JP2006331845A - Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder - Google Patents

Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder Download PDF

Info

Publication number
JP2006331845A
JP2006331845A JP2005153632A JP2005153632A JP2006331845A JP 2006331845 A JP2006331845 A JP 2006331845A JP 2005153632 A JP2005153632 A JP 2005153632A JP 2005153632 A JP2005153632 A JP 2005153632A JP 2006331845 A JP2006331845 A JP 2006331845A
Authority
JP
Japan
Prior art keywords
cation exchange
exchange resin
fuel cell
electrode
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005153632A
Other languages
Japanese (ja)
Inventor
Kazuhide Totsuka
戸塚  和秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2005153632A priority Critical patent/JP2006331845A/en
Publication of JP2006331845A publication Critical patent/JP2006331845A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the output performance and durability performance of a polymer electrolyte fuel cell (PEFC) equipped with an ultra-low platinum loading electrode (ULPLE) by controlling the water content of cation exchange resin in the catalyst powder contained in the ULPLE. <P>SOLUTION: In the catalyst powder for the polymer electrolyte fuel cell in which the catalyst metal is mainly carried on the contact surface of a proton conductive passage of the cation exchange resin and the surface of carbon, moisture percentage of the cation exchange resin in saturated steam atmosphere at 80°C is set to 18.5 mass% or lower. The electrode for the polymer electrolyte fuel cell contains the catalyst powder for the polymer electrolyte fuel cell, and also contains fluorine resin, and the polymer electrolyte fuel cell is equipped with the electrode for the polymer electrolyte fuel cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子形燃料電池用触媒粉末およびその製造方法ならびにその触媒粉末を含む固体高分子形燃料電池用電極に関するものである。   The present invention relates to a catalyst powder for a polymer electrolyte fuel cell, a method for producing the same, and an electrode for a polymer electrolyte fuel cell containing the catalyst powder.

固体高分子形燃料電池(PEFC)の単セルは、膜/電極接合体を一対のガスフロープレートで挟持した構造である。その膜/電極接合体は、陽イオン交換膜の一方の面にアノ−ドを、もう一方の面にカソ−ドを接合したものである。そのガスフロープレートにはガス流路が加工されており、たとえば、アノ−ドに燃料として水素、カソ−ドに酸化剤として酸素を供給することによって、電力が得らえる。そのアノ−ドおよびカソ−ドでは、つぎのような電気化学反応が進行する。   A single cell of a polymer electrolyte fuel cell (PEFC) has a structure in which a membrane / electrode assembly is sandwiched between a pair of gas flow plates. The membrane / electrode assembly is obtained by bonding an anode to one surface of a cation exchange membrane and a cathode to the other surface. A gas flow path is processed in the gas flow plate. For example, electric power can be obtained by supplying hydrogen as fuel to the anode and oxygen as oxidant to the cathode. In the anode and cathode, the following electrochemical reaction proceeds.

アノ−ド:2H→4H+4e
カソ−ド:O+4H+4e→H
上記のような電気化学反応は、酸化剤あるいは燃料などの反応物質と、プロトン(H)と電子(e)とが存在する界面(以下、この界面を反応界面と呼ぶことにする)で進行する。
Anod: 2H 2 → 4H + + 4e
Cathode: O 2 + 4H + + 4e → H 2 O
The electrochemical reaction as described above is performed at an interface where a reactant such as an oxidant or a fuel, protons (H + ), and electrons (e ) exist (hereinafter, this interface is referred to as a reaction interface). proceed.

固体高分子形燃料電池の電極は、触媒金属を含む触媒層と導電性多孔質体とを備える。その導電性多孔質体には撥水性を付与した多孔質なカーボンペーパー、カーボンフェルトあるいはカーボンクロスなどが用いられる。電極の触媒層は、高分子電解質である陽イオン交換樹脂、カーボンおよび触媒金属を含んでいる。   The electrode of the polymer electrolyte fuel cell includes a catalyst layer containing a catalyst metal and a conductive porous body. As the conductive porous body, porous carbon paper, carbon felt, carbon cloth or the like imparted with water repellency is used. The catalyst layer of the electrode contains a cation exchange resin that is a polymer electrolyte, carbon, and a catalyst metal.

従来の固体高分子形燃料電池における膜/電極接合体の製造方法は、特許文献1で開示されているように、陽イオン交換樹脂溶液(Nafion溶液)と白金担持カーボンを混合した触媒−ポリマ組成物を、撥水処理した電極基材(カーボンペーパー)に塗布、乾燥して、電極触媒層付き電極基材を作製し、この電極触媒層付き電極基材2枚の間に陽イオン交換膜を、電極触媒層が陽イオン交換膜に接するように挟み、ホットプレス法によって一体化することで製造されていた。   As disclosed in Patent Document 1, a method for producing a membrane / electrode assembly in a conventional polymer electrolyte fuel cell is a catalyst-polymer composition in which a cation exchange resin solution (Nafion solution) and platinum-supported carbon are mixed. The product is applied to a water-repellent electrode substrate (carbon paper) and dried to prepare an electrode substrate with an electrode catalyst layer, and a cation exchange membrane is placed between the two electrode substrates with an electrode catalyst layer. The electrode catalyst layer was sandwiched so as to be in contact with the cation exchange membrane and integrated by hot pressing.

従来の固体高分子形燃料電池において、特許文献2には、固体高分子電解質型燃料電池においてはプロトンがアノードよりカソードに向かってイオン交換膜中を移動する際に水和の状態で移動するためアノード近傍では含水量が減少しイオン交換膜が乾いてくる。そのためにアノード近傍では水を供給しないとプロトンの移動が困難になる。また酸化剤として空気を用いる場合は理論消費量の数倍の空気を送るためイオン交換膜中の水分が空気に持ち出されそのために膜が乾いてくることを防止するため、適量と計算される一定量の水蒸気を燃料ガスや酸化剤ガス中に混入して燃料電池に送り込み、固体高分子電解質膜を飽和に含水させることにより、固体高分子電解質膜の比抵抗を常温で20Ω・cm以下とする技術が開示されている。   In a conventional polymer electrolyte fuel cell, Patent Document 2 discloses that in a polymer electrolyte fuel cell, protons move in a hydrated state when moving through an ion exchange membrane from an anode toward a cathode. Near the anode, the water content decreases and the ion exchange membrane dries. Therefore, if water is not supplied near the anode, it becomes difficult to move protons. In addition, when air is used as the oxidizer, the air in the ion exchange membrane is sent to the air several times the theoretical consumption, so that the moisture in the ion exchange membrane is taken out into the air, so that the membrane does not dry out. A specific amount of water vapor is mixed into the fuel gas or oxidant gas and sent to the fuel cell to saturate the solid polymer electrolyte membrane so that the specific resistance of the solid polymer electrolyte membrane is 20 Ω · cm or less at room temperature. Technology is disclosed.

また、特許文献3には、固体高分子電解質膜はその内部に水を包含しており、電解質として機能すると同時に、燃料ガスと酸化剤ガスが相互に混合するクロスリークを防止する機能を有するが、固体高分子形燃料電池では乾燥した反応ガスが供給されると、高分子膜の乾燥により、イオン導電率の低下による内部抵抗の増大により、燃料電池の特性が低下するため、加湿器を介して加湿された燃料ガスと酸化剤ガスを供給する技術が開示されている。   Further, in Patent Document 3, the solid polymer electrolyte membrane includes water in its inside, and functions as an electrolyte, and at the same time, has a function of preventing cross leak in which fuel gas and oxidant gas are mixed with each other. In a polymer electrolyte fuel cell, when dry reaction gas is supplied, the polymer membrane is dried, and the internal resistance is increased due to the decrease in ionic conductivity. A technique for supplying humidified fuel gas and oxidant gas is disclosed.

従来の固体高分子形燃料電池において、特許文献4には、水で膨潤処理後のイオン交換膜の含水率は、40%以上300%以下であることが好ましいことが記載されており、特許文献5には、イオン交換膜の含水率は10〜150wt%で任意に制御できることが記載され、特許文献6の実施例には、含水率が30〜45wt%のイオン交換膜を用いることが記載されている。   In the conventional polymer electrolyte fuel cell, Patent Document 4 describes that the water content of the ion exchange membrane after the swelling treatment with water is preferably 40% or more and 300% or less. 5 describes that the water content of the ion exchange membrane can be arbitrarily controlled at 10 to 150 wt%, and the example of Patent Document 6 describes using an ion exchange membrane with a water content of 30 to 45 wt%. ing.

これらの従来の固体高分子形燃料電池用電極は、例えば、触媒金属を担持したカーボン粉末と陽イオン交換樹脂の溶液との混合物を陽イオン交換膜あるいは導電性多孔質体に塗布することによって製作されているため、触媒金属が反応界面以外にも存在するので、触媒金属の利用率は10%程度と著しく低いことが、非特許文献1に示されている。   These conventional polymer electrolyte fuel cell electrodes are produced, for example, by applying a mixture of carbon powder supporting a catalytic metal and a solution of a cation exchange resin to a cation exchange membrane or a conductive porous body. Therefore, it is shown in Non-Patent Document 1 that the utilization rate of the catalyst metal is as low as about 10% because the catalyst metal is present at other than the reaction interface.

特許文献7には、触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持された触媒粉末を含む固体高分子形燃料電池用電極が開示されている。その電極の触媒金属の利用率が極めて高いことが、非特許文献2に示されている。以後、その電極を超少量触媒担持電極(以下では「ULPLE」とする)と呼ぶことにする。   Patent Document 7 discloses a polymer electrolyte fuel cell electrode including a catalyst powder in which a catalyst metal is mainly supported on a contact surface between a proton conduction path of a cation exchange resin and a carbon surface. Non-patent document 2 shows that the utilization rate of the catalyst metal of the electrode is extremely high. Hereinafter, the electrode is referred to as an ultra-small catalyst supporting electrode (hereinafter referred to as “ULPLE”).

ULPLEでは、触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持されるので、触媒層に過剰の水が蓄積することによってその出力性能が著しく低下するという、いわゆるフラディングの影響を強く受けることが問題であった。この問題に対して、特許文献8には、触媒層にフッ素樹脂などの撥水性材料を添加することによって、その水の滞留を抑制する技術が開示されている。   In ULPLE, since the catalyst metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon, the output performance is remarkably deteriorated due to the accumulation of excess water in the catalyst layer. It was a problem to be strongly affected by so-called flooding. With respect to this problem, Patent Document 8 discloses a technique for suppressing the retention of water by adding a water-repellent material such as a fluororesin to the catalyst layer.

特開2002−093424号公報JP 2002-093424 A 特開平05−047394号公報Japanese Patent Laid-Open No. 05-047394 特開平07−288134号公報JP 07-288134 A 特開平06−251782号公報Japanese Patent Application Laid-Open No. 06-251782 特開2001−348439号公報JP 2001-348439 A 特開2003−077492号公報JP 2003-077492 A 特開2000−012041号公報JP 2000-012041 A 特願2005−030949号公報Japanese Patent Application No. 2005-030949 Edson A.Ticianelli、J.Electroanal.Chem、251、275(1988)Edson A. Ticianelli, J. et al. Electroanal. Chem, 251, 275 (1988) 人見周二他、第40回電池討論会講演要旨集、2B15、P167−168、(1999)Shuji Hitomi et al., 40th Battery Discussion Meeting Abstract, 2B15, P167-168, (1999)

ULPLEに撥水性材料を添加しても、その電極を備えるPEFCを長時間連続運転すると、その電池電圧が徐々に低下するという現象がみられた。この現象の一因は、触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持されるという特殊な構造であるので、その触媒表面への酸素あるいは水素などの反応物質の供給量が、その樹脂の含水状態に応じて増減するということであることが研究の結果から明らかになった。つまり、この電極を備えるPEFCの出力性能および耐久性能を向上するためには、その電極に含まれる陽イオン交換樹脂の含水量を制御する必要があるという課題があった。   Even when a water repellent material was added to ULPLE, a phenomenon was observed in which the battery voltage gradually decreased when a PEFC equipped with the electrode was continuously operated for a long time. One reason for this phenomenon is that the catalytic metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon. The results of the study revealed that the amount of reactant supplied increased or decreased depending on the water content of the resin. That is, in order to improve the output performance and durability performance of the PEFC provided with this electrode, there has been a problem that it is necessary to control the water content of the cation exchange resin contained in the electrode.

ところが、特許文献4〜6に記載された従来の固体高分子形燃料電池用電極においては、陽イオン交換膜の含水率についての記載はあるが、電極の触媒層に含まれる陽イオン交換膜の含水率について検討されたものではなかった。   However, in the conventional polymer electrolyte fuel cell electrodes described in Patent Documents 4 to 6, there is a description of the water content of the cation exchange membrane, but the cation exchange membrane contained in the catalyst layer of the electrode has a description. The water content was not examined.

また、特許文献7および特許文献8の記載されたULPLEを含む固体高分子形燃料電池用電極の触媒層においても、ULPLEに含まれる陽イオン交換膜の含水率については検討されていなかった。   Further, in the catalyst layer of the polymer electrolyte fuel cell electrode containing ULPLE described in Patent Document 7 and Patent Document 8, the water content of the cation exchange membrane contained in ULPLE has not been studied.

そこで、本発明の目的は、ULPLEに含まれる触媒粉末中の陽イオン交換樹脂の含水量を最適な範囲に制御することにより、ULPLE備えるPEFCの出力性能および耐久性能を向上させることにある。   Therefore, an object of the present invention is to improve the output performance and durability performance of the PEFC equipped with ULPLE by controlling the water content of the cation exchange resin in the catalyst powder contained in ULPLE within an optimal range.

請求項1の発明は、触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持された固体高分子形燃料電池用触媒粉末において、前記陽イオン交換樹脂の80℃飽和水蒸気雰囲気中における含水率が18.5質量%以下であること特徴とする。   The invention according to claim 1 is the catalyst powder for a polymer electrolyte fuel cell in which the catalyst metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the carbon surface. The water content in a saturated water vapor atmosphere at 1 ° C. is 18.5% by mass or less.

請求項2の発明は、上記固体高分子形燃料電池用触媒粉末の製造方法において、80℃飽和水蒸気雰囲気中における含水率が18.5質量%以下である陽イオン交換樹脂を用い、前記陽イオン交換樹脂の溶液とカーボンとを混合、乾燥して、前記陽イオン交換樹脂とカーボンとの混合物を得る第1の工程と、前記陽イオン交換樹脂の固定イオンに触媒金属の陽イオンを吸着させる第2の工程と、前記触媒金属の陽イオンを化学的に還元して触媒金属を含む粉末を得る第3の工程とを経ることを特徴とする。   Invention of Claim 2 uses the cation exchange resin whose water content in a 80 degreeC saturated water vapor atmosphere is 18.5 mass% or less in the manufacturing method of the said catalyst powder for polymer electrolyte fuel cells, The said cation A first step of mixing and drying a solution of an exchange resin and carbon to obtain a mixture of the cation exchange resin and carbon; and a step of adsorbing a cation of a catalytic metal on fixed ions of the cation exchange resin. The second step and the third step of obtaining a powder containing the catalytic metal by chemically reducing the cation of the catalytic metal are characterized.

請求項3の発明は、固体高分子形燃料電池用電極において、請求項1記載の固体高分子形燃料電池用触媒粉末を含むことを特徴とする。   According to a third aspect of the present invention, there is provided an electrode for a polymer electrolyte fuel cell, comprising the catalyst powder for a polymer electrolyte fuel cell according to the first aspect.

請求項4の発明は、上記固体高分子形燃料電池用電極において、さらにイオン交換基を持たない撥水性樹脂を含むことを特徴とする。   According to a fourth aspect of the present invention, the electrode for a polymer electrolyte fuel cell further includes a water repellent resin having no ion exchange group.

本発明の、触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持された触媒粉末において、80℃飽和水蒸気雰囲気中における含水率が18.5質量%以下である陽イオン交換樹脂を用いることによって、陽イオン交換樹脂の含水量が低減するので、陽イオン交換樹脂の体積の過剰な増大を防止できる。そのため、本発明の触媒粉末を含むULPLEでは、陽イオン交換樹脂の体積増大に起因する酸素の拡散距離の増大を抑制することができる。その結果、本発明のULPLEを備えるPEFCの出力性能および耐久性能を向上させることが可能になった。   In the catalyst powder in which the catalyst metal of the present invention is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the carbon surface, the water content in an 80 ° C. saturated steam atmosphere is 18.5% by mass or less. By using a certain cation exchange resin, the water content of the cation exchange resin is reduced, so that an excessive increase in the volume of the cation exchange resin can be prevented. Therefore, in ULPLE containing the catalyst powder of this invention, the increase in the oxygen diffusion distance resulting from the volume increase of a cation exchange resin can be suppressed. As a result, it became possible to improve the output performance and durability performance of PEFC equipped with ULPLE of this invention.

また、請求項3の発明のように、請求項1記載の触媒粉末とイオン交換基を持たない撥水性樹脂とを含む固体高分子形燃料電池用電極を用いたPEFCでは、長時間にわたって電極の触媒層の撥水性が保持されるため、耐久性能がより向上するものである。   Further, as in the invention of claim 3, in the PEFC using the electrode for the polymer electrolyte fuel cell containing the catalyst powder of claim 1 and the water repellent resin having no ion exchange group, Since the water repellency of the catalyst layer is maintained, the durability performance is further improved.

触媒金属が主に陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に担持された触媒粉末の模式図を図1に示す。図1において、11はカーボン粒子、12は陽イオン交換樹脂、13は陽イオン交換樹脂のプロトン伝導経路(親水性領域)、14は陽イオン交換樹脂の疎水性領域、15は触媒金属を示す。   FIG. 1 shows a schematic diagram of a catalyst powder in which a catalyst metal is supported mainly on a contact surface between a proton conduction path of a cation exchange resin and a carbon surface. In FIG. 1, 11 is a carbon particle, 12 is a cation exchange resin, 13 is a proton conduction path (hydrophilic region) of the cation exchange resin, 14 is a hydrophobic region of the cation exchange resin, and 15 is a catalyst metal.

図1において、カーボン粒子11の表面は、陽イオン交換樹脂12によって被覆されている。陽イオン交換樹脂12は、プロトン伝導経路(親水性領域)13と疎水性領域14とから構成される。陽イオン交換樹脂のプロトン伝導経路13とカーボン粒子11の表面との接面に触媒金属15が主に担持されている。   In FIG. 1, the surfaces of carbon particles 11 are covered with a cation exchange resin 12. The cation exchange resin 12 includes a proton conduction path (hydrophilic region) 13 and a hydrophobic region 14. A catalytic metal 15 is mainly supported on the contact surface between the proton conduction path 13 of the cation exchange resin and the surface of the carbon particles 11.

たとえば、パーフルオロカーボンスルホン酸樹脂などの陽イオン交換樹脂は、H.L.Yeager等(J.Electrochem.Soc.,128,1880、(1981))および小久見等(J.Electrochem.Soc.,132,2601(1985))の報告に記載されているように、主鎖が集合した疎水性領域と側鎖が集合した親水性領域とにミクロ相分離した構造であることが知られている。 For example, cation exchange resins such as perfluorocarbon sulfonic acid resins are described in H.C. L. As described in the report of Yeager et al. (J. Electrochem. Soc., 128 , 1880, (1981)) and Kukumi et al. (J. Electrochem. Soc., 132 , 2601 (1985)), the main chain is assembled. It is known that the structure is microphase-separated into a hydrophobic region and a hydrophilic region in which side chains are assembled.

陽イオン交換樹脂の疎水性領域は、ポリテトラフルオロエチレンに類似の構造であるので、反応物および水の透過は著しく少ない。一方、陽イオン交換樹脂のプロトン伝導経路では、側鎖の先端に結合しているイオン交換基がクラスターを形成しており、そのクラスターに水が取り込まれることによって、対イオンが移動可能な状態になる。つまり、水、プロトンおよび反応物(水素または酸素)は、プロトン伝導経路を移動することができる。   Since the hydrophobic region of the cation exchange resin has a structure similar to polytetrafluoroethylene, there is significantly less permeation of reactants and water. On the other hand, in the proton conduction path of the cation exchange resin, the ion exchange group bonded to the tip of the side chain forms a cluster, and water is taken into the cluster, so that the counter ion can move. Become. That is, water, protons and reactants (hydrogen or oxygen) can move through the proton conduction path.

したがって、陽イオン交換樹脂12のプロトン伝導経路13とカーボン粒子11の表面との接面に担持された触媒金属15は反応界面を形成することができるので、電気化学的な反応に対して活性である。逆に、図1には示していないが、陽イオン交換樹脂11の疎水性領域14とカーボン粒子11の表面に存在する触媒金属は、反応物およびプロトンの供給がおこらないので、電気化学的な反応に対して不活性である。従来の触媒を用いた電極では、このような不活性な触媒金属が多く存在していた。   Accordingly, since the catalytic metal 15 supported on the contact surface between the proton conduction path 13 of the cation exchange resin 12 and the surface of the carbon particles 11 can form a reaction interface, it is active against an electrochemical reaction. is there. On the other hand, although not shown in FIG. 1, the catalytic metal present on the surface of the hydrophobic region 14 of the cation exchange resin 11 and the carbon particles 11 does not supply reactants and protons. Inactive to the reaction. In an electrode using a conventional catalyst, there are many such inert catalytic metals.

本発明の触媒粉末に含まれる触媒金属は、カーボンと陽イオン交換樹脂のプロトン伝導経路との接面に主に担持されていることが必須である。カーボンと陽イオン交換樹脂のプロトン伝導経路との接面は、電子とプロトンとの授受を同時におこなうことのできる場所であるので、この接面に担持された触媒金属は、電極反応に関与する。したがって、その接面に担持された触媒金属の割合を高めることによって触媒金属の使用量を低減できる。   It is essential that the catalytic metal contained in the catalyst powder of the present invention is mainly supported on the contact surface between the carbon and the proton conduction path of the cation exchange resin. Since the contact surface between the carbon and the proton conduction path of the cation exchange resin is a place where electrons and protons can be exchanged simultaneously, the catalytic metal supported on this contact surface is involved in the electrode reaction. Therefore, the amount of catalyst metal used can be reduced by increasing the ratio of the catalyst metal supported on the contact surface.

本発明のPEFC用電極の触媒層において、「触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンとの接面に主として備えられている」とは、陽イオン交換樹脂のプロトン伝導経路に接するカーボン粒子表面に担持された触媒金属量が全触媒金属担持量の50質量%以上であることを意味する。すなわち、全触媒金属担持量の50質量%以上が電極反応に対して活性な触媒金属であるため、触媒金属の利用率が著しく高くなる。   In the catalyst layer of the PEFC electrode of the present invention, “the catalyst metal is mainly provided on the contact surface between the proton conduction path of the cation exchange resin and the carbon” means that the carbon in contact with the proton conduction path of the cation exchange resin It means that the amount of catalyst metal supported on the particle surface is 50% by mass or more of the total amount of catalyst metal supported. That is, 50% by mass or more of the total amount of the catalytic metal supported is a catalytic metal active for the electrode reaction, so that the utilization rate of the catalytic metal is remarkably increased.

なお、本発明においては、陽イオン交換樹脂のプロトン伝導経路に接するカーボン粒子表面に担持された触媒金属量の全触媒金属担持量に対する割合は高いほど好ましく、特に80質量%を超えていることが好ましい。このようにして、プロトン伝導経路とカーボン粒子との接触面に触媒金属を高率で担持させることによって、電極の高活性化がはかられる。   In the present invention, the ratio of the amount of the catalyst metal supported on the surface of the carbon particles in contact with the proton conduction path of the cation exchange resin to the total amount of the catalyst metal supported is preferably as high as possible, particularly exceeding 80% by mass. preferable. In this way, the electrode is highly activated by supporting the catalytic metal at a high rate on the contact surface between the proton conduction path and the carbon particles.

本発明の触媒粉末では、触媒金属がカーボンと陽イオン交換樹脂のプロトン伝導経路との接面に主に担持されている。このことは、この粉末を備えた燃料電池の高電流密度領域における質量活性と、陽イオン交換樹脂のプロトン伝導経路と疎水性骨格との体積比とからわかる(M.Kohmoto et.al.,GS Yuasa TechnicalReport,1,48(2004))。この質量活性とは、ある電圧における電流密度を、単位面積あたりの触媒金属担持量で除したものである。   In the catalyst powder of the present invention, the catalyst metal is mainly supported on the contact surface between the carbon and the proton conduction path of the cation exchange resin. This can be seen from the mass activity in the high current density region of the fuel cell equipped with this powder and the volume ratio between the proton conduction path of the cation exchange resin and the hydrophobic skeleton (M. Komomoto et.al., GS). Yuasa Technical Report, 1, 48 (2004)). This mass activity is obtained by dividing the current density at a certain voltage by the amount of catalyst metal supported per unit area.

本発明のULPLEは、触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持されるという特殊な構造であるので、水の滞留に起因するフラディングの影響を強く受ける。そのフラディングによって、ULPLEを備えるPEFCの出力性能および耐久性能が低下することが研究の結果から明らかになってきた。   The ULPLE of the present invention has a special structure in which the catalytic metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon, so that the influence of flooding due to water retention is reduced. Receive strongly. It has become clear from research results that the output performance and durability performance of PEFC with ULPLE are reduced by the flooding.

フラディングを抑制するために、ULPLEに撥水性材料(フッ素樹脂など)を添加し、適度な多孔構造にすることによって、その性能が向上した。しかしながら、その電池を長時間作動させた場合には、そのセル電圧が徐々に低下した。その低下の原因を詳細に調べた結果、ULPLEに含まれる陽イオン交換樹脂の含水量が増大することが、その低下を引き起こす一因であることが明らかになった。   In order to suppress flooding, a water repellent material (fluorine resin or the like) was added to ULPLE to obtain an appropriate porous structure, thereby improving its performance. However, when the battery was operated for a long time, the cell voltage gradually decreased. As a result of examining the cause of the decrease in detail, it was revealed that an increase in the water content of the cation exchange resin contained in ULPLE is one factor causing the decrease.

本発明は、ULPLEの触媒に含まれる陽イオン交換樹脂の含水量が、ULPLEを備えるPEFCの出力性能および耐久性能に著しく影響するという発見にもとづくものである。   The present invention is based on the discovery that the water content of the cation exchange resin contained in the ULPLE catalyst significantly affects the output performance and durability performance of the PEFC equipped with ULPLE.

陽イオン交換樹脂には、パーフルオロカーボンスルホン酸樹脂などのフッ素樹脂系のものが、化学的に安定であることに加えて高いプロトン伝導性であるので用いられることが多い。パーフルオロカーボンスルホン酸樹脂は、フルオロカーボンの主鎖が集合した疎水性領域とスルホン基をもつ側鎖が会合した親水性領域とに相分離した特殊な構造である。   As the cation exchange resin, a fluororesin resin such as perfluorocarbon sulfonic acid resin is often used because it is chemically stable and has high proton conductivity. The perfluorocarbon sulfonic acid resin has a special structure in which a phase separation into a hydrophobic region in which main chains of fluorocarbons are aggregated and a hydrophilic region in which side chains having sulfone groups are associated.

親水性領域は、外部から水を取り込む性質がある。この水の取り込みによってスルホン基からプロトンが電離し、その親水性領域を移動するこが可能になる。このとき、その水の取り込みによって、膨潤するので樹脂の体積が増大する。その水の取り込み量は、その樹脂に含まれるスルホン基の数が多くなるにともなって増大する傾向がある。   The hydrophilic region has a property of taking water from the outside. This water uptake causes protons to ionize from the sulfone group and move through the hydrophilic region. At this time, since the water is swollen by the uptake of the water, the volume of the resin increases. The amount of water taken up tends to increase as the number of sulfone groups contained in the resin increases.

パーフルオロカーボンスルホン酸樹脂に含まれるスルホン基の量は、イオン交換容量という値で示される。この値は、乾燥した樹脂1gあたりに含まれる、スルホン基のモル数で定義される。つまり、そのイオン交換容量を増減することによって、80℃飽和水蒸気雰囲気におけるイオン交換樹脂の含水率を制御することができる。   The amount of sulfone group contained in the perfluorocarbon sulfonic acid resin is indicated by a value called ion exchange capacity. This value is defined as the number of moles of sulfone groups contained per gram of dried resin. That is, by increasing or decreasing the ion exchange capacity, the water content of the ion exchange resin in an 80 ° C. saturated water vapor atmosphere can be controlled.

なお、パーフルオロカーボンスルホン酸樹脂としては、いくつかの市販品があり、いずれも、イオン交換容量を増減することによって、80℃飽和水蒸気雰囲気におけるイオン交換樹脂の含水率を制御することが可能であるが、イオン交換容量とイオン交換樹脂の含水量との関係は、パーフルオロカーボンスルホン酸樹脂の種類によって異なる。   There are several commercially available perfluorocarbon sulfonic acid resins, all of which can control the water content of the ion exchange resin in an 80 ° C. saturated water vapor atmosphere by increasing or decreasing the ion exchange capacity. However, the relationship between the ion exchange capacity and the water content of the ion exchange resin differs depending on the type of perfluorocarbon sulfonic acid resin.

そこで本発明の固体高分子形燃料電池用触媒粉末においては、触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持され、80℃飽和水蒸気雰囲気中における陽イオン交換樹脂の含水率を18.5質量%以下とするものである。なお、ここで「陽イオン交換樹脂の含水率」とは、乾燥状態の陽イオン交換樹脂の質量に対する含水量の割合(質量%)を表す。   Therefore, in the catalyst powder for a polymer electrolyte fuel cell of the present invention, the catalyst metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon, and the cation in an 80 ° C. saturated water vapor atmosphere. The water content of the exchange resin is 18.5% by mass or less. Here, “the water content of the cation exchange resin” represents the ratio (mass%) of the water content to the mass of the cation exchange resin in the dry state.

本発明の好適な電極では、触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持されているという特殊な構造であるにもかかわらず、陽イオン交換樹脂の含水率を低減することによって、陽イオン交換樹脂の体積の過剰な増大を防止できるので、その体積増大に起因する酸素の拡散距離の増大を抑制でき、その抑制の結果、その電極を備えるPEFCの出力性能および耐久性能を向上することが可能になった。   The preferred electrode of the present invention has a special structure in which the catalytic metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon. By reducing the water content, an excessive increase in the volume of the cation exchange resin can be prevented, so that an increase in the diffusion distance of oxygen due to the volume increase can be suppressed. As a result of the suppression, the PEFC equipped with the electrode The output performance and durability performance can be improved.

本発明のULPLEを含む電極を用いたPEFCの出力性能および耐久性能の向上の理由はつぎのように説明できるものと考えられる。すなわち、陽イオン交換樹脂の重要な特性は、陽イオン交換樹脂のプロトン伝導経路に水が取り込まれることによって、その体積が増大することである。言い換えると、電極内部では水の取り込みによって、カーボン表面を被覆する陽イオン交換樹脂の厚さが増大する。   The reason for the improvement of the output performance and durability performance of PEFC using the electrode containing ULPLE of the present invention can be explained as follows. That is, an important characteristic of the cation exchange resin is that its volume is increased by incorporating water into the proton conduction path of the cation exchange resin. In other words, the thickness of the cation exchange resin that coats the carbon surface increases due to the incorporation of water inside the electrode.

厚さが増大した陽イオン交換樹脂を含む触媒粉末の模式図を図2に示す。図2の記号はそれぞれ図1のものと同じものを表す。厚さの変化の大きさは、陽イオン交換樹脂の含水量に応じて決まる。たとえば、含水量が多い場合には、陽イオン交換樹脂の厚さが増大する。   FIG. 2 shows a schematic diagram of a catalyst powder containing a cation exchange resin having an increased thickness. The symbols in FIG. 2 represent the same as those in FIG. The magnitude of the thickness change depends on the water content of the cation exchange resin. For example, when the water content is high, the thickness of the cation exchange resin increases.

酸素あるいは水素などの反応物質は陽イオン交換樹脂の表面から触媒金属まで移動するが、陽イオン交換の厚さが増大するにともなって移動距離が長くなることになる。その結果、触媒金属への反応物質の供給量が低下することになる。   Reactive substances such as oxygen or hydrogen move from the surface of the cation exchange resin to the catalyst metal, but the moving distance becomes longer as the thickness of the cation exchange increases. As a result, the supply amount of the reactant to the catalyst metal is reduced.

逆に、本発明のように、80℃飽和水蒸気雰囲気における陽イオン交換樹脂の含水率が18.5質量%以下である場合には、その樹脂の過度な膨潤の抑制が可能でありその樹脂の厚さを薄い状態に維持できるので、反応物質を円滑に供給することができ、PEFCの出力性能および耐久性能が向上するものと考えられる。   Conversely, as in the present invention, when the water content of the cation exchange resin in an 80 ° C. saturated water vapor atmosphere is 18.5% by mass or less, excessive swelling of the resin can be suppressed, and Since the thickness can be maintained thin, it is considered that the reactant can be supplied smoothly and the output performance and durability performance of PEFC are improved.

なお、陽イオン交換樹脂は水を含むことによりプロトン伝導性を示し、固体高分子形燃料電池の電解質膜や触媒粉末として使用可能になる。電解質膜として使用する場合には、固体高分子電解質膜を飽和に含水させるなどで比抵抗を一定以上の値に保つことが必要であるが、触媒粉末中の陽イオン交換樹脂は、少量の水を含んでいればプロトン伝導が可能である。そのため、本発明の触媒粉末中の陽イオン交換樹脂の含水率の下限は、完全な乾燥状態である場合を除けば、特に限定する必要はない。   The cation exchange resin, when containing water, exhibits proton conductivity and can be used as an electrolyte membrane or catalyst powder for a polymer electrolyte fuel cell. When used as an electrolyte membrane, it is necessary to keep the specific resistance at a certain value or higher by saturating the solid polymer electrolyte membrane or the like, but the cation exchange resin in the catalyst powder contains a small amount of water. If proton is contained, proton conduction is possible. For this reason, the lower limit of the water content of the cation exchange resin in the catalyst powder of the present invention is not particularly limited unless it is in a completely dry state.

また、陽イオン交換樹脂のイオン交換容量を低下させることによって、陽イオン交換樹脂の含水率を減少させることができるが、その結果触媒粉末中でのプロトン伝導度が低下するので、実用的ではない。   Further, the water content of the cation exchange resin can be reduced by reducing the ion exchange capacity of the cation exchange resin, but as a result, the proton conductivity in the catalyst powder is lowered, which is not practical. .

本発明の触媒粉末において、触媒粉末の質量に対する陽イオン交換樹脂の質量の割合は、30質量%以上50質量%以下であることが好ましく、さらに好ましくはその割合が35質量%以上45質量%以下であることである。   In the catalyst powder of the present invention, the ratio of the mass of the cation exchange resin to the mass of the catalyst powder is preferably 30% by mass to 50% by mass, more preferably 35% by mass to 45% by mass. It is to be.

さらに、本発明の触媒粉末を用いて固体高分子形燃料電池用電極を作製する場合、電極は本発明の触媒粉末のみを含んでいるものでもよいが、イオン交換基をもたないフッ素樹脂などの撥水性材料を含有することが好ましく、触媒粉末の質量に対する撥水性材料の質量の割合は、10質量%以上35質量%以下であることが好ましい。イオン交換基をもたない撥水性材料には、ポリテトラフロロエチレン(PTFE)あるいはヘキサフロロプロピレン(FEP)などのフッ素樹脂を用いることができる。   Furthermore, when producing a polymer electrolyte fuel cell electrode using the catalyst powder of the present invention, the electrode may contain only the catalyst powder of the present invention, but a fluororesin having no ion exchange group, etc. The water repellent material is preferably contained, and the ratio of the mass of the water repellent material to the mass of the catalyst powder is preferably 10% by mass or more and 35% by mass or less. As the water repellent material having no ion exchange group, a fluororesin such as polytetrafluoroethylene (PTFE) or hexafluoropropylene (FEP) can be used.

本発明の固体高分子形燃料電池用触媒粉末の製造手順は、80℃飽和水蒸気雰囲気中における含水率が18.5質量%以下である陽イオン交換樹脂を用い、前記陽イオン交換樹脂の溶液とカーボンとを混合、乾燥して、前記陽イオン交換樹脂とカーボンとの混合物を得る第1の工程と、前記陽イオン交換樹脂の固定イオンに触媒金属の陽イオンを吸着させる第2の工程と、前記触媒金属の陽イオンを化学的に還元して触媒金属を含む粉末を得る第3の工程とを経ることを特徴とするものである。   The solid polymer fuel cell catalyst powder production procedure of the present invention uses a cation exchange resin having a water content of 18.5% by mass or less in an 80 ° C. saturated steam atmosphere, A first step of mixing and drying carbon to obtain a mixture of the cation exchange resin and carbon; a second step of adsorbing a cation of a catalytic metal on fixed ions of the cation exchange resin; A third step of obtaining a powder containing the catalytic metal by chemically reducing the cation of the catalytic metal is provided.

まず、第1の工程では、陽イオン交換樹脂の溶液とカーボンとを含む分散物を調製したのちに、その分散物から溶媒を取り除くことによって、陽イオン交換樹脂とカーボンとを含む混合物を製作する。   First, in the first step, after preparing a dispersion containing a cation exchange resin solution and carbon, a solvent is removed from the dispersion to produce a mixture containing the cation exchange resin and carbon. .

つぎに、第2の工程では、触媒金属の陽イオンが含まれる化合物を水またはアルコールを含む水に溶解した溶液を調製したのちに、その溶液に、陽イオン交換樹脂とカーボンとを含む混合物を浸漬し、陽イオン交換樹脂の固定イオンに触媒金属の陽イオンを吸着させ、その後、脱イオン水で洗浄・乾燥する。最後に、第3の工程では、吸着した触媒金属の陽イオンを水素雰囲気で還元することによって、カーボンの表面と陽イオン交換樹脂のプロトン伝導経路との接面に主に触媒金属が担持された固体高分子形燃料電池用触媒粉末が得られる。   Next, in the second step, after preparing a solution in which a compound containing a catalyst metal cation is dissolved in water or water containing an alcohol, a mixture containing a cation exchange resin and carbon is added to the solution. Immerse and adsorb the catalyst metal cation to the fixed ion of the cation exchange resin, and then wash and dry with deionized water. Finally, in the third step, the catalyst metal is mainly supported on the contact surface between the carbon surface and the proton conduction path of the cation exchange resin by reducing the adsorbed cation of the catalyst metal in a hydrogen atmosphere. A catalyst powder for a polymer electrolyte fuel cell is obtained.

本発明の固体高分子形燃料電池用触媒の製造工程における好適な条件をつぎに説明する。はじめに、陽イオン交換樹脂溶液とカーボン粒子と混合することによって、スラリー状の分散物を調製する。陽イオン交換樹脂のイオン交換容量は1.1mmol/lよりも低い値であることが好ましい。   The preferred conditions in the production process of the polymer electrolyte fuel cell catalyst of the present invention will be described below. First, a slurry-like dispersion is prepared by mixing a cation exchange resin solution and carbon particles. The ion exchange capacity of the cation exchange resin is preferably lower than 1.1 mmol / l.

カーボン粒子には、粉末状、顆粒状あるいは繊維状などの形態のものを用いることができ、さらにそれらの混合物を用いてもよい。カーボン粒子には、電子伝導性が高く、かつ表面積が大きいカーボンブラック、アセチレンブラックあるいはファーネスブラックなど種々のカーボン材料を用いることが好ましい。   The carbon particles may be in the form of powder, granules or fibers, and a mixture thereof may be used. For the carbon particles, it is preferable to use various carbon materials such as carbon black, acetylene black, and furnace black having high electron conductivity and a large surface area.

陽イオン交換樹脂溶液とカーボン粒子とを含む分散物は、たとえば、陽イオン交換樹脂溶液にカーボンを加えたのちに攪拌することによって調製されるが、混合方法には、とくに限定はなく溶液とカーボンとが混ざり合うことができれば、どのような方法を用いてもかまわない。この混合の過程において、その分散物に超音波を照射することによって、さらに効果的に混合溶液とカーボンと混ぜることができる。   The dispersion containing the cation exchange resin solution and the carbon particles is prepared, for example, by adding carbon to the cation exchange resin solution and then stirring, but the mixing method is not particularly limited, and the solution and carbon are not limited. Any method can be used as long as it can be mixed. In this mixing process, the mixed solution and carbon can be more effectively mixed by irradiating the dispersion with ultrasonic waves.

つぎに、陽イオン交換樹脂とカーボン粒子とを含む混合物を調製する。その混合物は、上述の陽イオン交換樹脂溶液とカーボン粒子との分散物から溶媒を取り除くことによって調製できる。その混合物は、シート状、塊状あるいは粉末状で得られる。その混合物がシート状である場合には、陽イオン交換樹脂溶液とカーボンとを含む分散物を高分子シートあるいは金属箔などの基材に塗布したのちに乾燥することによって得られる。その混合物が塊状である場合には、その分散物を容器などに入れた状態で乾燥することによって得られる。さらに、その混合体が粉末状である場合には、その分散物を噴霧乾燥する方法あるいは、シート状や塊状の混合物を粉砕することによって得られる。   Next, a mixture containing a cation exchange resin and carbon particles is prepared. The mixture can be prepared by removing the solvent from the dispersion of the cation exchange resin solution and the carbon particles described above. The mixture is obtained in the form of a sheet, lump or powder. When the mixture is in the form of a sheet, it can be obtained by applying a dispersion containing a cation exchange resin solution and carbon to a base material such as a polymer sheet or a metal foil and then drying. When the mixture is in the form of a lump, it can be obtained by drying the dispersion in a container or the like. Further, when the mixture is in the form of powder, it can be obtained by spray-drying the dispersion, or by pulverizing a sheet-like or lump-like mixture.

第2の工程では、陽イオン交換樹脂とカーボンとを含む混合物に触媒金属を付与する。この工程では、まず、触媒金属の陽イオンが含まれる化合物を水またはアルコールを含む水に溶解した溶液を調製する。その化合物には、白金族金属を含む陽イオン、あるいは白金族金属の錯イオンを用いることができる。   In the second step, a catalytic metal is imparted to the mixture containing the cation exchange resin and carbon. In this step, first, a solution in which a compound containing a catalyst metal cation is dissolved in water or water containing an alcohol is prepared. As the compound, a cation containing a platinum group metal or a complex ion of a platinum group metal can be used.

たとえば、その錯イオンとして、[Pt(NH2+および[Pt(NH4+などとあらわすことができる白金のアンミン錯イオン、または[Ru(NH2+および[Ru(NH3+が好ましい。あるいは、アンミン錯体イオンの他にも、硝酸基あるいはニトロソ基を配位した白金族金属の錯イオンを用いることができる。 For example, as the complex ions, [Pt (NH 3 ) 4 ] 2+ and [Pt (NH 3 ) 6 ] 4+ can be represented as platinum ammine complex ions, or [Ru (NH 3 ) 6 ] 2+ and [Pt Ru (NH 3 ) 6 ] 3+ is preferred. Alternatively, in addition to the ammine complex ion, a complex ion of a platinum group metal coordinated with a nitrate group or a nitroso group can be used.

つぎに、触媒金属の陽イオンが含まれる化合物を含む溶液に、陽イオン交換樹脂とカーボン粒子とを含む混合物を浸漬したのちに、その混合物を脱イオン水で洗浄し、乾燥する。   Next, after immersing a mixture containing a cation exchange resin and carbon particles in a solution containing a compound containing a cation of a catalytic metal, the mixture is washed with deionized water and dried.

この浸漬によって、混合物に含まれる陽イオン交換樹脂の固定イオンに触媒金属の陽イオンが、イオン交換反応によって吸着する。そのとき、イオン交換させる陽イオンを二種類以上用いることによって、その混合物に2種類以上の触媒金属の陽イオンを吸着させることができる。   By this immersion, the cation of the catalytic metal is adsorbed on the fixed ions of the cation exchange resin contained in the mixture by an ion exchange reaction. At that time, by using two or more types of cations to be ion-exchanged, two or more types of catalytic metal cations can be adsorbed to the mixture.

混合物を脱イオン水で洗浄することによって、混合物に含まれる陽イオン交換樹脂に吸着した陽イオン以外は、取り除かれる。取り除かれる陽イオンには、たとえばカーボン粒子に吸着したものなどが含まれる。   By washing the mixture with deionized water, other than the cations adsorbed on the cation exchange resin contained in the mixture are removed. The cations to be removed include those adsorbed on carbon particles, for example.

最後に、第3の工程では、その陽イオン交換樹脂に吸着した陽イオンを化学的に還元する。その還元には、量産に適するので還元剤を用いる方法が好ましく、とくに、水素ガスまたは水素を含むガスによって気相還元する方法またはヒドラジンを含む不活性ガスによって気相還元する方法が好ましい。ここで、水素ガスを含むガスとは、水素ガスと窒素やヘリウム、アルゴンなどの不活性ガスとの混合ガスであることが好ましく、水素ガスを10vol%以上含むことが好ましい。   Finally, in the third step, the cation adsorbed on the cation exchange resin is chemically reduced. Since the reduction is suitable for mass production, a method using a reducing agent is preferable. In particular, a method in which gas phase reduction is performed with hydrogen gas or a gas containing hydrogen or a method in which gas phase reduction is performed with an inert gas containing hydrazine is preferable. Here, the gas containing hydrogen gas is preferably a mixed gas of hydrogen gas and an inert gas such as nitrogen, helium, or argon, and preferably contains 10 vol% or more of hydrogen gas.

[実施例1〜4および比較例1、2]
以下、好適な実施例を用いて、本発明の具体的な例を説明する。
[Examples 1 to 4 and Comparative Examples 1 and 2]
Hereinafter, specific examples of the present invention will be described using preferred embodiments.

[実施例1]
まず、触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持された触媒粉末を作製し、次に、この触媒粉末を含む電極と陽イオン交換膜との接合体を作製し、さらに、この膜/電極接合体を備える固体高分子形燃料電池の性能評価を実施した。その具体的な手順をつぎに示す。
[Example 1]
First, a catalyst powder in which a catalytic metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the carbon surface is prepared, and then the electrode containing the catalyst powder is bonded to the cation exchange membrane. A solid polymer fuel cell equipped with this membrane / electrode assembly was further evaluated. The specific procedure is as follows.

触媒粉末を製作する手順はつぎにとおりである。イオン交換容量が0.92mmol/gである陽イオン交換樹脂溶液A(Nafion5質量%溶液、Aldrich Chemical社製)320g、エタノール160gおよび脱イオン水160gを混合したのちに、その溶液にカーボンブラック(Vulcan XC−72、キャボット社製)24gを添加し、真空混合機で混合して分散物を調製し、さらに、その分散物に超音波照射装置で超音波を照射したのち、その分散物を噴霧乾燥することによって、カーボンブラックと陽イオン交換樹脂とを含む混合物を得た。   The procedure for producing the catalyst powder is as follows. After mixing 320 g of a cation exchange resin solution A (Nafion 5 mass% solution, manufactured by Aldrich Chemical) having an ion exchange capacity of 0.92 mmol / g, 160 g of ethanol and 160 g of deionized water, carbon black (Vulcan) was added to the solution. XC-72, manufactured by Cabot Corporation) is added and mixed with a vacuum mixer to prepare a dispersion. Further, the dispersion is irradiated with ultrasonic waves using an ultrasonic irradiation device, and then the dispersion is spray-dried. By doing so, a mixture containing carbon black and a cation exchange resin was obtained.

つぎに、その混合物35gを、50mmol/l濃度の[Pt(NH]Cl水溶液250mlに6時間以上浸漬することによって、混合物に含まれる陽イオン交換樹脂の固定イオンに白金アンミン錯体の陽イオン[Pt(NH2+を吸着し、そのあと、その混合物を脱イオン水で充分洗浄したのちに乾燥した。 Next, 35 g of the mixture was immersed in 250 ml of a 50 mmol / l concentration [Pt (NH 3 ) 4 ] Cl 2 aqueous solution for 6 hours or more, so that the platinum ammine complex was immobilized on the fixed ion of the cation exchange resin contained in the mixture. Cations [Pt (NH 3 ) 4 ] 2+ were adsorbed, and then the mixture was thoroughly washed with deionized water and then dried.

最後に、その混合物を還元器に設置して、水素雰囲気、150℃の条件で6時間保持することによって、陽イオン[Pt(NH2+を還元して触媒金属(Pt)とし、陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に触媒金属が担持された触媒粉末を得た。この触媒粉末は、担持された白金の重量がカーボンブラックの重量に対して約4.7質量%であった。 Finally, the mixture is placed in a reducer and held in a hydrogen atmosphere at 150 ° C. for 6 hours to reduce the cation [Pt (NH 3 ) 4 ] 2+ to the catalytic metal (Pt), A catalyst powder in which a catalytic metal was mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the carbon surface was obtained. In this catalyst powder, the weight of platinum supported was about 4.7% by mass with respect to the weight of carbon black.

つぎに、カーボンペーパー(360μm厚)の一方に面に、電子伝導性微細孔層を備える導電性多孔体層を製作した。その作製手順は、つぎのとおりである。カーボンペーパーを固形分10質量%のPTFEディスパージョンに浸漬したのちに、余剰のディスパージョンをろ紙で除去したのちに、室温で2時間、80℃の乾燥機で1時間乾燥した。そのカーボンペーパーに電子伝導性微細孔層用のペースト状の混合物を塗布・乾燥したのちに、さらに、それを350℃の乾燥機で1時間乾燥した。その電子伝導性微細孔層用の混合物には、水200g、カーボンブラック(Vulcan XC−72、キャボット社製)15gおよび固形分60質量%のPTFEディスパージョン16.7gとを混合したものを用いた。   Next, a conductive porous layer having an electron conductive microporous layer on one surface of carbon paper (360 μm thick) was manufactured. The manufacturing procedure is as follows. After immersing the carbon paper in a PTFE dispersion having a solid content of 10% by mass, the excess dispersion was removed with a filter paper, followed by drying for 2 hours at room temperature and 1 hour using a dryer at 80 ° C. The carbon paper was coated and dried with a paste-like mixture for the electron conductive microporous layer, and then dried with a dryer at 350 ° C. for 1 hour. A mixture of 200 g of water, 15 g of carbon black (Vulcan XC-72, manufactured by Cabot) and 16.7 g of a PTFE dispersion having a solid content of 60% by mass was used as the mixture for the electron conductive microporous layer. .

さらに、導電性多孔体層に触媒層を形成することによって、電極を製作した。その作製手順は、つぎのとおりである。上述の導電性多孔体層の電子伝導性微細孔層が形成された面に、触媒層用のペースト状の混合物を塗布・乾燥したのちに、それを100℃で2時間、真空乾燥した。   Further, an electrode was manufactured by forming a catalyst layer on the conductive porous layer. The manufacturing procedure is as follows. After applying and drying the paste-like mixture for the catalyst layer on the surface of the conductive porous body layer on which the electron conductive microporous layer was formed, it was vacuum dried at 100 ° C. for 2 hours.

触媒層用混合物は、触媒粉末15gと2-メチルエチルピロリドン(NMP)32gとを二軸回転式混合機で30分間混合することによって調製した。得られた触媒層の白金担持量は0.06mg/cmであり、この触媒層を備える電極の大きさは25cm、厚さは460μmであった。 The catalyst layer mixture was prepared by mixing 15 g of catalyst powder and 32 g of 2-methylethylpyrrolidone (NMP) in a twin-screw rotary mixer for 30 minutes. The obtained catalyst layer had a platinum loading of 0.06 mg / cm 2 , and the electrode provided with this catalyst layer had a size of 25 cm 2 and a thickness of 460 μm.

最後に、電極と陽イオン交換膜とを加熱圧接することによって、膜/電極接合体(MEA)を製作した。その接合手順は、つぎのとおりである。まず、電極/陽イオン交換膜/電極の順に重ねたのちに、その積層物を平プレス機で圧迫し、さらに145℃に加熱して5分間保持した。それぞれの電極には、実施例1で製作した同仕様のものを用いた。その陽イオン交換膜には、DuPont社製のNafion115膜を用いた。その膜には、0.5mol/l濃度の希硫酸で1時間煮沸し、その後、脱イオン水で5回洗浄するという前処理を施した。このMEAを実施例1のMEAとし、そのMEAを備える実施例1の高分子形燃料電池(PEFC)を製作した。   Finally, a membrane / electrode assembly (MEA) was manufactured by heat-pressing the electrode and the cation exchange membrane. The joining procedure is as follows. First, after stacking in the order of electrode / cation exchange membrane / electrode, the laminate was pressed with a flat press and further heated to 145 ° C. and held for 5 minutes. The same specification manufactured in Example 1 was used for each electrode. As the cation exchange membrane, a Nafion 115 membrane manufactured by DuPont was used. The membrane was pretreated by boiling with dilute sulfuric acid at a concentration of 0.5 mol / l for 1 hour and then washing 5 times with deionized water. This MEA was used as the MEA of Example 1, and a polymer fuel cell (PEFC) of Example 1 having the MEA was manufactured.

触媒金属とカーボンブラックと陽イオン交換樹脂とからなる触媒粉末中の陽イオン交換樹脂の、70℃および80℃飽和水蒸気圧下における含水量をそれぞれ測定した。この測定は、つぎの手順でおこなった。まず、陽イオン交換樹脂の含有量のわかっている触媒粉末を80℃で2時間真空乾燥した後、乾燥状態の触媒粉末の質量を測定した。つぎに、触媒粉末を70℃あるいは80℃飽和水蒸気雰囲気中に12時間以上保持したのちに、含水状態の触媒粉末の質量を測定し、含水状態の質量と乾燥状態の質量の差から含水量を求めた。含水量と触媒粉末に含まれる陽イオン交換樹脂の質量から、70℃および80℃飽和水蒸気雰囲気中における陽イオン交換樹脂の含水量を求めた。その結果、70℃飽和水蒸気雰囲気中における含水率(陽イオン交換樹脂の質量に対する含水量の割合)は11.0質量%であり、80℃飽和水蒸気雰囲気中における含水率は14.0質量%であった。   The water content of the cation exchange resin in the catalyst powder composed of the catalyst metal, carbon black, and cation exchange resin was measured at 70 ° C. and 80 ° C. saturated water vapor pressure, respectively. This measurement was performed according to the following procedure. First, the catalyst powder whose cation exchange resin content was known was vacuum-dried at 80 ° C. for 2 hours, and then the mass of the dried catalyst powder was measured. Next, after holding the catalyst powder in a saturated steam atmosphere at 70 ° C. or 80 ° C. for 12 hours or more, the mass of the catalyst powder in the water-containing state is measured, and the water content is determined from the difference between the mass in the water-containing state and the mass in the dry state. Asked. From the water content and the mass of the cation exchange resin contained in the catalyst powder, the water content of the cation exchange resin in a saturated steam atmosphere at 70 ° C. and 80 ° C. was determined. As a result, the moisture content in the 70 ° C. saturated steam atmosphere (the ratio of the moisture content to the mass of the cation exchange resin) is 11.0% by mass, and the moisture content in the 80 ° C. saturated steam atmosphere is 14.0% by mass. there were.

[実施例2]
触媒層用混合物を、実施例1で作製した触媒粉末15gと2-メチルエチルピロリドン(NMP)32gとを二軸回転式混合機で30分間混合し、つづいてその混合物に固形分60質量%のPTFEディスパージョン6.4gを加えたのちに、二軸回転式混合機で30分間、混合することによって調製したこと以外は実施例1と同様にして、実施例2の電極を作製した。電極の合計重量に対するPTFEの重量割合は20質量%であった。なお、触媒層の白金担持量、電極の大きさおよび厚さは、実施例1と同じとした。
[Example 2]
For the catalyst layer mixture, 15 g of the catalyst powder prepared in Example 1 and 32 g of 2-methylethylpyrrolidone (NMP) were mixed for 30 minutes with a twin-screw rotary mixer, and then the mixture had a solid content of 60% by mass. An electrode of Example 2 was produced in the same manner as Example 1 except that 6.4 g of PTFE dispersion was added and then mixed for 30 minutes with a twin-screw rotary mixer. The weight ratio of PTFE to the total weight of the electrode was 20% by mass. The platinum carrying amount of the catalyst layer and the size and thickness of the electrode were the same as in Example 1.

つぎに、実施例1と同様にして、電極と陽イオン交換膜とを加熱圧接して膜/電極接合体(MEA)を製作し、このMEAを実施例2のMEAとし、そのMEAを備える実施例2の高分子形燃料電池(PEFC)を製作した。   Next, in the same manner as in Example 1, a membrane / electrode assembly (MEA) was manufactured by heating and pressing the electrode and the cation exchange membrane. This MEA was used as the MEA in Example 2, and the MEA was provided. A polymer fuel cell (PEFC) of Example 2 was produced.

実施例2で用いた触媒粉末における、70℃飽和水蒸気雰囲気中における含水率は11.0質量%であり、80℃飽和水蒸気雰囲気中における含水率は14.0質量%であった。   The catalyst powder used in Example 2 had a moisture content of 11.0% by mass in a 70 ° C. saturated steam atmosphere, and a moisture content of 14.0% by mass in an 80 ° C. saturated steam atmosphere.

[実施例3]
イオン交換容量が0.99mmol/gである陽イオン交換樹脂溶液B(濃度5質量%)を用いたこと以外は実施例2と同様の条件で、実施例3のMEAを製作した。その電極の白金担持量、大きさおよび厚さは、それぞれ0.06mg/cm、25cmおよび460μmであった。そのMEAを備える実施例3のPEFCを製作した。
[Example 3]
An MEA of Example 3 was produced under the same conditions as in Example 2 except that the cation exchange resin solution B (concentration 5 mass%) having an ion exchange capacity of 0.99 mmol / g was used. The platinum loading, size and thickness of the electrode were 0.06 mg / cm 2 , 25 cm 2 and 460 μm, respectively. A PEFC of Example 3 having the MEA was produced.

実施例3で用いた触媒粉末における、70℃飽和水蒸気雰囲気中における含水率は12.9質量%であり、80℃飽和水蒸気雰囲気中における含水率は15.8質量%であった。   In the catalyst powder used in Example 3, the moisture content in a 70 ° C. saturated steam atmosphere was 12.9 mass%, and the moisture content in an 80 ° C. saturated steam atmosphere was 15.8 mass%.

[実施例4]
イオン交換容量が1.11mmol/gである陽イオン交換樹脂溶液C(濃度5質量%)を用いたこと以外は実施例2と同様の条件で、実施例4のMEAを製作した。その電極の白金担持量、大きさおよび厚さは、それぞれ0.06mg/cm、25cmおよび460μmであった。そのMEAを備える実施例4のPEFCを製作した。
[Example 4]
An MEA of Example 4 was produced under the same conditions as in Example 2 except that the cation exchange resin solution C (concentration 5 mass%) having an ion exchange capacity of 1.11 mmol / g was used. The platinum loading, size and thickness of the electrode were 0.06 mg / cm 2 , 25 cm 2 and 460 μm, respectively. A PEFC of Example 4 having the MEA was produced.

実施例4で用いた触媒粉末における、70℃飽和水蒸気雰囲気中における含水率は15.8質量%であり、80℃飽和水蒸気雰囲気中における含水率は18.5質量%であった。   In the catalyst powder used in Example 4, the moisture content in a 70 ° C. saturated steam atmosphere was 15.8 mass%, and the moisture content in an 80 ° C. saturated steam atmosphere was 18.5 mass%.

[比較例1]
イオン交換容量が1.22mmol/gである陽イオン交換樹脂溶液D(濃度5質量%)を用いたこと以外は、実施例2と同様の条件として比較例1のMEAを製作した。その電極の白金担持量、大きさおよび厚さは、それぞれ0.06mg/cm、25cmおよび460μmであった。そのMEAを備える比較例1のPEFCを製作した。
[Comparative Example 1]
An MEA of Comparative Example 1 was produced under the same conditions as in Example 2 except that the cation exchange resin solution D (concentration: 5% by mass) having an ion exchange capacity of 1.22 mmol / g was used. The platinum loading, size and thickness of the electrode were 0.06 mg / cm 2 , 25 cm 2 and 460 μm, respectively. A PEFC of Comparative Example 1 having the MEA was produced.

比較例1で用いた触媒粉末における、70℃飽和水蒸気雰囲気中における含水率は18.5質量%であり、80℃飽和水蒸気雰囲気中における含水率は20.2質量%であった。   The catalyst powder used in Comparative Example 1 had a moisture content of 18.5% by mass in a 70 ° C. saturated steam atmosphere, and a moisture content of 20.2% by mass in an 80 ° C. saturated steam atmosphere.

[比較例2]
イオン交換容量が1.37mmol/gである陽イオン交換樹脂溶液E(濃度5質量%)を用いたこと以外は、実施例2と同様の条件として比較例2のMEAを製作した。その電極の白金担持量、大きさおよび厚さは、それぞれ0.06mg/cm、25cmおよび460μmであった。そのMEAを備える比較例2のPEFCを製作した。
[Comparative Example 2]
An MEA of Comparative Example 2 was produced under the same conditions as in Example 2 except that the cation exchange resin solution E (concentration 5 mass%) having an ion exchange capacity of 1.37 mmol / g was used. The platinum loading, size and thickness of the electrode were 0.06 mg / cm 2 , 25 cm 2 and 460 μm, respectively. A PEFC of Comparative Example 2 having the MEA was produced.

比較例2で用いた触媒粉末における、70℃飽和水蒸気雰囲気中における含水率は21.1質量%であり、80℃飽和水蒸気雰囲気中における含水率は22.8質量%であった。   The catalyst powder used in Comparative Example 2 had a moisture content of 21.1% by mass in a 70 ° C. saturated steam atmosphere, and a moisture content of 22.8% by mass in an 80 ° C. saturated steam atmosphere.

[連続運転試験]
実施例1および実施例2のPEFCについて、つぎの条件で連続運転試験をおこなった。電池温度を70℃として、70℃のバブラー式加湿器でそれぞれ加湿した空気および水素をカソードおよびカソードに化学量論比2.5および1.25の流量で供給し、この条件で各PEFCを電流密度300mA/cmで連続運転し、PEFCの電圧を測定した。
[Continuous operation test]
About PEFC of Example 1 and Example 2, the continuous driving | running test was done on the following conditions. The cell temperature was set to 70 ° C., air and hydrogen humidified by a bubbler humidifier at 70 ° C. were supplied to the cathode and the cathode at a flow rate of a stoichiometric ratio of 2.5 and 1.25, respectively. Continuous operation was performed at a density of 300 mA / cm 2 , and the PEFC voltage was measured.

測定結果を図3に示した。図3において、曲線1は実施例1のPEFCの、曲線2は実施例2のPEFCの、電池電圧の経時変化を示す。図3から、実施例2のPEFCは、実施例1のPEFCに比べ、電池電圧は長時間安定していることがわかった。   The measurement results are shown in FIG. In FIG. 3, curve 1 shows the time-dependent change of the battery voltage of PEFC of Example 1, and curve 2 shows the time-dependent change of the battery voltage of PEFC of Example 2. From FIG. 3, it was found that the battery voltage of the PEFC of Example 2 was stable for a long time compared to the PEFC of Example 1.

その理由は、固体高分子形燃料電池用電極が、本発明の触媒粉末とPTFE(イオン交換基を持たない撥水性樹脂)とを含むPEFCでは、長時間にわたって電極の触媒層の撥水性が保持されるため、耐久性能がより向上するものと考えられる。   The reason is that in the PEFC in which the electrode for the polymer electrolyte fuel cell includes the catalyst powder of the present invention and PTFE (water repellent resin having no ion exchange group), the water repellency of the electrode catalyst layer is maintained for a long time. Therefore, it is considered that the durability performance is further improved.

なお、PTFEの代わりにFEPを用いた場合も、同様の耐久性能が向上することを確認している。   It has been confirmed that the same durability performance is improved when FEP is used instead of PTFE.

[触媒粉末中の陽イオン交換樹脂の含水率と体積の関係]
70℃および80℃飽和水蒸気雰囲気に保持した触媒粉末中の陽イオン交換樹脂の、陽イオン交換容量と含水率との関係を図4に示す。図4から、イオン交換容量が増大するにともなって含水率が増加することがわかる。
[Relationship between water content and volume of cation exchange resin in catalyst powder]
FIG. 4 shows the relationship between the cation exchange capacity and the water content of the cation exchange resin in the catalyst powder held in a 70 ° C. and 80 ° C. saturated water vapor atmosphere. FIG. 4 shows that the water content increases as the ion exchange capacity increases.

つぎに、含水状態での陽イオン交換樹脂の体積と含水率との関係を求めた。測定方法はつぎの通りである。陽イオン交換樹脂溶液から大きさ20mm×20mmのキャスト膜を製作し、まず、乾燥状態のキャスト膜の厚さを測定し、次に、キャスト膜を70℃および80℃飽和水蒸気圧雰囲気中に12時間以上保持した後、含水状態のキャスト膜の厚さを測定した。   Next, the relationship between the volume of the cation exchange resin in a water-containing state and the water content was determined. The measuring method is as follows. A cast film having a size of 20 mm × 20 mm was prepared from the cation exchange resin solution, and the thickness of the cast film in a dry state was first measured. Then, the cast film was placed in a saturated water vapor pressure atmosphere at 70 ° C. and 80 ° C. After maintaining for more than an hour, the thickness of the hydrous cast film was measured.

キャスト膜の含水量と含水状態での体積との関係を図5に示す。図5の縦軸は、乾燥状態でのキャスト膜の体積を「1」として、含水状態での膜の体積との比を表している。図5において、記号○は70℃での値、記号△は80℃での値を示す。図5から、含水量が増大するにともなってキャスト膜の体積が増加することがわかる。図5から、陽イオン交換樹脂の含水量と体積の関係が明らかになった。   FIG. 5 shows the relationship between the water content of the cast membrane and the volume in the water-containing state. The vertical axis in FIG. 5 represents the ratio of the volume of the cast membrane in the dry state with the volume of the cast membrane in the dry state as “1”. In FIG. 5, the symbol ◯ indicates a value at 70 ° C., and the symbol Δ indicates a value at 80 ° C. FIG. 5 shows that the volume of the cast membrane increases as the water content increases. From FIG. 5, the relationship between the water content of the cation exchange resin and the volume became clear.

[触媒粉末中の陽イオン交換樹脂の含水率とPEFCの特性との関係]
実施例2〜4および比較例1、2のPEFCの出力性能を評価した。この評価によって、超少量白金担持電極に含まれる陽イオン交換樹脂の含水率がPEFCの出力性能におよぼす影響を調べた。その評価条件は、電池温度を70℃として、70℃のバブラー式加湿器でそれぞれ加湿した空気および水素をカソードおよびカソードに化学量論比2.5および1.25の流量で供給するものとした。この条件で各PEFCを1時間作動した時の電流密度300mA/cmにおける電池電圧の値を測定した。さらに、電池温度を80℃、バブラー式加湿器温度を80℃に変更したのちに、同様の測定をおこなった。
[Relationship between moisture content of cation exchange resin in catalyst powder and characteristics of PEFC]
The output performances of the PEFCs of Examples 2 to 4 and Comparative Examples 1 and 2 were evaluated. By this evaluation, the influence of the water content of the cation exchange resin contained in the ultra-small platinum-supported electrode on the output performance of PEFC was investigated. The evaluation condition is that the battery temperature is 70 ° C., and air and hydrogen humidified by a bubbler humidifier at 70 ° C. are supplied to the cathode and the cathode at a flow rate of a stoichiometric ratio of 2.5 and 1.25, respectively. . The value of the battery voltage at a current density of 300 mA / cm 2 when each PEFC was operated for 1 hour under these conditions was measured. Further, after changing the battery temperature to 80 ° C. and the bubbler humidifier temperature to 80 ° C., the same measurement was performed.

電極に含まれる陽イオン交換樹脂の70℃飽和水蒸気雰囲気での含水率と電池電圧との関係を図6に、また、80℃飽和水蒸気雰囲気での同じ関係を図7に示す。図6から、電池電圧は、陽イオン交換樹脂の含水率にかかわらずほぼ一定の値であることがわかり、図7から、電池および加湿器の温度が上昇することによって陽イオン交換樹脂の含水率は増大するが、電池電圧はほぼ一定であることがわかった。つまり、発電開始直後の電池電圧は、陽イオン交換樹脂の含水率によって影響されないことがわかった。   FIG. 6 shows the relationship between the water content of the cation exchange resin contained in the electrode in a 70 ° C. saturated steam atmosphere and the battery voltage, and FIG. 7 shows the same relationship in the 80 ° C. saturated steam atmosphere. FIG. 6 shows that the battery voltage is a substantially constant value regardless of the water content of the cation exchange resin. From FIG. 7, the water content of the cation exchange resin increases as the temperature of the battery and the humidifier increases. Increased, but the battery voltage was found to be nearly constant. That is, it was found that the battery voltage immediately after the start of power generation is not affected by the moisture content of the cation exchange resin.

つぎに、電極に含まれる陽イオン交換樹脂の含水率と、電池温度70℃、バブラー式加湿器温度70℃の条件で、100時間および3000時間後の電池電圧との関係を図8に示す。図8において、記号△は100時間後の電池電圧、記号□は3000時間後の電池電圧を示す。図8から、含水率が18.5質量%以下の場合には、3000時間後でも電池電圧の低下は非常に小さいことがわかった。   Next, FIG. 8 shows the relationship between the water content of the cation exchange resin contained in the electrode and the battery voltage after 100 hours and 3000 hours under the conditions of a battery temperature of 70 ° C. and a bubbler humidifier temperature of 70 ° C. In FIG. 8, symbol Δ indicates the battery voltage after 100 hours, and symbol □ indicates the battery voltage after 3000 hours. FIG. 8 shows that when the water content is 18.5% by mass or less, the decrease in battery voltage is very small even after 3000 hours.

さらに、電極に含まれる陽イオン交換樹脂の含水率と、電池温度80℃、バブラー式加湿器温度80℃の条件で、100時間および3000時間後の電池電圧との関係を図9に示す。図9において、記号△は100時間後の電池電圧、記号□は3000時間後の電池電圧を示す。図9から、電極に含まれる陽イオン交換樹脂の含水量が18.5質量%を超える場合には、100時間後の電池電圧が低下する傾向を示し、3000時間後には電池電圧が著しく低下することがわかった。   Further, FIG. 9 shows the relationship between the water content of the cation exchange resin contained in the electrode and the battery voltage after 100 hours and 3000 hours under the conditions of a battery temperature of 80 ° C. and a bubbler humidifier temperature of 80 ° C. In FIG. 9, symbol Δ indicates the battery voltage after 100 hours, and symbol □ indicates the battery voltage after 3000 hours. From FIG. 9, when the water content of the cation exchange resin contained in the electrode exceeds 18.5% by mass, the battery voltage after 100 hours tends to decrease, and the battery voltage significantly decreases after 3000 hours. I understood it.

言い換えると、70℃または80℃飽和水蒸気雰囲気中において、含水率が18.5質量%以下の陽イオン交換樹脂を含む電極を備える固体高分子形燃料電池では、長時間連続運転した場合の電池電圧の低下が抑制されたことがわかる。電池電圧の低下の抑制は、陽イオン交換樹脂の膨潤にともなう酸素供給量の低下が抑制されたことに起因するものと思われる。   In other words, in a polymer electrolyte fuel cell having an electrode containing a cation exchange resin having a water content of 18.5% by mass or less in a 70 ° C. or 80 ° C. saturated water vapor atmosphere, the cell voltage when operated continuously for a long time. It can be seen that the decrease in the is suppressed. The suppression of the decrease in the battery voltage seems to be due to the suppression of the decrease in the oxygen supply amount accompanying the swelling of the cation exchange resin.

すなわち、陽イオン交換樹脂の含水量が多い場合には、カーボンを被覆する陽イオン交換樹脂被膜の厚さが含水によって増大するので、酸素が触媒金属まで拡散する距離は長くなる。この延長のために、時間あたりに触媒金属へ供給される酸素の量が減少する。逆に、その含水量が少ない場合には、含水による樹脂の厚さが薄く保たれるので、その供給量が十分な状態に維持される。   That is, when the water content of the cation exchange resin is high, the thickness of the cation exchange resin film covering the carbon increases due to the water content, so that the distance that oxygen diffuses to the catalyst metal becomes long. Because of this extension, the amount of oxygen supplied to the catalytic metal per hour is reduced. Conversely, when the water content is small, the thickness of the resin due to the water content is kept thin, so that the supply amount is maintained in a sufficient state.

さらに、作動中の燃料電池の電極中において、その含水量の向上にともなう被膜厚さの増大は時間の経過とともに徐々に進行するものと推察される。つまり、超少量白金担持電極では、その触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持されるという特殊な構造であるので、そのカーボンを被覆する陽イオン交換樹脂の膨潤による厚さの増大による酸素供給量の減少は、その触媒を含む電極を備える燃料電池の出力性能のみならず耐久性能を著しく低下を引き起こす。   Furthermore, in the electrode of the fuel cell in operation, it is surmised that the increase in the film thickness accompanying the improvement of the water content gradually proceeds with time. In other words, the ultra-small platinum-supported electrode has a special structure in which the catalytic metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon. The decrease in the oxygen supply amount due to the increase in thickness due to the swelling of the exchange resin causes not only the output performance of the fuel cell including the electrode including the catalyst but also the durability performance to be significantly lowered.

しかしながら、電極に含まれる陽イオン交換樹脂の80℃飽和水蒸気雰囲気中における含水量を18.5質量%以下に抑制することによって、その電極を備える固体高分子形燃料電池の出力性能および耐久性能を向上できることが確かめられた。   However, by suppressing the water content of the cation exchange resin contained in the electrode in an 80 ° C. saturated water vapor atmosphere to 18.5% by mass or less, the output performance and durability performance of the polymer electrolyte fuel cell equipped with the electrode can be reduced. It was confirmed that it could be improved.

[実施例5〜7および比較例3、4]
つぎに、固体高分子形燃料電池陽電極における、イオン交換基を持たない撥水性樹脂の混合比について検討した。
[Examples 5 to 7 and Comparative Examples 3 and 4]
Next, the mixing ratio of the water-repellent resin having no ion exchange group in the polymer electrolyte fuel cell positive electrode was examined.

[実施例5]
触媒層用混合物を、実施例1で作製した触媒粉末15gと2-メチルエチルピロリドン(NMP)32gとを二軸回転式混合機で30分間混合し、つづいてその混合物に固形分60質量%のPTFEディスパージョン2.8gを加えたのちに、二軸回転式混合機で30分間、混合することによって調製したこと以外は実施例2と同様にして、実施例5の電極を作製した。電極の合計重量に対するPTFEの重量割合は10質量%であった。触媒層の白金担持量、電極の大きさおよび厚さは、実施例1と同じとした。
[Example 5]
For the catalyst layer mixture, 15 g of the catalyst powder prepared in Example 1 and 32 g of 2-methylethylpyrrolidone (NMP) were mixed for 30 minutes with a twin-screw rotary mixer, and then the mixture had a solid content of 60% by mass. An electrode of Example 5 was produced in the same manner as Example 2 except that 2.8 g of PTFE dispersion was added and then mixed by a twin-screw rotary mixer for 30 minutes. The weight ratio of PTFE to the total weight of the electrode was 10% by mass. The amount of platinum supported on the catalyst layer and the size and thickness of the electrode were the same as in Example 1.

つぎに、実施例2と同様にして、電極と陽イオン交換膜とを加熱圧接して膜/電極接合体(MEA)を製作し、このMEAを実施例5のMEAとし、そのMEAを備える実施例5の高分子形燃料電池(PEFC)を製作した。   Next, in the same manner as in Example 2, a membrane / electrode assembly (MEA) was manufactured by heating and pressing the electrode and the cation exchange membrane. This MEA was used as the MEA of Example 5, and the MEA was provided. A polymer fuel cell (PEFC) of Example 5 was produced.

実施例5で用いた触媒粉末における、70℃飽和水蒸気雰囲気中における含水率は11.0質量%であり、80℃飽和水蒸気雰囲気中における含水率は14.0質量%であった。   The catalyst powder used in Example 5 had a moisture content of 11.0% by mass in a 70 ° C. saturated steam atmosphere, and a moisture content of 14.0% by mass in an 80 ° C. saturated steam atmosphere.

[実施例6]
触媒層用混合物に固形分60質量%のPTFEディスパージョン10.7gを加えたこと以外は実施例5と同様にして、実施例6の電極を作製した。電極の合計重量に対するPTFEの重量割合は30質量%であった。
[Example 6]
An electrode of Example 6 was produced in the same manner as Example 5 except that 10.7 g of PTFE dispersion having a solid content of 60% by mass was added to the catalyst layer mixture. The weight ratio of PTFE to the total weight of the electrode was 30% by mass.

つぎに、実施例5と同様にして、電極と陽イオン交換膜とを加熱圧接して膜/電極接合体(MEA)を製作し、このMEAを実施例6のMEAとし、そのMEAを備える実施例6の高分子形燃料電池(PEFC)を製作した。   Next, in the same manner as in Example 5, a membrane / electrode assembly (MEA) was manufactured by heating and pressing the electrode and the cation exchange membrane. This MEA was used as the MEA in Example 6, and the MEA was provided. A polymer fuel cell (PEFC) of Example 6 was produced.

[実施例7]
触媒層用混合物に固形分60質量%のPTFEディスパージョン13.5gを加えたこと以外は実施例5と同様にして、実施例7の電極を作製した。電極の合計重量に対するPTFEの重量割合は35質量%であった。
[Example 7]
An electrode of Example 7 was produced in the same manner as Example 5 except that 13.5 g of PTFE dispersion having a solid content of 60% by mass was added to the catalyst layer mixture. The weight ratio of PTFE to the total weight of the electrode was 35% by mass.

つぎに、実施例5と同様にして、電極と陽イオン交換膜とを加熱圧接して膜/電極接合体(MEA)を製作し、このMEAを実施例7のMEAとし、そのMEAを備える実施例7の高分子形燃料電池(PEFC)を製作した。   Next, in the same manner as in Example 5, a membrane / electrode assembly (MEA) was manufactured by heating and pressing the electrode and the cation exchange membrane. This MEA was used as the MEA of Example 7, and the MEA was provided. A polymer fuel cell (PEFC) of Example 7 was produced.

[比較例3]
触媒層用混合物に固形分60質量%のPTFEディスパージョン1.3gを加えたこと以外は実施例5と同様にして、実施例7の電極を作製した。電極の合計重量に対するPTFEの重量割合は5質量%であった。
[Comparative Example 3]
An electrode of Example 7 was produced in the same manner as Example 5 except that 1.3 g of PTFE dispersion having a solid content of 60% by mass was added to the catalyst layer mixture. The weight ratio of PTFE to the total weight of the electrode was 5% by mass.

つぎに、実施例5と同様にして、電極と陽イオン交換膜とを加熱圧接して膜/電極接合体(MEA)を製作し、このMEAを比較例3のMEAとし、そのMEAを備える比較例3の高分子形燃料電池(PEFC)を製作した。   Next, in the same manner as in Example 5, a membrane / electrode assembly (MEA) is manufactured by heating and pressing the electrode and the cation exchange membrane, and this MEA is used as the MEA of Comparative Example 3, and the comparison including the MEA is performed. A polymer fuel cell (PEFC) of Example 3 was produced.

[比較例4]
触媒層用混合物に固形分60質量%のPTFEディスパージョン16.7gを加えたこと以外は実施例5と同様にして、実施例7の電極を作製した。電極の合計重量に対するPTFEの重量割合は40質量%であった。
[Comparative Example 4]
An electrode of Example 7 was produced in the same manner as Example 5 except that 16.7 g of PTFE dispersion having a solid content of 60% by mass was added to the catalyst layer mixture. The weight ratio of PTFE to the total weight of the electrode was 40% by mass.

つぎに、実施例5と同様にして、電極と陽イオン交換膜とを加熱圧接して膜/電極接合体(MEA)を製作し、このMEAを比較例4のMEAとし、そのMEAを備える比較例4の高分子形燃料電池(PEFC)を製作した。   Next, in the same manner as in Example 5, a membrane / electrode assembly (MEA) is manufactured by heating and pressing the electrode and the cation exchange membrane, and this MEA is used as the MEA of Comparative Example 4, and the comparison including the MEA is performed. A polymer fuel cell (PEFC) of Example 4 was produced.

実施例5〜7および比較例3、4のPEFCについて、電池温度を80℃として、80℃のバブラー式加湿器でそれぞれ加湿した空気および水素をカソードおよびカソードに化学量論比2.5および1.25の流量で供給するものとした。この条件で各PEFCを1時間作動した時の電流密度300mA/cmにおける電池電圧の値、および100時間後の電池電圧を測定した。測定結果を表1にまとめた。なお、表1には、比較のため、実施例2の結果も示した。 For the PEFCs of Examples 5 to 7 and Comparative Examples 3 and 4, the cell temperature was set to 80 ° C., and air and hydrogen humidified by a bubbler humidifier at 80 ° C. were respectively supplied to the cathode and the cathode in a stoichiometric ratio of 2.5 and 1. It was supposed to be supplied at a flow rate of .25. Under this condition, the value of the battery voltage at a current density of 300 mA / cm 2 when each PEFC was operated for 1 hour and the battery voltage after 100 hours were measured. The measurement results are summarized in Table 1. Table 1 also shows the results of Example 2 for comparison.

Figure 2006331845
Figure 2006331845

表1の結果から、各PEFCを1時間作動した時の300mA/cmにおける電池電圧は、実施例2、5〜7および比較例3では0.67V以上の高い電圧を示したが、比較例4では0.66V以下の低い値となることがわかった。この原因は、電極中のPTFE含有量が大きく、電極の伝導度が低下したためと考えられる。 From the results of Table 1, the battery voltage at 300 mA / cm 2 when each PEFC was operated for 1 hour showed a high voltage of 0.67 V or more in Examples 2, 5 to 7 and Comparative Example 3, but the comparative example 4 was found to be a low value of 0.66 V or less. This is thought to be because the PTFE content in the electrode was large and the conductivity of the electrode was lowered.

また、100時間後の電池電圧は、実施例2、5〜7および比較例4では、1時間目と比べて数mVの低下にとどまったが、比較例3では40mVも低下することがわかった。この原因は、電極中のPTFE含有量が少なすぎて、連続運転中に電極の撥水性が低下したためと考えられる。   In addition, in Examples 2, 5 to 7, and Comparative Example 4, the battery voltage after 100 hours was only a few mV lower than that in the first hour, but in Comparative Example 3, it was found that the battery voltage was also reduced by 40 mV. . This is probably because the PTFE content in the electrode is too small, and the water repellency of the electrode was lowered during continuous operation.

[実施例8、9および比較例5]
[実施例8]
陽イオン交換樹脂溶液A(Nafion5質量%溶液、Aldrich Chemical社製)の代わりに、イオン交換容量が0.91mmol/gのAciplexを用いたこと以外は実施例2と同様にして、実施例8の電極を作製した。電極の合計重量に対するPTFEの重量割合は20質量%であった。なお、触媒層の白金担持量、電極の大きさおよび厚さは、実施例2と同じとした。
[Examples 8 and 9 and Comparative Example 5]
[Example 8]
Instead of cation exchange resin solution A (Nafion 5 mass% solution, manufactured by Aldrich Chemical Co.), the same procedure as in Example 2 was used except that Aciplex having an ion exchange capacity of 0.91 mmol / g was used. An electrode was produced. The weight ratio of PTFE to the total weight of the electrode was 20% by mass. The platinum carrying amount of the catalyst layer and the size and thickness of the electrode were the same as in Example 2.

つぎに、実施例2と同様にして、電極と陽イオン交換膜とを加熱圧接して膜/電極接合体(MEA)を製作し、このMEAを実施例8のMEAとし、そのMEAを備える実施例8の高分子形燃料電池(PEFC)を製作した。実施例8で用いた触媒粉末における、80℃飽和水蒸気雰囲気中における含水率は13.9質量%であった。   Next, in the same manner as in Example 2, a membrane / electrode assembly (MEA) was manufactured by heating and pressing the electrode and the cation exchange membrane, and this MEA was used as the MEA of Example 8 and the MEA was provided. A polymer fuel cell (PEFC) of Example 8 was produced. The water content in the 80 ° C. saturated water vapor atmosphere of the catalyst powder used in Example 8 was 13.9% by mass.

[実施例9]
イオン交換容量が1.08mmol/gであるAciplexを用いたこと以外は実施例8と同様の条件で、実施例9のMEAを製作し、そのMEAを備える実施例9のPEFCを製作した。実施例9で用いた触媒粉末における、80℃飽和水蒸気雰囲気中における含水率は18.5質量%であった。
[Example 9]
An MEA of Example 9 was produced under the same conditions as in Example 8 except that Aciplex having an ion exchange capacity of 1.08 mmol / g was used, and a PEFC of Example 9 having the MEA was produced. The water content in the 80 ° C. saturated water vapor atmosphere of the catalyst powder used in Example 9 was 18.5% by mass.

[比較例5]
イオン交換容量が1.35mmol/gであるAciplexを用いたこと以外は実施例8と同様の条件で、比較例5のMEAを製作し、そのMEAを備える比較例5のPEFCを製作した。比較例5で用いた触媒粉末における、80℃飽和水蒸気雰囲気中における含水率は22.6質量%であった。
[Comparative Example 5]
A MEA of Comparative Example 5 was manufactured under the same conditions as in Example 8 except that Aciplex having an ion exchange capacity of 1.35 mmol / g was used, and a PEFC of Comparative Example 5 including the MEA was manufactured. The catalyst powder used in Comparative Example 5 had a water content of 22.6% by mass in an 80 ° C. saturated steam atmosphere.

実施例8、9および比較例5のPEFCについて、電池温度80℃、バブラー式加湿器温度80℃の条件で、100時間後の電池電圧を測定した。そして、電極に含まれる陽イオン交換樹脂の含水率と電池電圧との関係との関係を図10に示す。   For the PEFCs of Examples 8 and 9 and Comparative Example 5, the battery voltage after 100 hours was measured under the conditions of a battery temperature of 80 ° C. and a bubbler humidifier temperature of 80 ° C. And the relationship between the moisture content of the cation exchange resin contained in an electrode and the relationship between battery voltage is shown in FIG.

図10から、陽イオン交換樹脂にAciplexを用いた場合でも、触媒粉末に含まれる陽イオン交換樹脂の含水率が18.5質量%以下の、実施例8、9の場合には、100時間後の電池電圧の低下は非常に小さくいことがわかった。一方、触媒粉末に含まれる陽イオン交換樹脂の含水率が22.6質量%の、比較例5の場合には、100時間後の電池電圧の低下はおおきくなることがわかった。   From FIG. 10, even in the case of using Aciplex as the cation exchange resin, in the case of Examples 8 and 9 where the water content of the cation exchange resin contained in the catalyst powder is 18.5% by mass or less, 100 hours later It was found that the decrease in battery voltage was very small. On the other hand, in the case of Comparative Example 5 in which the water content of the cation exchange resin contained in the catalyst powder was 22.6% by mass, it was found that the battery voltage decreased greatly after 100 hours.

この結果から、陽イオン交換樹脂の種類が異なる場合でも、触媒粉末に含まれる陽イオン交換樹脂の含水率が18.5質量%以下の場合に、耐久性能に優れたPEFCが得られることがわかった。   From this result, it is understood that PEFC having excellent durability performance can be obtained when the water content of the cation exchange resin contained in the catalyst powder is 18.5% by mass or less even when the type of cation exchange resin is different. It was.

触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持された触媒粉末の模式図。The schematic diagram of the catalyst powder by which the catalyst metal was mainly carry | supported by the contact surface of the proton conduction path | route of cation exchange resin, and the surface of carbon. 含水によって厚さが増大した陽イオン交換樹脂を含む触媒粉末の模式図。The schematic diagram of the catalyst powder containing the cation exchange resin whose thickness increased by water content. 実施例1および実施例2のPEFCについての連続運転試験における、電池電圧の経時変化を示す図。The figure which shows the time-dependent change of a battery voltage in the continuous driving | running test about PEFC of Example 1 and Example 2. FIG. 触媒粉末中の陽イオン交換樹脂の、イオン交換容量と含水率との関係を示す図。The figure which shows the relationship between the ion exchange capacity | capacitance and the water content of the cation exchange resin in a catalyst powder. キャスト膜の含水量と含水状態での体積との関係を示す図。The figure which shows the relationship between the water content of a cast film | membrane, and the volume in a water-containing state. 電極に含まれる陽イオン交換樹脂の70℃飽和水蒸気雰囲気での含水率と電池電圧との関係を示す図。The figure which shows the relationship between the moisture content in the 70 degreeC saturated water vapor | steam atmosphere of the cation exchange resin contained in an electrode, and a battery voltage. 電極に含まれる陽イオン交換樹脂の80℃飽和水蒸気雰囲気での含水率と電池電圧との関係を示す図。The figure which shows the relationship between the water content in the 80 degreeC saturated water vapor | steam atmosphere of the cation exchange resin contained in an electrode, and a battery voltage. 陽イオン交換樹脂の70℃飽和水蒸気雰囲気での含水率と、電池温度70℃、バブラー式加湿器温度70℃の条件で、100時間および3000時間連続運転後の電池電圧との関係を示す図。The figure which shows the relationship between the water content in 70 degreeC saturated water vapor | steam atmosphere of cation exchange resin, and the battery voltage after 100 hours and 3000 hours continuous operation on the conditions of battery temperature 70 degreeC and bubbler type humidifier temperature 70 degreeC. 陽イオン交換樹脂の80℃飽和水蒸気雰囲気での含水率と、電池温度80℃、バブラー式加湿器温度80℃の条件で、100時間および3000時間連続運転後の電池電圧との関係を示す図。The figure which shows the relationship between the water content in 80 degreeC saturated water vapor | steam atmosphere of a cation exchange resin, and the battery voltage after 100 hours and 3000 hours continuous operation on the conditions of battery temperature 80 degreeC and bubbler humidifier temperature 80 degreeC. 実施例8、9および比較例5の、陽イオン交換樹脂の80℃飽和水蒸気雰囲気での含水率と、電池温度80℃、バブラー式加湿器温度80℃の条件で100時間連続運転後の電池電圧との関係を示す図。The battery voltage after 100 hours of continuous operation under the conditions of the moisture content of the cation exchange resin in Examples 8 and 9 and Comparative Example 5 in an 80 ° C. saturated steam atmosphere, the battery temperature of 80 ° C., and the bubbler humidifier temperature of 80 ° C. FIG.

符号の説明Explanation of symbols

11 カーボン粒子
12 陽イオン交換樹脂
13 陽イオン交換樹脂のプロトン伝導経路(親水性領域)
14 陽イオン交換樹脂の疎水性領域
15 触媒金属
11 Carbon particles 12 Cation exchange resin 13 Proton conduction path of cation exchange resin (hydrophilic region)
14 Hydrophobic region of cation exchange resin 15 Catalytic metal

Claims (4)

触媒金属が陽イオン交換樹脂のプロトン伝導経路とカーボンの表面との接面に主に担持された固体高分子形燃料電池用触媒粉末において、前記陽イオン交換樹脂の80℃飽和水蒸気雰囲気中における含水率が18.5質量%以下であること特徴とする固体高分子形燃料電池用触媒粉末。 In the catalyst powder for a polymer electrolyte fuel cell in which the catalytic metal is mainly supported on the contact surface between the proton conduction path of the cation exchange resin and the carbon surface, the water content of the cation exchange resin in a saturated steam atmosphere at 80 ° C. A catalyst powder for a polymer electrolyte fuel cell, wherein the rate is 18.5% by mass or less. 80℃飽和水蒸気雰囲気中における含水率が18.5質量%以下である陽イオン交換樹脂を用い、前記陽イオン交換樹脂の溶液とカーボンとを混合、乾燥して、前記陽イオン交換樹脂とカーボンとの混合物を得る第1の工程と、前記陽イオン交換樹脂の固定イオンに触媒金属の陽イオンを吸着させる第2の工程と、前記触媒金属の陽イオンを化学的に還元して触媒金属を含む粉末を得る第3の工程とを経ることを特徴とする請求項1記載の固体高分子形燃料電池用触媒粉末の製造方法。 Using a cation exchange resin having a water content of 18.5% by mass or less in an 80 ° C. saturated water vapor atmosphere, the cation exchange resin solution and carbon are mixed and dried, and the cation exchange resin and carbon are mixed. A first step of obtaining a mixture of: a second step of adsorbing a cation of a catalytic metal on a fixed ion of the cation exchange resin; and a catalytic metal containing a catalytic metal by chemically reducing the cation of the catalytic metal The method for producing a catalyst powder for a polymer electrolyte fuel cell according to claim 1, wherein the method comprises a third step of obtaining a powder. 請求項1記載の固体高分子形燃料電池用触媒粉末を含むことを特徴とする固体高分子形燃料電池用電極。 An electrode for a polymer electrolyte fuel cell comprising the catalyst powder for a polymer electrolyte fuel cell according to claim 1. イオン交換基を持たない撥水性樹脂を含むことを特徴とする請求項2記載の固体高分子形燃料電池用電極。 3. The polymer electrolyte fuel cell electrode according to claim 2, comprising a water repellent resin having no ion exchange group.
JP2005153632A 2005-05-26 2005-05-26 Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder Pending JP2006331845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153632A JP2006331845A (en) 2005-05-26 2005-05-26 Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153632A JP2006331845A (en) 2005-05-26 2005-05-26 Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder

Publications (1)

Publication Number Publication Date
JP2006331845A true JP2006331845A (en) 2006-12-07

Family

ID=37553326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153632A Pending JP2006331845A (en) 2005-05-26 2005-05-26 Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder

Country Status (1)

Country Link
JP (1) JP2006331845A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251086A (en) * 2009-04-15 2010-11-04 Toyota Motor Corp Fuel cell
US20140220474A1 (en) * 2011-10-14 2014-08-07 Toppan Printing Co., Ltd. Catalyst particles, catalyst ink, electrode catalyst layer for fuel cells, membrane electrode assembly, polymer electrolyte fuel cell, method for producing catalyst particles and method for producing catalyst ink
JP2016085839A (en) * 2014-10-24 2016-05-19 トヨタ自動車株式会社 Catalyst electrode layer, membrane-electrode assembly, and fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251086A (en) * 2009-04-15 2010-11-04 Toyota Motor Corp Fuel cell
US20140220474A1 (en) * 2011-10-14 2014-08-07 Toppan Printing Co., Ltd. Catalyst particles, catalyst ink, electrode catalyst layer for fuel cells, membrane electrode assembly, polymer electrolyte fuel cell, method for producing catalyst particles and method for producing catalyst ink
US9843051B2 (en) * 2011-10-14 2017-12-12 Toppan Printing Co., Ltd. Catalyst particles, catalyst ink, electrode catalyst layer for fuel cells, membrane electrode assembly, polymer electrolyte fuel cell, method for producing catalyst particles and method for producing catalyst ink
JP2016085839A (en) * 2014-10-24 2016-05-19 トヨタ自動車株式会社 Catalyst electrode layer, membrane-electrode assembly, and fuel cell

Similar Documents

Publication Publication Date Title
WO2008030198A1 (en) Electrode composite material
WO2010070994A1 (en) Anode catalyst layer for solid polymer fuel cell
JP4919005B2 (en) Method for producing electrode for fuel cell
KR20070098136A (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
JP2006253042A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell
JP2006134752A (en) Solid polymer fuel cell and vehicle
JP2005294175A (en) Electrode catalyst layer and its manufacturing method
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
JP6672622B2 (en) Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly using the catalyst layer, fuel cell, and vehicle
JP2006252938A (en) Electrode for solid polymer electrolyte fuel cell and its manufacturing method
JP2007103175A (en) Electrode for polymeric fuel cell and polymeric fuel cell using the same
JP2022553353A (en) FUEL CELL ELECTRODE HAVING HIGH DURABILITY, MANUFACTURING METHOD THEREOF, AND MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE SAME
JP6862792B2 (en) Method of manufacturing electrode catalyst
JP2006286478A (en) Membrane electrode assembly
Choi et al. Optimization of hydrophobic additives content in microporous layer for air breathing PEMFC
JP2006059618A (en) Polymer electrolyte fuel cell
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
JP2007018801A (en) Manufacturing method of catalyst mixture for solid polymer fuel cell, and solid polymer fuel cell using electrode containing catalyst mixture obtained by the above manufacturing method
JP4355921B2 (en) Fuel cell electrode and manufacturing method thereof
JP2006344441A (en) Manufacturing method for catalyst mixture for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the catalyst mixture obtained by the manufacturing method
JP2007220443A (en) Manufacturing method of cation exchange membrane/catalyst layer jointed body for solid polymer type fuel cell
JP2005174827A (en) Solid polymer electrolyte membrane, fuel cell using the same, and manufacturing method of them
JP2005353376A (en) Manufacturing method of electrode for polymer electrolyte fuel cell
JP2005302554A (en) Polymer electrolyte fuel cell and its manufacturing method
JP2006344424A (en) Manufacturing method of catalyst mixture for solid polymer fuel cell