, hydrogen, methanol, LPG, coal gasification gas, and environment. Be selectable,
Since it has advantages such as almost no pollution factor due to noise and exhaust gas, it is expected to be a new energy with less resource constraints and environmental load.

【0003】燃料電池は電解質の種類により、リン酸
型、溶融炭酸塩型、固体電解質型、及び固体高分子型等
に分類される。このうち固体高分子型燃料電池は、出力
密度が3kW/m2 と他の型より高いので小型軽量化で
き、また電解質が高分子イオン交換膜(イオン交換樹脂
膜)で低温(60〜100℃)運転のため早く起動がで
きるので、可搬型、移動型電源に適用できる。
Fuel cells are classified into phosphoric acid type, molten carbonate type, solid electrolyte type, solid polymer type and the like according to the type of electrolyte. Among them, the polymer electrolyte fuel cell has a higher power density of 3 kW / m 2 than other types, so it can be made smaller and lighter, and the electrolyte is a polymer ion exchange membrane (ion exchange resin membrane) at a low temperature (60 to 100 ° C.). ) Because it can be started quickly due to operation, it can be applied to portable and mobile power sources.

【0004】固体高分子型燃料電池は、一対の電極間に
固体電解質としてのイオン交換樹脂膜を挟持し、二つの
電極を負荷を介して接続した構成とされている。この固
体高分子型燃料電池の原理は、水の電気分解の逆の反応
を利用するもので、固体電解質としてのイオン交換樹脂
膜を挟んだ電極の一方(陰極側)に水素(燃料)、他方
(陽極側)に酸素(空気、酸化剤)を送り込み、二つの
電極を負荷を通して接続することにより、水素(燃料)
と酸素(空気、酸化剤)とを反応させて、水と電気エネ
ルギーを得るというものである。この反応は電気化学反
応と呼ばれ、陰極にて水素がイオン化し、そのイオンは
イオン交換樹脂膜中を通って陽極に移動し、陽極にて酸
素が水素イオンと反応するとともに、陰極にて放出され
て外部回路を通って移動した電子を受け取って水を生成
する。
The polymer electrolyte fuel cell has a structure in which an ion exchange resin membrane as a solid electrolyte is sandwiched between a pair of electrodes and two electrodes are connected via a load. The principle of this polymer electrolyte fuel cell is to utilize the reverse reaction of electrolysis of water, and hydrogen (fuel) and the other (cathode) on one side (cathode side) of electrodes sandwiching an ion exchange resin membrane as a solid electrolyte. Hydrogen (fuel) is supplied by sending oxygen (air, oxidizer) to the (anode side) and connecting the two electrodes through a load.
It reacts with oxygen (air, oxidizer) to obtain water and electric energy. This reaction is called an electrochemical reaction.Hydrogen is ionized at the cathode, the ions move through the ion exchange resin membrane to the anode, and oxygen reacts with hydrogen ions at the anode and is released at the cathode. The electrons that have been moved through the external circuit are received to generate water.

【0005】このような固体高分子型燃料電池の電極
は、一般に、カーボンシート等の多孔性の導電性基材シ
ートと、該基材シートの表面に形成され、カーボン粉末
等の導電性粉末、触媒金属粒子としての白金、撥水剤と
してのポリテトラフルオロエチレン(PTFE)及びイ
オン交換樹脂よりなる多孔性の触媒層とから構成されて
いる。なお、触媒層中に含まれる白金は上記電気化学反
応を促進するためのものである。また、触媒層中に含ま
れるイオン交換樹脂は、電極間に挟持される固体電解質
としてのイオン交換樹脂膜と一体に接合されることによ
り、電極反応サイトの三次元化を図って分極特性を向上
させるためのものである。また、触媒層中に含まれる撥
水剤は、触媒層における通気性を向上させて導電性粉末
と水素又は酸素等の気体との接触を促進し、電極が水浸
しになってガス拡散が阻害されるのを防ぐことにより、
電極としての耐久性を向上させるためのものである。
An electrode of such a polymer electrolyte fuel cell is generally a porous conductive base material sheet such as a carbon sheet, and a conductive powder such as carbon powder formed on the surface of the base material sheet. It is composed of platinum as catalyst metal particles, polytetrafluoroethylene (PTFE) as a water repellent, and a porous catalyst layer made of an ion exchange resin. The platinum contained in the catalyst layer is for promoting the electrochemical reaction. In addition, the ion exchange resin contained in the catalyst layer is integrally bonded to the ion exchange resin membrane as the solid electrolyte sandwiched between the electrodes to improve the polarization characteristics by making the electrode reaction site three-dimensional. It is for making it. In addition, the water repellent contained in the catalyst layer improves the air permeability in the catalyst layer and promotes the contact between the conductive powder and a gas such as hydrogen or oxygen, and the electrode is soaked in water to inhibit gas diffusion. By preventing
This is for improving the durability as an electrode.

【0006】上記従来の固体高分子型燃料電池の電極
は、例えば、白金を担持したカーボン粉末にイオン交換
樹脂の溶媒溶液を混合し、さらに撥水剤としてのPTF
Eを水懸濁液状で加え、得られた混合物を混練してペー
ストを形成し、このペーストをカーボンシート等の多孔
性の導電性基材シートの表面に均一に塗布し、その後乾
燥することにより、基材シートの表面上に触媒層を形成
して製造することができる。
The electrode of the above-mentioned conventional polymer electrolyte fuel cell is prepared, for example, by mixing carbon powder carrying platinum with a solvent solution of an ion exchange resin, and further by adding PTF as a water repellent agent.
E is added in the form of an aqueous suspension, the resulting mixture is kneaded to form a paste, and the paste is uniformly applied to the surface of a porous conductive substrate sheet such as a carbon sheet, and then dried. It can be manufactured by forming a catalyst layer on the surface of the substrate sheet.

【0007】[0007]

【発明が解決しようとする課題】ところで、PTFE等
の撥水剤は、350〜380℃程度に加熱して溶かし、
その後の冷却固化により、粒状構造を鎖状構造とするこ
とにより、高い撥水性を発揮させることができる。しか
し、触媒層を形成するためのペースト中に撥水剤として
のPTFEを混入する上記従来の固体高分子型燃料電池
電極の製造方法では、高撥水性付与のための上記加熱処
理を行うことができない。すなわち、触媒層中のイオン
交換樹脂成分は330℃程度の温度で熱分解してしまう
ため、高撥水性付与のために350℃程度以上に加熱処
理することができない。このため、上記従来方法により
得られた電極では、高い撥水性を発揮させることができ
ず、反応生成水等により電極が濡れ、ガスの拡散が阻害
されるため、電極としての耐久性を向上させることがで
きない。
By the way, a water repellent such as PTFE is heated to about 350 to 380 ° C. to be melted,
High water repellency can be exhibited by making the granular structure into a chain structure by subsequent cooling and solidification. However, in the above-mentioned conventional method for manufacturing a polymer electrolyte fuel cell electrode in which PTFE as a water repellent is mixed in the paste for forming the catalyst layer, the above heat treatment for imparting high water repellency may be performed. Can not. That is, since the ion exchange resin component in the catalyst layer is thermally decomposed at a temperature of about 330 ° C., it cannot be heat-treated at about 350 ° C. or higher in order to impart high water repellency. Therefore, the electrode obtained by the above-mentioned conventional method cannot exhibit high water repellency, the reaction product water or the like wets the electrode, and gas diffusion is hindered, thus improving durability as an electrode. I can't.

【0008】そこで、撥水処理を予め施した導電性シー
トにイオン交換樹脂溶液を塗布する手段が考えられる
が、イオン交換樹脂溶液を導電性シート表面にスプレー
噴射したり、イオン交換樹脂溶液中に導電性シートを浸
漬したりする方法では、イオン交換樹脂溶液を均一に塗
布することが困難である。本発明は上記実情に鑑みてな
されたものであり、導電性シートにイオン交換樹脂溶液
を均一に塗布することを可能とし、高い撥水性を発揮さ
せて耐久性を向上させることのできる固体高分子型燃料
電池電極の製造方法を提供することを解決すべき技術課
題とするものである。
Therefore, it is conceivable to apply an ion exchange resin solution to a conductive sheet which has been subjected to a water repellent treatment in advance. However, the ion exchange resin solution may be sprayed onto the surface of the conductive sheet or may be applied to the ion exchange resin solution. It is difficult to uniformly apply the ion exchange resin solution by the method of dipping the conductive sheet. The present invention has been made in view of the above circumstances, and a solid polymer capable of uniformly applying an ion exchange resin solution to a conductive sheet and exhibiting high water repellency to improve durability. It is a technical problem to be solved to provide a method for manufacturing a fuel cell electrode for a fuel cell.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の固体高分子型燃料電池電極の製造方法は、導電性成
分、触媒金属粒子及び撥水剤を含み撥水処理が施された
導電性シートを回転させつつ該導電性シートの中心付近
の表面に固体高分子電解質としてのイオン交換樹脂の溶
液を滴下することにより、該導電性シート中にイオン交
換樹脂を浸透させるスピンコート処理工程を実施するこ
とを特徴とするものである。
A method for producing a polymer electrolyte fuel cell electrode according to the present invention, which solves the above-mentioned problems, comprises a conductive material which contains a conductive component, catalytic metal particles and a water repellent agent and which has been subjected to a water repellent treatment. Spin coating treatment step of permeating the ion exchange resin into the conductive sheet by dropping a solution of the ion exchange resin as a solid polymer electrolyte on the surface near the center of the conductive sheet while rotating the conductive sheet. It is characterized by carrying out.

【0010】本発明方法は、導電性成分、触媒金属粒子
及び撥水剤を含む多孔性の導電性シートを予め撥水処理
し、この撥水処理された導電性シート中にスピンコート
法を利用してイオン交換樹脂の溶液を浸透させるもので
あるから、十分に高い撥水性を発揮させることができ
る。また、スピンコート法を利用することにより、導電
性シートの表面に均一に、かつ、薄くイオン交換樹脂の
溶液を塗布し、導電性シート中にイオン交換樹脂溶液を
しみ込ませることができる。
In the method of the present invention, a porous conductive sheet containing a conductive component, catalytic metal particles and a water repellent agent is subjected to a water repellent treatment in advance, and a spin coating method is applied to the water repellent treated conductive sheet. Then, since the solution of the ion exchange resin is permeated, sufficiently high water repellency can be exhibited. Further, by using the spin coating method, the ion exchange resin solution can be uniformly and thinly applied to the surface of the conductive sheet, and the ion exchange resin solution can be impregnated into the conductive sheet.

【0011】[0011]

【発明の実施の形態】以下、本発明の固体高分子型燃料
電池電極の製造方法に係る実施形態について説明する。 (撥水処理工程)撥水処理工程では、導電性成分、触媒
金属粒子及び撥水剤を含む多孔性の導電性シートを撥水
処理する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the method for producing a polymer electrolyte fuel cell electrode of the present invention will be described below. (Water repellent treatment step) In the water repellent treatment step, a porous conductive sheet containing a conductive component, catalytic metal particles and a water repellent agent is subjected to a water repellent treatment.

【0012】この撥水処理は、使用する撥水剤の種類に
応じた適当な温度に加熱することにより行う。例えば、
撥水剤としてポリテトラフルオロエチレン(PTFE)
を用いた場合は350〜380℃程度に加熱する。上記
導電性シートとしては、カーボンシートやカーボンクロ
ス発泡ニッケルペーパー等のシートに触媒金属粒子とし
ての白金を担持させるとともに、PTFE等の撥水剤を
含浸、乾燥させたものを用いることができる。また、こ
の導電性シートとしては、一表面側における触媒金属粒
子の濃度が、反対側の表面側におけるそれよりも高いも
のを用いることが好ましい。固体高分子型燃料電池とし
て製造される際に、一対の電極間に挟まれる固体高分子
電解質としてのイオン交換樹脂膜と接触する表面側にお
ける触媒金属粒子の濃度を高くして、電気化学反応性を
向上させるためである。例えば、導電性成分及び撥水剤
を含む多孔性の導電性基材シートと、該基材シートの表
面に形成され、導電性粉末、触媒金属粒子及び撥水剤を
含む多孔性の触媒層とから構成された導電性シートを好
ましい態様として挙げることができる。なお、上記した
ような濃度傾斜を有する単層構造の導電性シートも用い
ることは可能である。
This water repellent treatment is carried out by heating to an appropriate temperature depending on the type of water repellent used. For example,
Polytetrafluoroethylene (PTFE) as water repellent
When used, it is heated to about 350 to 380 ° C. As the conductive sheet, a sheet such as a carbon sheet or a carbon cloth foamed nickel paper on which platinum as a catalytic metal particle is supported, and a water repellent such as PTFE is impregnated and dried can be used. Further, as the conductive sheet, it is preferable to use one in which the concentration of the catalytic metal particles on one surface side is higher than that on the opposite surface side. When manufactured as a polymer electrolyte fuel cell, the concentration of catalytic metal particles on the surface side in contact with an ion exchange resin membrane as a polymer electrolyte sandwiched between a pair of electrodes is increased to improve electrochemical reactivity. Is to improve. For example, a porous conductive base material sheet containing a conductive component and a water repellent agent, and a porous catalyst layer formed on the surface of the base material sheet and containing conductive powder, catalytic metal particles and a water repellent agent. A conductive sheet composed of can be mentioned as a preferred embodiment. Note that it is also possible to use a single-layer conductive sheet having the above-described concentration gradient.

【0013】上記導電性基材シートと触媒層とからなる
導電性シートは、例えば以下のように製造し、撥水処理
することができる。まず、カーボンシートをPTFEデ
ィスパージョン(PTFEを30〜60wt%程度の割
合で水中に分散したもの)中に20〜30秒程度浸し、
その後80℃×30分の条件で乾燥する。そして、35
0〜380℃程度の温度で5〜30分程度加熱して、撥
水処理したカーボンシート(導電性基材シート)を得
る。一方、カーボンブラックに白金を10〜40wt%
担持したものと、PTFEディスパージョン(PTFE
を30〜60wt%程度の割合で水中に分散したもの)
とを混合し、80℃×48時間の条件で乾燥して、カー
ボンブラックとPTFEとの混合粉を得る。この混合粉
にセルナSE604(中京油脂社製、商品名)等のエタ
ノール系溶剤を混合し、混練してペーストを得る。得ら
れたペーストを上記撥水処理したカーボンシートの表面
にドクターブレード法等により均一に塗布し、真空で1
時間の条件で乾燥することにより、導電性粉末、触媒金
属粒子及び撥水剤よりなる多孔性の触媒層をカーボンシ
ートの表面に形成する。そして、350〜380℃程度
の温度で5〜30分程度加熱して、触媒層を撥水処理す
る。
The electroconductive sheet comprising the electroconductive substrate sheet and the catalyst layer can be manufactured and treated for water repellency, for example, as follows. First, the carbon sheet is immersed in PTFE dispersion (PTFE dispersed in water at a ratio of about 30 to 60 wt%) for about 20 to 30 seconds,
Then, it is dried at 80 ° C. for 30 minutes. And 35
By heating at a temperature of about 0 to 380 ° C. for about 5 to 30 minutes, a water repellent carbon sheet (conductive substrate sheet) is obtained. On the other hand, platinum is added to carbon black at 10 to 40 wt%
Supported and PTFE dispersion (PTFE
Dispersed in water at a ratio of about 30 to 60 wt%)
Are mixed and dried under the condition of 80 ° C. × 48 hours to obtain a mixed powder of carbon black and PTFE. An ethanol solvent such as Serna SE604 (trade name, manufactured by Chukyo Yushi Co., Ltd.) is mixed with this mixed powder and kneaded to obtain a paste. The obtained paste is uniformly applied to the surface of the above-mentioned water repellent carbon sheet by a doctor blade method or the like, and is applied in vacuum 1
By drying under the condition of time, a porous catalyst layer composed of conductive powder, catalytic metal particles and a water repellent is formed on the surface of the carbon sheet. Then, the catalyst layer is subjected to water repellent treatment by heating at a temperature of about 350 to 380 ° C. for about 5 to 30 minutes.

【0014】なお、カーボンシートをPTFEディスパ
ージョン中に浸し、その後乾燥したカーボンシートの表
面に上記カーボンブラック、PTFE及びエタノール系
溶剤よりなるペーストを均一に塗布し、乾燥した後、3
50〜380℃程度の温度で加熱して、カーボンシート
及び触媒層を同時に撥水処理することもできる。また、
触媒金属粒子としての白金担持は、カーボンシート上に
触媒層を形成した後に行うことも可能である。
The carbon sheet is dipped in PTFE dispersion, and the paste of carbon black, PTFE and ethanol solvent is uniformly applied to the surface of the dried carbon sheet, which is then dried 3
The carbon sheet and the catalyst layer may be simultaneously subjected to water repellent treatment by heating at a temperature of about 50 to 380 ° C. Also,
The platinum as the catalytic metal particles can be supported after forming the catalyst layer on the carbon sheet.

【0015】上記カーボンシート及び触媒層の厚さは、
特に限定されるものではないが、導電性基材シートとし
てのカーボンシートの厚さは90〜360μm程度、触
媒層の厚さは5〜20μm程度とすることができる。 (スピンコート処理工程)スピンコート処理工程では、
上記のように撥水処理された導電性シートを回転させつ
つ該導電性シートの中心付近の表面に固体高分子電解質
としてのイオン交換樹脂の溶液を滴下することにより、
該導電性シート中にイオン交換樹脂を浸透させる。
The thickness of the carbon sheet and the catalyst layer is
Although not particularly limited, the thickness of the carbon sheet as the conductive substrate sheet may be about 90 to 360 μm, and the thickness of the catalyst layer may be about 5 to 20 μm. (Spin coating process) In the spin coating process,
By rotating a conductive sheet that has been subjected to water repellent treatment as described above, by dropping a solution of an ion exchange resin as a solid polymer electrolyte on the surface near the center of the conductive sheet,
An ion exchange resin is impregnated into the conductive sheet.

【0016】イオン交換樹脂の種類としては特に限定さ
れないが、固体高分子型燃料電池として製造する際に、
一対の電極間にはさむ固体電解質としてのイオン交換樹
脂膜と同種類のイオン交換樹脂を用いることが好まし
い。例えば、Aciplex(ss−910)(旭化成
社製、商品名)、ナフィオン溶液等のイオン交換樹脂溶
液を用いることができる。これらのイオン交換樹脂溶液
はエタノールやイソプロピルアルコール等で適宜希釈し
て用いられる。
The type of ion exchange resin is not particularly limited, but when it is produced as a polymer electrolyte fuel cell,
It is preferable to use the same kind of ion exchange resin as the ion exchange resin membrane as the solid electrolyte sandwiched between the pair of electrodes. For example, Aciplex (ss-910) (manufactured by Asahi Kasei Corp., trade name), an ion exchange resin solution such as a Nafion solution can be used. These ion exchange resin solutions are used after being appropriately diluted with ethanol, isopropyl alcohol, or the like.

【0017】スピンコート処理条件としては、特に限定
されるものではないが、回転中の導電性シートの中心付
近の表面に滴下されたイオン交換樹脂溶液が遠心力によ
り瞬時に導電性シートの周縁部分まで広がり、余分のイ
オン交換樹脂溶液が周囲に飛散する程度の回転速度とす
ることが好ましい。この回転速度が遅過ぎると、導電性
シートの表面全体にイオン交換樹脂溶液を均一に塗布す
ることが困難となり、また導電性シート中に浸透させる
イオン交換樹脂量が過剰となり好ましくない。なお、イ
オン交換樹脂は電気抵抗成分であるため、イオン交換樹
脂量が過剰となると電池性能が低下する要因となる。
The spin coating treatment conditions are not particularly limited, but the ion exchange resin solution dropped on the surface near the center of the rotating conductive sheet is instantaneously centrifuged by the peripheral force of the conductive sheet. It is preferable that the rotation speed is such that it spreads over and the excess ion-exchange resin solution is scattered around. If the rotation speed is too slow, it becomes difficult to uniformly apply the ion exchange resin solution to the entire surface of the conductive sheet, and the amount of the ion exchange resin that permeates the conductive sheet becomes excessive, which is not preferable. Since the ion exchange resin is an electric resistance component, an excessive amount of the ion exchange resin causes a decrease in battery performance.

【0018】具体的には、滴下されたイオン交換樹脂溶
液の50〜90wt%程度が周囲に飛散する回転速度と
することが好ましい。より具体的には、イオン交換樹脂
溶液を滴下する際の回転速度を300〜1000rpm
程度とし、イオン交換樹脂溶液の滴下後の回転速度を5
00〜3000rpm程度とすることが好ましい。この
ように、イオン交換樹脂溶液を滴下する際の回転速度
と、滴下後の回転速度とを変えるのは、滴下の際に回転
速度が速すぎると液が導電性シートにはじき飛ばされて
うまく広がらないためである。なお、イオン交換樹脂溶
液を滴下後の回転時間は2〜10秒程度とすることがで
きる。
Specifically, the rotation speed is preferably such that about 50 to 90 wt% of the dropped ion exchange resin solution is scattered around. More specifically, the rotation speed when dropping the ion exchange resin solution is 300 to 1000 rpm.
And the rotation speed after dropping the ion exchange resin solution is 5
It is preferable to set it to about 00 to 3000 rpm. In this way, the rotation speed at the time of dropping the ion-exchange resin solution and the rotation speed after dropping are changed because if the rotation speed is too fast at the time of dropping, the liquid is repelled by the conductive sheet and does not spread well. This is because. The rotation time after dropping the ion exchange resin solution can be about 2 to 10 seconds.

【0019】また、導電性シートの表面全体により均一
にイオン交換樹脂溶液を塗布させるとともに、導電性シ
ート中へのイオン交換樹脂の浸透厚さをより薄くして電
気抵抗を小さくする観点から、スピンコート処理を繰り
返し行い、しかもイオン交換樹脂の濃度の低い溶液をま
ず塗布、乾燥し、その後イオン交換樹脂の濃度の高い溶
液の塗布及び乾燥を繰り返し行うことが好ましい。最初
にいきなりイオン交換樹脂の濃度の高い溶液を塗布する
と、溶液が導電性シートの表面全体にうまく広がらない
からである。具体的には、最初のスピンコート処理によ
り、イオン交換樹脂の濃度が0.5〜1wt%のエタノ
ール溶液を塗布し、50〜80℃程度で20〜30分程
度乾燥し、その後イオン交換樹脂の濃度が2〜3wt%
のエタノール溶液を塗布、及び50〜80℃程度での2
0〜30分程度の乾燥を4〜5回繰り返し行うことが好
ましい。
From the viewpoint of coating the ion exchange resin solution more uniformly on the entire surface of the conductive sheet and further reducing the permeation thickness of the ion exchange resin into the conductive sheet to reduce the electrical resistance, the spin is performed. It is preferable that the coating treatment be repeated, and that a solution having a low concentration of the ion exchange resin be first applied and dried, and then a solution having a high concentration of the ion exchange resin be repeatedly applied and dried. This is because if the solution having a high concentration of the ion exchange resin is first applied suddenly, the solution does not spread well over the entire surface of the conductive sheet. Specifically, an ethanol solution having a concentration of the ion exchange resin of 0.5 to 1 wt% is applied by the first spin coating treatment, dried at about 50 to 80 ° C. for about 20 to 30 minutes, and then the ion exchange resin is dried. Concentration is 2-3 wt%
Of ethanol solution, and 2 at 50-80 ℃
It is preferable to repeat drying for about 0 to 30 minutes 4 to 5 times.

【0020】さらに、固体高分子型燃料電池として製造
される際に、一対の電極間に挟まれる固体高分子電解質
としてのイオン交換樹脂膜と接触する表面側におけるイ
オン交換樹脂の濃度が高いことが好ましい。固体高分子
型燃料電池として製造された際に、固体高分子電解質と
してのイオン交換樹脂膜と電極中のイオン交換樹脂との
接合面積が大きいほど、電極反応サイトの三次元化によ
る分極特性の向上を図れるからである。このような観点
から、導電性シートとして、導電性成分及び撥水剤を含
む多孔性の導電性基材シートと、該基材シートの表面に
形成され、導電性粉末、触媒金属粒子及び撥水剤を含む
多孔性の触媒層とから構成され、導電性基材シートの表
面にカーボンブラック、PTFE及びエタノール系溶剤
よりなるペーストを均一に塗布し、乾燥した後、350
〜380℃程度の温度で加熱して得られた2層構造の導
電性シートを用いることが好ましい。このような製造方
法によれば、基材シートよりも触媒層の方が緻密な構造
なものを得ることができ、この触媒層の表面にイオン交
換樹脂溶液を塗布するようにすれば、イオン交換樹脂溶
液が基材シート側に浸透することを抑制することができ
るからである。
Further, when the polymer electrolyte fuel cell is manufactured, the concentration of the ion exchange resin on the surface side in contact with the ion exchange resin membrane as the solid polymer electrolyte sandwiched between the pair of electrodes is high. preferable. When manufactured as a polymer electrolyte fuel cell, the larger the bonding area between the ion exchange resin membrane as the solid polymer electrolyte and the ion exchange resin in the electrode, the better the polarization characteristics due to the three-dimensionalization of the electrode reaction site. This is because From such a viewpoint, as the conductive sheet, a porous conductive base material sheet containing a conductive component and a water repellent, and a conductive powder, catalytic metal particles and water repellent formed on the surface of the base material sheet. Which is composed of a porous catalyst layer containing an agent, is uniformly coated with a paste of carbon black, PTFE and an ethanol-based solvent on the surface of a conductive base material sheet, and after drying, 350
It is preferable to use a conductive sheet having a two-layer structure obtained by heating at a temperature of about 380 ° C. According to such a manufacturing method, it is possible to obtain a structure in which the catalyst layer has a denser structure than that of the base material sheet. If the surface of the catalyst layer is coated with an ion exchange resin solution, ion exchange is performed. This is because the resin solution can be prevented from penetrating into the base material sheet side.

【0021】このように、本実施形態では、撥水処理し
た導電性シートにスピンコート法によりイオン交換樹脂
溶液を浸透させるので、電極における高撥水性を確保し
て、電極の耐久性を向上させることができる。また、ス
ピンコート法を利用するので、導電性シートの表面全体
に均一にイオン交換樹脂溶液を塗布することが可能であ
り、その塗布量の制御も容易となる。さらに、イオン交
換樹脂溶液を適宜希釈して数回に分けてスピンコートす
るようにすれば、イオン交換樹脂成分を導電性シートの
表面全体により均一に塗布でき、しかも導電性シート中
へのイオン交換樹脂の浸透厚さをより薄くして、イオン
交換樹脂成分による電気抵抗増加を抑えることができ
る。
As described above, in this embodiment, since the ion-exchange resin solution is permeated into the water-repellent conductive sheet by the spin coating method, high water repellency of the electrode is ensured and the durability of the electrode is improved. be able to. Moreover, since the spin coating method is used, the ion exchange resin solution can be uniformly applied to the entire surface of the conductive sheet, and the amount of application can be easily controlled. Furthermore, by appropriately diluting the ion exchange resin solution and performing spin coating in several times, the ion exchange resin component can be evenly applied to the entire surface of the conductive sheet, and the ion exchange into the conductive sheet is performed. The permeation thickness of the resin can be made thinner to suppress an increase in electric resistance due to the ion exchange resin component.

【0022】[0022]

【実施例】以下、本発明の固体高分子型燃料電池電極の
製造方法について、実施例により具体的に説明する。膜
厚180μm、12cm×12cmのカーボンシート
(商品名:トレカ、東レ社製)を、PTFEディスパー
ジョン(PTFEを30wt%の割合で水中に分散した
もの)中に30秒程度浸し、その後80℃×30分の条
件で乾燥した。そして、380℃の温度で30分加熱し
て、撥水処理したカーボンシート(導電性基材シート)
1を得た。
EXAMPLES Hereinafter, the method for producing a polymer electrolyte fuel cell electrode of the present invention will be specifically described with reference to examples. A carbon sheet (trade name: trading card, manufactured by Toray Industries, Inc.) having a film thickness of 180 μm and 12 cm × 12 cm is dipped in a PTFE dispersion (PTFE dispersed in water at a ratio of 30 wt%) for about 30 seconds, and then 80 ° C. × It was dried under the condition of 30 minutes. Then, the carbon sheet (conductive base material sheet) which has been subjected to water repellent treatment by heating at a temperature of 380 ° C. for 30 minutes
1 was obtained.

【0023】一方、カーボンブラックに白金を20wt
%担持したもの8.9gと、PTFEディスパージョン
(PTFEを60wt%の割合で水中に分散したもの)
5.1gとを混合し、80℃×48時間の条件で乾燥し
て、カーボンブラックとPTFEとの混合粉を得た。こ
の混合粉にセルナSE604(中京油脂社製、商品名)
のエタノール系溶剤を90g混合し、混練してペースト
を得た。得られたペーストを上記撥水処理したカーボン
シート1の表面にドクターブレード法により均一に塗布
し、真空で1時間の条件で乾燥することにより、導電性
粉末としてのカーボンブラック、触媒金属粒子としての
白金及び撥水剤としてのPTFEよりなる多孔性の触媒
層2をカーボンシート1の表面に形成した。そして、3
80℃程度の温度で30分加熱して、触媒層2を撥水処
理した。なお、触媒層2の膜厚は10μmである。
On the other hand, 20 wt% of platinum is added to carbon black.
% Supported 8.9 g, PTFE dispersion (PTFE dispersed in water at a ratio of 60 wt%)
5.1 g was mixed and dried at 80 ° C. for 48 hours to obtain a mixed powder of carbon black and PTFE. Serna SE604 (made by Chukyo Yushi Co., Ltd., trade name)
90 g of the above ethanol-based solvent was mixed and kneaded to obtain a paste. The obtained paste was uniformly applied to the surface of the water-repellent treated carbon sheet 1 by a doctor blade method, and dried under vacuum for 1 hour to obtain carbon black as conductive powder and catalyst metal particles. A porous catalyst layer 2 made of platinum and PTFE as a water repellent was formed on the surface of the carbon sheet 1. And 3
The catalyst layer 2 was subjected to water repellent treatment by heating at a temperature of about 80 ° C. for 30 minutes. The thickness of the catalyst layer 2 is 10 μm.

【0024】また、イオン交換樹脂溶液として、Aci
plex(ss−910)(旭化成社製、商品名、イオ
ン交換樹脂成分5wt%、エタノール47.5wt%、
水47.5wt%)をエタノールで8倍に希釈したもの
と、Aciplex(ss−910)を2倍に希釈した
ものとを準備した。上記触媒層2が形成されたカーボン
シート1を、触媒層2が上面となるように回転板3の上
に載置した。なお、この回転板3は図示しない回転速度
制御機能付きの回転駆動装置に連結され、所定の回転速
度で回転可能とされている。また、回転板3の周囲には
滴下されたイオン交換樹脂溶液が周囲に飛散することを
防止するカーテン4が配設されており、カーテン4に当
たったイオン交換樹脂溶液は、回転板3の下方に設置さ
れた回収容器5内に回収されるようになっている。
As the ion exchange resin solution, Aci
Plex (ss-910) (manufactured by Asahi Kasei Corp., trade name, ion exchange resin component 5 wt%, ethanol 47.5 wt%,
Water (47.5 wt%) diluted with ethanol 8 times and Aciplex (ss-910) diluted 2 times were prepared. The carbon sheet 1 having the catalyst layer 2 formed thereon was placed on the rotary plate 3 so that the catalyst layer 2 was on the upper surface. The rotary plate 3 is connected to a rotation drive device (not shown) having a rotation speed control function and is rotatable at a predetermined rotation speed. A curtain 4 is disposed around the rotary plate 3 to prevent the dropped ion-exchange resin solution from scattering around, and the ion-exchange resin solution hitting the curtain 4 is located below the rotary plate 3. It is designed to be collected in the collecting container 5 installed in the.

【0025】そして、回転板3を400rpmの回転速
度で回転させながら、触媒層2の中心位置の上方に配置
された滴下装置6からAciplex(ss−910)
を8倍に希釈したものを5ml滴下した。滴下終了後、
回転板3を1000rpmの回転速度で5秒間回転させ
た。その後、80℃で30分乾燥した。次に、回転板3
を400rpmの回転速度で回転させながら、触媒層2
の中心位置の上方に配置された滴下装置6からAcip
lex(ss−910)を2倍に希釈したものを5ml
滴下した。滴下終了後、回転板3を1000rpmの回
転速度で5秒間回転させた。その後、80℃で30分乾
燥した。そして、このAciplex(ss−910)
を2倍に希釈したものの塗布、及び乾燥を全部で5回繰
り返した。
Then, while rotating the rotary plate 3 at a rotation speed of 400 rpm, the Aciplex (ss-910) from the dropping device 6 arranged above the central position of the catalyst layer 2 is rotated.
5 times what was diluted with 8 times was dripped. After dropping,
The rotary plate 3 was rotated at a rotation speed of 1000 rpm for 5 seconds. Then, it dried at 80 degreeC for 30 minutes. Next, the rotating plate 3
While rotating the catalyst at a rotation speed of 400 rpm, the catalyst layer 2
From the dropping device 6 arranged above the central position of the
5 ml of double diluted lex (ss-910)
It was dropped. After the dropping was completed, the rotary plate 3 was rotated at a rotation speed of 1000 rpm for 5 seconds. Then, it dried at 80 degreeC for 30 minutes. And this Aciplex (ss-910)
Was diluted two times, and coating and drying were repeated 5 times in total.

【0026】このようにして得られた固体高分子型燃料
電池電極は、触媒層2中に含浸されたイオン交換樹脂成
分(固形分)が144cm2 の電極全体で64〜67m
gとなった。これは、Aciplex(ss−910)
の原液を0.01ml/cm 2 の割合で塗布した場合に
相当し、固体高分子燃料電池の触媒層2中に含まれるイ
オン交換樹脂成分として適当な量である。
Solid polymer fuel thus obtained
The battery electrode consists of an ion exchange resin impregnated in the catalyst layer 2.
Minute (solid content) 144 cm264-67m for all electrodes
It became g. This is Aciplex (ss-910)
Undiluted solution of 0.01 ml / cm 2When applied at a ratio of
Which is included in the catalyst layer 2 of the polymer electrolyte fuel cell.
The amount is suitable as an on-exchange resin component.

【0027】また得られた固体高分子型燃料電池電極か
ら常法により、固体高分子型燃料電池を作製し、水素、
空気ともに1ata(常圧)の条件で単セル試験を行っ
て放電特性を調べたところ、従来の電極の場合が0.3
W/cm2 (0.75A/cm2 時)に対して、本実施
例の電極の場合は0.38W/cm2 (0.75A/c
2 時)となり、大幅に放電特性が向上することが確認
された。
A solid polymer fuel cell was produced from the obtained solid polymer fuel cell electrode by a conventional method, and hydrogen,
When the discharge characteristics were examined by performing a single cell test under the condition of 1 ata (normal pressure) for both air, it was 0.3 in the case of the conventional electrode.
In contrast to W / cm 2 (0.75 A / cm 2 hour), the electrode of this example has 0.38 W / cm 2 (0.75 A / c 2 ).
m 2 o'clock), and may improve significantly discharge characteristics were confirmed.

【0028】なお、カーテン4に当たって回収容器5内
に回収されたイオン交換樹脂溶液は再利用が可能であ
る。
The ion exchange resin solution recovered by the curtain 4 in the recovery container 5 can be reused.

【0029】[0029]

【発明の効果】以上詳述したように本発明の固体高分子
型燃料電池電極の製造方法は、予め撥水処理した導電性
シートに、スピンコート法を利用してイオン交換樹脂を
浸透させるものであるから、電極における高撥水性を発
揮させることができ、耐久性の高い電極を製造すること
が可能である。また、スピンコート法を利用することに
より、導電性シートの表面に均一に、かつ、薄くイオン
交換樹脂の溶液を塗布することができ、しかも塗布量の
制御が容易となる。
As described above in detail, in the method for producing a polymer electrolyte fuel cell electrode according to the present invention, the ion-exchange resin is impregnated into a conductive sheet which has been subjected to a water-repellent treatment by a spin coating method. Therefore, high water repellency in the electrode can be exhibited, and an electrode with high durability can be manufactured. Further, by using the spin coating method, the solution of the ion exchange resin can be uniformly and thinly applied to the surface of the conductive sheet, and the application amount can be easily controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係る固体高分子型燃料電池電極の製
造方法を模式的に説明する断面図である。
FIG. 1 is a cross-sectional view schematically illustrating a method for manufacturing a polymer electrolyte fuel cell electrode according to this embodiment.

【符号の説明】[Explanation of symbols]

図中、1は導電性基材シートとしてのカーボンシート、
2は触媒層、3は回転板、4はカーテン、5は回収容
器、6は滴下装置である。
In the figure, 1 is a carbon sheet as a conductive substrate sheet,
2 is a catalyst layer, 3 is a rotating plate, 4 is a curtain, 5 is a collection container, and 6 is a dropping device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性成分、触媒金属粒子及び撥水剤を含
み撥水処理が施された多孔性の導電性シートを回転させ
つつ該導電性シートの中心付近の表面に固体高分子電解
質としてのイオン交換樹脂の溶液を滴下することによ
り、該導電性シート中にイオン交換樹脂を浸透させるス
ピンコート処理工程を実施することを特徴とする固体高
分子型燃料電池電極の製造方法。
1. A solid polymer electrolyte as a solid polymer electrolyte on the surface near the center of the conductive sheet while rotating a water-repellent porous conductive sheet containing a conductive component, catalytic metal particles and a water repellent agent. A method for producing a polymer electrolyte fuel cell electrode, which comprises performing a spin coating treatment step of infiltrating the ion exchange resin into the conductive sheet by dropping the solution of the ion exchange resin.
JP7250930A 1995-09-28 1995-09-28 Manufacture of solid polymer type fuel cell electrode Pending JPH0992303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7250930A JPH0992303A (en) 1995-09-28 1995-09-28 Manufacture of solid polymer type fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7250930A JPH0992303A (en) 1995-09-28 1995-09-28 Manufacture of solid polymer type fuel cell electrode

Publications (1)

Publication Number Publication Date
JPH0992303A true JPH0992303A (en) 1997-04-04

Family

ID=17215141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7250930A Pending JPH0992303A (en) 1995-09-28 1995-09-28 Manufacture of solid polymer type fuel cell electrode

Country Status (1)

Country Link
JP (1) JPH0992303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
WO2003036655A1 (en) * 2001-10-25 2003-05-01 Ube Industries, Ltd. Polymer electrolyte solution for manufacturing electrode for fuel cell
WO2003047018A1 (en) * 2001-11-30 2003-06-05 Honda Giken Kogyo Kabushiki Kaisha Method for manufacturing electrode for fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
US6855178B2 (en) 2000-07-06 2005-02-15 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP3668478B2 (en) * 2000-07-06 2005-07-06 松下電器産業株式会社 Method for producing membrane electrode assembly and method for producing polymer electrolyte fuel cell
WO2003036655A1 (en) * 2001-10-25 2003-05-01 Ube Industries, Ltd. Polymer electrolyte solution for manufacturing electrode for fuel cell
WO2003047018A1 (en) * 2001-11-30 2003-06-05 Honda Giken Kogyo Kabushiki Kaisha Method for manufacturing electrode for fuel cell

Similar Documents

Publication Publication Date Title
Wei et al. Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation
TW398097B (en) Gas diffusion electrodes based on poly (vinylidene fluoride) carbon blends
JP3608565B2 (en) Fuel cell and manufacturing method thereof
US5171644A (en) Electrochemical cell electrode
JPH05251086A (en) Fuel cell and its applied device
US5314760A (en) Electrochemical cell electrode
JP2007307554A (en) Supported catalyst, its manufacturing method, electrode using this, and fuel cell
TWI230481B (en) An electrode for the reduction of polysulfide species
JP2003086192A (en) Fuel cell and its manufacturing method
JP4826057B2 (en) Fuel cell
US20060287194A1 (en) Electrode for solid polymer type fuel cell and manufacturing method therefor
JP4919005B2 (en) Method for producing electrode for fuel cell
WO2003088396A1 (en) Solid polymer electrolyte fuel battery having improved performance and reliability and manufacturing method thereof
JP2000299119A (en) Manufacture of catalyst layer
CN1209836C (en) Method for preparing proton interchange film fuel battery electrodes
JPH0992303A (en) Manufacture of solid polymer type fuel cell electrode
JP2003151564A (en) Electrode for solid high polymer fuel cell
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
JP2005276443A (en) Junction of cation exchange membrane and catalyst electrode for polymer electrolyte fuel cell and its manufacturing method
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
JP3873387B2 (en) Method for producing polymer electrolyte membrane-reaction part assembly
JP3456270B2 (en) Paste for forming electrode catalyst layer
CN1447468A (en) Method for preparing methanol oxidation electrode in direct methanol fuel cell
JP3736545B2 (en) Method for producing electrode catalyst layer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101