JP4271127B2 - Electrode structure of polymer electrolyte fuel cell - Google Patents

Electrode structure of polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4271127B2
JP4271127B2 JP2004320678A JP2004320678A JP4271127B2 JP 4271127 B2 JP4271127 B2 JP 4271127B2 JP 2004320678 A JP2004320678 A JP 2004320678A JP 2004320678 A JP2004320678 A JP 2004320678A JP 4271127 B2 JP4271127 B2 JP 4271127B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
layer
gas diffusion
fuel cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004320678A
Other languages
Japanese (ja)
Other versions
JP2006134648A (en
Inventor
薫 福田
拓 江口
順二 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004320678A priority Critical patent/JP4271127B2/en
Publication of JP2006134648A publication Critical patent/JP2006134648A/en
Application granted granted Critical
Publication of JP4271127B2 publication Critical patent/JP4271127B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池の電極構造体に関する。特に、初期性能が高く、環境要因による変動が少ない固体高分子型燃料電池の電極構造体に関する。   The present invention relates to an electrode structure for a polymer electrolyte fuel cell. In particular, the present invention relates to an electrode structure of a polymer electrolyte fuel cell that has high initial performance and is less subject to environmental factors.

近年、燃料電池は、地球温暖化や環境破壊の抑制手段として、また次世代の発電システムとして大いに期待されており、さかんに研究開発が行われている。燃料電池は、水素と酸素の電気化学的な反応によりエネルギーを発生させるものであり、例えば、リン酸型燃料電池、溶融炭酸塩型燃料電池、固体電解質型燃料電池、固体高分子型燃料電池などを挙げることができる。これらの中でも、固体高分子型燃料電池は、常温から起動が可能であるうえ小型で高出力であるため、自動車(二輪、四輪)やポータブル電源等の電力源として注目されている。   In recent years, fuel cells are highly expected as a means for suppressing global warming and environmental destruction, and as a next-generation power generation system. A fuel cell generates energy by an electrochemical reaction between hydrogen and oxygen. For example, a phosphoric acid fuel cell, a molten carbonate fuel cell, a solid electrolyte fuel cell, a solid polymer fuel cell, etc. Can be mentioned. Among these, the polymer electrolyte fuel cell has been attracting attention as a power source for automobiles (two-wheeled and four-wheeled) and portable power sources because it can be started from room temperature and has a small size and high output.

この固体高分子型燃料電池は、電極構造体をその基本構成単位とし、電極構造体をセパレータで挟持した単セルを数十個から数百個組み合わせてなるスタック(集合電池)として用いられる。スタックの基本構成単位である電極構造体は、アノード電極(燃料極)及びカソード電極(空気極)の二つの電極と、これら電極に挟持される高分子電解質膜とから形成され、通常、両電極は、高分子電解質膜に接して酸化・還元反応を行う触媒層と、この触媒層に接するガス拡散層とから形成される。このような構成からなる固体高分子型燃料電池は、アノード電極(燃料極)側に水素を含む燃料を供給し、カソード電極(空気極)側に酸素又は空気を供給することで発電する。   This polymer electrolyte fuel cell is used as a stack (collective battery) comprising an electrode structure as its basic structural unit and a combination of several tens to several hundreds of single cells sandwiching the electrode structure with separators. The electrode structure, which is the basic structural unit of the stack, is formed of two electrodes, an anode electrode (fuel electrode) and a cathode electrode (air electrode), and a polymer electrolyte membrane sandwiched between these electrodes. Is formed of a catalyst layer that performs an oxidation / reduction reaction in contact with the polymer electrolyte membrane and a gas diffusion layer in contact with the catalyst layer. The polymer electrolyte fuel cell having such a configuration generates power by supplying a fuel containing hydrogen to the anode electrode (fuel electrode) side and supplying oxygen or air to the cathode electrode (air electrode) side.

これまでの固体高分子型燃料電池のカソード電極においては、白金を担体のカーボンに担持させた白金触媒が一般的に用いられており、担体の特性改善や白金の微粒子化、分散性の向上等により、触媒活性の改善がなされてきた。しかしながら、これらの手法による特性の改善には限界があるため、従来と異なる観点からカソード電極の活性を向上させる方法として、白金とコバルトの合金をカーボンに担持させたPt−Co触媒を触媒層に用いることが提案されている(特許文献1参照)。このPt−Co触媒は、触媒のシンタリングによる粒径の増大を抑制する効果を有するため、従来一般的に用いられてきた白金触媒に比べて高い触媒活性を有する。従って、このPt−Co触媒をカソード電極の触媒として用いることにより、優れた発電性能を有する固体高分子型燃料電池を提供できるとされている。
特開2003−142112号公報
In the cathode electrode of the conventional polymer electrolyte fuel cell, a platinum catalyst in which platinum is supported on carbon of a carrier is generally used, and the characteristics of the carrier, platinum fine particles, improved dispersibility, etc. are used. As a result, catalytic activity has been improved. However, since there is a limit to the improvement of characteristics by these methods, a Pt-Co catalyst in which an alloy of platinum and cobalt is supported on carbon is used as a catalyst layer as a method for improving the activity of the cathode electrode from a viewpoint different from the conventional one. It has been proposed to use (see Patent Document 1). Since this Pt—Co catalyst has an effect of suppressing an increase in particle diameter due to sintering of the catalyst, it has a higher catalytic activity than a conventionally used platinum catalyst. Therefore, it is said that a polymer electrolyte fuel cell having excellent power generation performance can be provided by using this Pt-Co catalyst as a catalyst for the cathode electrode.
JP 2003-142112 A

しかしながら、Pt−Co触媒をカソード電極の触媒として用いた固体高分子型燃料電池は、例えば自動車等に搭載した場合においては、運転条件の変化が大きい状態、即ち、出力変動の大きい状態で作動させたときに、加湿条件等の環境要因の変化による性能変動の絶対値が大きくなるという課題が生じていた。   However, a polymer electrolyte fuel cell using a Pt—Co catalyst as a cathode electrode catalyst, for example, when mounted in an automobile or the like, is operated with a large change in operating conditions, that is, with a large output fluctuation. When this occurs, there has been a problem that the absolute value of performance fluctuation due to changes in environmental factors such as humidification conditions increases.

本発明は、以上のような課題に鑑みてなされたものであり、初期性能が高く、環境要因、特に加湿条件の変化による性能変動が少ない固体高分子型燃料電池の電極構造体を提供することを目的とする。   The present invention has been made in view of the above problems, and provides an electrode structure for a polymer electrolyte fuel cell having high initial performance and less performance fluctuation due to changes in environmental factors, particularly humidification conditions. With the goal.

本発明者らは上記課題を解決するためには、高加湿条件における水排出性と低加湿条件における水保持性を両立することが必要である点に着目して鋭意研究を重ねた。その結果、カソード電極の触媒層に、Pt−Co合金が電気伝導性物質に担持されたPt−Co触媒と、イオン伝導性物質と、水の排出性を高めるための造孔材と、を含有させるとともに、カソード電極のガス拡散層に、触媒層に接する保水層を設けることにより、初期性能が高く、環境要因、特に加湿条件の変化による性能変動が少ない固体高分子型燃料電池の電極構造体が提供できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。   In order to solve the above-mentioned problems, the present inventors have made extensive studies focusing on the point that it is necessary to achieve both water discharge properties under high humidification conditions and water retention properties under low humidification conditions. As a result, the catalyst layer of the cathode electrode contains a Pt—Co catalyst in which a Pt—Co alloy is supported on an electrically conductive material, an ion conductive material, and a pore-forming material for enhancing water discharge. In addition, by providing a water retention layer in contact with the catalyst layer in the gas diffusion layer of the cathode electrode, the electrode structure of the polymer electrolyte fuel cell has high initial performance and less performance fluctuation due to changes in environmental factors, particularly humidification conditions. The present invention has been completed. More specifically, the present invention provides the following.

(1) アノード電極と、カソード電極と、これらの電極に挟持された高分子電解質膜と、を備えた固体高分子型燃料電池の電極構造体であって、前記両電極は、前記高分子電解質膜に接する触媒層と、この触媒層に接するガス拡散層を含み、前記カソード電極の触媒層は、Pt−Co合金が電気伝導性物質に担持されたPt−Co触媒と、イオン伝導性物質と、水排出性を高めるための造孔材と、を含み、前記カソード電極のガス拡散層は、前記触媒層に接する保水層を有している固体高分子型燃料電池の電極構造体。   (1) An electrode structure of a polymer electrolyte fuel cell comprising an anode electrode, a cathode electrode, and a polymer electrolyte membrane sandwiched between these electrodes, wherein both electrodes are the polymer electrolyte. A catalyst layer in contact with the membrane; and a gas diffusion layer in contact with the catalyst layer. The catalyst layer of the cathode electrode includes a Pt—Co catalyst in which a Pt—Co alloy is supported on an electrically conductive material, an ion conductive material, An electrode structure for a polymer electrolyte fuel cell, wherein the gas diffusion layer of the cathode electrode has a water retention layer in contact with the catalyst layer.

(1)の電極構造体は、カソード電極の触媒層に、Pt−Co触媒と、イオン伝導性物質と、水の排出性を高めるための造孔材と、を含有するとともに、カソード電極のガス拡散層に、触媒層に接する保水層を設けていることを特徴とする。Pt−Co触媒は高い触媒活性を有することから、優れた発電性能を発揮できることは上述の通りである。本発明においては、カソード電極の触媒層中に造孔材を存在させることにより、電極触媒層中の細孔等のガス拡散流路に水が溜まってガスの拡散が阻害されるフラッディング現象を回避できる。そして、造孔材の存在により触媒層の水の排出性が高まり、高加湿条件のような水が豊富にある場合における性能が向上する。即ち、造孔材の存在により細孔容積が高まり、カソード電極の触媒層の水排出性が向上するのである。さらには、カソード電極のガス拡散層に、触媒層に接する保水層を設けることにより、低加湿条件における高分子電解質膜中や触媒層中に、プロトン伝導に必要な水分を保持することが可能となる。従って、(1)の発明によれば、カソード電極の触媒層の高加湿条件における水排出性と、低加湿条件における水保持性を両立することができるため、初期性能が高く、加湿条件変化による性能変動の低減が実現できる。   The electrode structure of (1) contains, in the cathode electrode catalyst layer, a Pt—Co catalyst, an ion conductive material, and a pore-forming material for enhancing water discharge, and a gas for the cathode electrode. The diffusion layer is provided with a water retention layer in contact with the catalyst layer. Since the Pt—Co catalyst has high catalytic activity, it is possible to exhibit excellent power generation performance as described above. In the present invention, the presence of a pore-forming material in the catalyst layer of the cathode electrode avoids the flooding phenomenon in which water accumulates in the gas diffusion channel such as the pores in the electrode catalyst layer and hinders gas diffusion. it can. The presence of the pore former enhances the water drainage of the catalyst layer, and improves the performance when there is abundant water such as in highly humidified conditions. That is, the pore volume is increased by the presence of the pore former, and the water discharge performance of the cathode electrode catalyst layer is improved. Furthermore, by providing a water retention layer in contact with the catalyst layer in the gas diffusion layer of the cathode electrode, it is possible to retain moisture necessary for proton conduction in the polymer electrolyte membrane and the catalyst layer under low humidification conditions. Become. Therefore, according to the invention of (1), since it is possible to achieve both the water discharge property of the cathode electrode catalyst layer in the high humidification condition and the water retention property in the low humidification condition, the initial performance is high, and due to the change of the humidification condition. Reduction of performance fluctuation can be realized.

(2) 前記造孔材は、結晶性炭素繊維である(1)に記載の固体高分子型燃料電池の電極構造体。   (2) The electrode structure for a polymer electrolyte fuel cell according to (1), wherein the pore former is a crystalline carbon fiber.

(2)の電極構造体のカソード電極の触媒層に含まれる造孔材は、結晶性炭素繊維である。結晶性炭素繊維は、導電性が良好であるうえ、触媒に絡みあって触媒層中に存在するため空孔を生じ易い。従って、触媒層の細孔容積が高まるため水排出性能が向上し、高加湿条件における性能変動の低減が効果的に実現できる。   The pore former contained in the catalyst layer of the cathode electrode of the electrode structure (2) is a crystalline carbon fiber. Crystalline carbon fibers have good electrical conductivity, and are entangled with the catalyst and are present in the catalyst layer, and therefore easily generate pores. Therefore, since the pore volume of the catalyst layer is increased, the water discharge performance is improved, and the performance fluctuation under high humidification conditions can be effectively realized.

(3) 前記保水層は、高分子電解質、結晶性炭素繊維および導電性カーボン粒子を含む(1)または(2)に記載の固体高分子型燃料電池の電極構造体。   (3) The electrode structure for a polymer electrolyte fuel cell according to (1) or (2), wherein the water retention layer includes a polymer electrolyte, crystalline carbon fibers, and conductive carbon particles.

(3)の電極構造体に設けられている保水層は、高分子電解質、結晶性炭素繊維および導電性カーボン粒子を含んでいる。高分子電解質は親水性が高いため保水性の向上に寄与し、結晶性炭素繊維の存在はガス拡散性の向上に寄与する。従って、(3)の電極構造体では、良好なガス拡散性を有しつつ低加湿条件における水保持性が確保できるため、初期性能が高く、加湿条件変化による性能変動の低減が実現できる。   The water retention layer provided in the electrode structure (3) includes a polymer electrolyte, crystalline carbon fibers, and conductive carbon particles. Since the polymer electrolyte has high hydrophilicity, it contributes to improvement of water retention, and the presence of crystalline carbon fiber contributes to improvement of gas diffusibility. Therefore, in the electrode structure of (3), water retention under low humidification conditions can be ensured while having good gas diffusivity, so that the initial performance is high and performance fluctuations due to changes in humidification conditions can be realized.

(4) 前記カソード電極のガス拡散層の表面のうち、前記触媒層に接する側の表面は、触針法により測定された面粗度(Ra)が0.65μm以下である(1)から(3)いずれかに記載の固体高分子型燃料電池の電極構造体。   (4) Of the surface of the gas diffusion layer of the cathode electrode, the surface on the side in contact with the catalyst layer has a surface roughness (Ra) measured by a stylus method of 0.65 μm or less (1) to ( 3) The electrode structure of the polymer electrolyte fuel cell according to any one of the above.

(4)の電極構造体で用いられるカソード電極のガス拡散層の表面のうち、前記触媒層に接する側の表面は、触針法により測定された面粗度(Ra)が0.65μm以下である。一般的に電極構造体では、触媒層とガス拡散層の密着性が悪い場合には抵抗が高くなる傾向にあり、環境の変化による電圧変動量が大きくなる。これに対して(4)の電極構造体では、カソード電極のガス拡散層の表面のうち、触媒層に接する側の表面の面粗度(Ra)が0.65μm以下であるため、触媒層とガス拡散層との良好な密着性を確保でき、電圧変動量を抑制することができる。従って、(4)の電極構造体によれば、初期性能が高く、環境要因による性能変動の低減が実現できる。   Of the surface of the gas diffusion layer of the cathode electrode used in the electrode structure of (4), the surface in contact with the catalyst layer has a surface roughness (Ra) measured by a stylus method of 0.65 μm or less. is there. In general, in an electrode structure, when the adhesion between the catalyst layer and the gas diffusion layer is poor, the resistance tends to increase, and the amount of voltage fluctuation due to environmental changes increases. On the other hand, in the electrode structure of (4), the surface roughness (Ra) of the surface in contact with the catalyst layer among the surfaces of the gas diffusion layer of the cathode electrode is 0.65 μm or less. Good adhesion to the gas diffusion layer can be ensured, and the amount of voltage fluctuation can be suppressed. Therefore, according to the electrode structure of (4), the initial performance is high, and the performance fluctuation due to environmental factors can be reduced.

(5) 前記カソード電極のガス拡散層は、以下の式1にて表される70℃飽和水蒸気圧下における吸水率が45%以上85%以下である(1)から(4)いずれかに記載された固体高分子型燃料電池の電極構造体。   (5) The gas diffusion layer of the cathode electrode is described in any one of (1) to (4) having a water absorption rate of 45% or more and 85% or less under a 70 ° C. saturated water vapor pressure represented by the following formula 1. Electrode structure for solid polymer fuel cell.

Figure 0004271127
Figure 0004271127

(5)の電極構造体で用いられるカソード電極のガス拡散層は、上述の式1にて定義される70℃飽和水蒸気圧下における吸水率が45%以上85%以下である。式1において、「乾燥ガス拡散層重量」とは、110℃の真空乾燥機中で2時間乾燥の後のガス拡散層の重量であり、「70℃飽和水蒸気下にけるガス拡散層重量」とは、その後、70℃の飽和水蒸気下の恒温恒湿層内に2時間静置し、表面の水滴を除去した後のガス拡散層の重量である。ガス拡散層の吸水率が高い場合には、高加湿条件における水排出性が低下し、吸水率が低い場合には、低加湿条件における水保持性が低下する傾向にある。これに対して、70℃飽和水蒸気圧下における吸水率が45%以上85%以下の範囲にある(5)の電極構造体は、高加湿条件における水排出性と低加湿条件における水保持性とを両立することができるため、使用に耐えうる保水性を維持でき、初期性能が高く、環境要因、特に加湿条件変化によらず安定した性能が維持できる。   The gas diffusion layer of the cathode electrode used in the electrode structure of (5) has a water absorption rate of 45% or more and 85% or less under a 70 ° C. saturated water vapor pressure defined by the above-described formula 1. In Formula 1, the “dry gas diffusion layer weight” is the weight of the gas diffusion layer after drying for 2 hours in a vacuum dryer at 110 ° C., and “the weight of the gas diffusion layer under 70 ° C. saturated steam” Is the weight of the gas diffusion layer after standing for 2 hours in a constant temperature and humidity layer under saturated steam at 70 ° C. and removing water droplets on the surface. When the water absorption rate of the gas diffusion layer is high, the water discharging property under high humidification conditions decreases, and when the water absorption rate is low, the water retention property under low humidification conditions tends to decrease. On the other hand, the electrode structure according to (5) having a water absorption rate in the range of 45% or more and 85% or less under a saturated water vapor pressure of 70 ° C. has water dischargeability under high humidification conditions and water retention under low humidification conditions. Since both can be compatible, the water retention that can withstand use can be maintained, the initial performance is high, and the stable performance can be maintained regardless of environmental factors, particularly changes in humidification conditions.

(6)前記カソード電極のガス拡散層は、差圧測定法により測定された差圧が0.5884kPa以上1.1768kPa以下である(1)から(5)いずれかに記載された固体高分子型燃料電池の電極構造体。 (6) The solid polymer type according to any one of (1) to (5), wherein the gas diffusion layer of the cathode electrode has a differential pressure measured by a differential pressure measurement method of 0.5884 kPa to 1.1768 kPa. Fuel cell electrode structure.

(6)の電極構造体で用いられるカソード電極のガス拡散層は、差圧測定法により測定された差圧が0.5884kPa以上1.1768kPa以下である。ガス拡散層の差圧が小さい場合にはガス拡散性が低下して水排出性が悪化し、差圧が大きい場合にはガス拡散性が向上して保水性が減少する傾向にある。従って、差圧が0.5884kPa以上1.1768kPa以下である(6)の電極構造体は、高加湿条件における水排出性と低加湿条件における水保持性とを両立することができるため、使用に耐えうる保水性を維持でき、初期性能が高く、環境要因、特に加湿条件変化によらず安定した性能が維持できる。 The gas diffusion layer of the cathode electrode used in the electrode structure of (6) has a differential pressure measured by a differential pressure measurement method of 0.5884 kPa to 1.1768 kPa . When the differential pressure of the gas diffusion layer is small, the gas diffusibility is lowered and the water discharging property is deteriorated. When the differential pressure is large, the gas diffusibility is improved and the water retention tends to be reduced. Therefore, the electrode structure of (6) having a differential pressure of 0.5884 kPa or more and 1.1768 kPa or less is compatible with both water dischargeability under high humidification conditions and water retention under low humidification conditions. Sustainable water retention can be maintained, initial performance is high, and stable performance can be maintained regardless of environmental factors, particularly changes in humidification conditions.

本発明によれば、初期性能が高く、環境要因による性能変動が少ない固体高分子型燃料電池の電極構造体を得ることができる。これにより、例えば、自動車のように運転条件が変化する場合においても、性能変動が少なく安定した性能を維持できる固体高分子型燃料電池を得ることができる。   According to the present invention, it is possible to obtain an electrode structure of a polymer electrolyte fuel cell having high initial performance and little performance fluctuation due to environmental factors. Thereby, for example, even when the driving conditions change like an automobile, it is possible to obtain a solid polymer fuel cell that can maintain stable performance with little performance fluctuation.

以下、本発明の実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[電極構造体の全体構成]
本実施形態にかかる固体高分子型燃料電池の基本構成単位である電極構造体1の全体構成を図1に示す。図1に示すように、電極構造体1は、カソード電極2とアノード電極4と、これらの電極に挟持された高分子電解質膜3と、を備えている。これら両電極は、高分子電解質膜3に接する触媒層21、41と、ガス拡散層22、42により構成されている。また、カソード電極2のガス拡散層22には、触媒層21と接する保水層23を有している。
[Overall configuration of electrode structure]
FIG. 1 shows an overall configuration of an electrode structure 1 that is a basic structural unit of a polymer electrolyte fuel cell according to the present embodiment. As shown in FIG. 1, the electrode structure 1 includes a cathode electrode 2, an anode electrode 4, and a polymer electrolyte membrane 3 sandwiched between these electrodes. These two electrodes are constituted by catalyst layers 21 and 41 in contact with the polymer electrolyte membrane 3 and gas diffusion layers 22 and 42. Further, the gas diffusion layer 22 of the cathode electrode 2 has a water retention layer 23 in contact with the catalyst layer 21.

[高分子電解質膜]
高分子電解質膜3は、高分子電解質から形成されている。具体的には、高分子骨格の少なくとも一部がフッ素化されたフッ素系高分子体、又は、高分子骨格にフッ素を含まない炭化水素系高分子体であって、イオン交換基を備えたものであることが好ましい。イオン交換基の種類は特に限定されず、用途に応じて任意に選択することができる。本発明においては、例えば、スルホン酸、カルボン酸、ホスホン酸等のイオン交換基のうち少なくとも一種を備えた高分子電解質を用いることができる。
[Polymer electrolyte membrane]
The polymer electrolyte membrane 3 is formed from a polymer electrolyte. Specifically, a fluorine polymer in which at least a part of the polymer skeleton is fluorinated, or a hydrocarbon polymer that does not contain fluorine in the polymer skeleton, and has an ion exchange group It is preferable that The kind of ion exchange group is not particularly limited, and can be arbitrarily selected according to the application. In the present invention, for example, a polymer electrolyte having at least one of ion exchange groups such as sulfonic acid, carboxylic acid, and phosphonic acid can be used.

高分子骨格の少なくとも一部がフッ素化されたフッ素系高分子体であって、イオン交換基を備えた高分子電解質としては、具体的には、ナフィオン(登録商標)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン−g−スチレンスルホン酸系ポリマー等を挙げることができる。これらのうちでは、ナフィオンが好ましく用いられる。   Specifically, as a polymer electrolyte having a fluorinated polymer body in which at least a part of the polymer skeleton is fluorinated and having an ion exchange group, a perfluorocarbon sulfonic acid type such as Nafion (registered trademark) is used. Examples thereof include a polymer, a perfluorocarbon phosphonic acid polymer, a trifluorostyrene sulfonic acid polymer, and an ethylenetetrafluoroethylene-g-styrene sulfonic acid polymer. Of these, Nafion is preferably used.

高分子骨格にフッ素を含まない炭化水素系高分子体であって、イオン交換基を備えた高分子電解質をしては、具体的には、ポリスルホン酸、ポリアリールエーテルケトンスルホン酸、ポリベンズイミダゾールアルキルスルホン酸、ポリベンズイミダゾールアルキルホスホン酸等を挙げることができる。   Hydrocarbon polymers that do not contain fluorine in the polymer skeleton, and polymer electrolytes having ion exchange groups include polysulfonic acid, polyaryletherketonesulfonic acid, polybenzimidazole. Examples thereof include alkyl sulfonic acids and polybenzimidazole alkyl phosphonic acids.

[カソード電極の触媒層]
カソード電極2の触媒層21は、Pt−Co合金が電気伝導性物質に担持されたPt−Co触媒と、イオン伝導性物質と、水の排出性を高めるための造孔材と、を含有する。ここで、Pt−Co触媒とは、白金とコバルトの合金をカーボンに担持させた触媒である。また、イオン伝導性物質とは、高分子電解質により形成されるものであり、上述の高分子電解質膜3に用いられるものと同様の高分子電解質を用いることが好ましい。本発明で用いられる造孔材としては、例えば、結晶性炭素繊維、メチルセルロース、カルボキシルメチルセルロース、ポロビニルアルコール、セルロース、多糖類等が挙げられ、これらのうち、結晶性炭素繊維が好ましく用いられる。結晶性炭素繊維は、結晶として完全性が高いウィスカー状の繊維を意味し、例えば、単結晶の真性ウィスカー、多結晶の非真性ウィスカーの他、カーボンナノチューブ等も含む概念である。特に、以下の表1に示す物性を有する結晶性炭素繊維が好ましく用いられる。
[Catalyst layer of cathode electrode]
The catalyst layer 21 of the cathode electrode 2 contains a Pt—Co catalyst in which a Pt—Co alloy is supported on an electrically conductive material, an ion conductive material, and a pore-forming material for enhancing water discharge. . Here, the Pt—Co catalyst is a catalyst in which an alloy of platinum and cobalt is supported on carbon. The ion conductive substance is formed of a polymer electrolyte, and it is preferable to use a polymer electrolyte similar to that used for the polymer electrolyte membrane 3 described above. Examples of the pore former used in the present invention include crystalline carbon fibers, methyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, cellulose, polysaccharides, etc. Among these, crystalline carbon fibers are preferably used. The crystalline carbon fiber means a whisker-like fiber having high integrity as a crystal, and has a concept including, for example, a single crystal intrinsic whisker and a polycrystalline non-intrinsic whisker, and a carbon nanotube. In particular, crystalline carbon fibers having the physical properties shown in Table 1 below are preferably used.

Figure 0004271127
Figure 0004271127

[アノード電極の触媒層]
アノード電極4の触媒層41は、従来の一般的な触媒層と同様の構成を有するものでよい。即ち、イオン伝導性物質と、カーボン等の担体に白金等の金属を担持させた触媒を含む構成を挙げることができる。本発明においては、カーボンに白金を担持させたものの他、カーボンに白金とルテニウムの合金を担持させたPt−Ru触媒等を用いることも可能である。また、イオン伝導性物質としては、高分子電解質膜3やカソード電極2の触媒層21において用いられるものと同様の高分子電解質を用いることが好ましい。
[Anode electrode catalyst layer]
The catalyst layer 41 of the anode electrode 4 may have the same configuration as a conventional general catalyst layer. That is, a configuration including an ion conductive material and a catalyst in which a metal such as platinum is supported on a carrier such as carbon can be exemplified. In the present invention, it is possible to use a Pt—Ru catalyst or the like in which platinum is supported on an alloy of platinum and ruthenium in addition to the carbon supported on platinum. Further, as the ion conductive material, it is preferable to use the same polymer electrolyte as that used in the polymer electrolyte membrane 3 and the catalyst layer 21 of the cathode electrode 2.

[ガス拡散層]
ガス拡散層22、42は、従来の一般的なガス拡散層と同様の構成を有するものでよく、アノード電極4側とカソード電極2側とでは、同一の構成でも異なった構成であってもよい。アノード電極4のガス拡散層42に必要とされる要件は、燃料となる水素ガスが触媒層21に均等に到達できることであり、カソード電極2のガス拡散層22に必要とされる要件は、酸素ガスを含有する空気が触媒層21に均等に到達できることである。従って、ガス拡散層22、42は、これらの要件を満たすものであればよい。具体的には、テフロン(登録商標)・カーボン層とこれに接する多孔質形状のカーボンペーパー層から形成されることが好ましい。例えば、予めテフロンディスパージョン等で撥水処理を行ったカーボンペーパー上に、テフロンディスパージョンとカーボンブラック粉末とを混合したものを塗布することにより得ることができる。
[Gas diffusion layer]
The gas diffusion layers 22 and 42 may have the same configuration as a conventional general gas diffusion layer, and the anode electrode 4 side and the cathode electrode 2 side may have the same configuration or different configurations. . The requirement required for the gas diffusion layer 42 of the anode electrode 4 is that hydrogen gas as a fuel can reach the catalyst layer 21 evenly. The requirement required for the gas diffusion layer 22 of the cathode electrode 2 is oxygen That is, the air containing the gas can reach the catalyst layer 21 evenly. Therefore, the gas diffusion layers 22 and 42 only need to satisfy these requirements. Specifically, it is preferably formed of a Teflon (registered trademark) carbon layer and a porous carbon paper layer in contact therewith. For example, it can be obtained by applying a mixture of Teflon dispersion and carbon black powder on carbon paper that has been subjected to water repellent treatment with Teflon dispersion or the like in advance.

[ガス拡散層における保水層]
保水層23は、高分子電解質、結晶性炭素繊維および導電性カーボン粒子を含有する。ここで、高分子電解質としては、上述の高分子電解質膜3、カソード電極2の触媒層21、またはアノード電極4の触媒層41において用いられるものと同様の高分子電解質を用いることができる。本発明においては、例えば、ナフィオン(登録商標)を用いることが可能である。また、結晶性炭素繊維としては、上述のカソード電極2の触媒層21において好ましく用いられるものと同様の結晶性炭素繊維を用いることができる。即ち、表1に示す物性を有する結晶性炭素繊維が好ましく用いられる。導電性カーボン粒子としては、種種のものを用いることが可能であるが、電気抵抗が低く、コストも低いカーボンブラックが好ましく用いられる。カーボンブラックとしては、例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック等を挙げることができる。
[Water retention layer in gas diffusion layer]
The water retention layer 23 contains a polymer electrolyte, crystalline carbon fibers, and conductive carbon particles. Here, as the polymer electrolyte, the same polymer electrolyte as that used in the above-described polymer electrolyte membrane 3, the catalyst layer 21 of the cathode electrode 2, or the catalyst layer 41 of the anode electrode 4 can be used. In the present invention, for example, Nafion (registered trademark) can be used. As the crystalline carbon fiber, the same crystalline carbon fiber as that preferably used in the catalyst layer 21 of the cathode electrode 2 described above can be used. That is, crystalline carbon fibers having physical properties shown in Table 1 are preferably used. Various kinds of conductive carbon particles can be used, but carbon black having low electric resistance and low cost is preferably used. Examples of carbon black include acetylene black, furnace black, and ketjen black.

本実施形態におけるカソード電極のガス拡散層の表面のうち、触媒層に接する側の表面の面粗度(Ra)は、0.65μm以下である。本明細書中における面粗度(Ra)は、触針法により測定し、JIS B 0601−2001に規定される算術平均粗さとして得ることができる。   Of the surface of the gas diffusion layer of the cathode electrode in this embodiment, the surface roughness (Ra) of the surface in contact with the catalyst layer is 0.65 μm or less. The surface roughness (Ra) in this specification is measured by a stylus method, and can be obtained as an arithmetic average roughness defined in JIS B 0601-2001.

また、本実施形態におけるカソード電極のガス拡散層の70℃飽和水蒸気下における吸水率は、45%以上85%以下である。本明細書における70℃飽和水蒸気下における吸水率は、以下の式1により定義される。   In the present embodiment, the water absorption rate of the gas diffusion layer of the cathode electrode under 70 ° C. saturated water vapor is 45% or more and 85% or less. The water absorption rate under 70 ° C. saturated water vapor in the present specification is defined by the following formula 1.

Figure 0004271127
Figure 0004271127

式1において、「乾燥ガス拡散層重量」とは、110℃の真空乾燥機中で2時間乾燥の後のガス拡散層の重量であり、「70℃飽和水蒸気下にけるガス拡散層重量」とは、その後、70℃の飽和水蒸気下の恒温恒湿層内に2時間静置し、表面の水滴を除去した後のガス拡散層の重量である。70℃飽和水蒸気下における吸水率は、それぞれの重量を測定後、式1による計算により求めることができる。なお、吸水率を求める際に使用する試験片の大きさは、100×100mmである。   In Formula 1, the “dry gas diffusion layer weight” is the weight of the gas diffusion layer after drying for 2 hours in a vacuum dryer at 110 ° C., and “the weight of the gas diffusion layer under 70 ° C. saturated steam” Is the weight of the gas diffusion layer after standing for 2 hours in a constant temperature and humidity layer under saturated steam at 70 ° C. and removing water droplets on the surface. The water absorption under 70 ° C. saturated water vapor can be determined by calculation according to Equation 1 after measuring the respective weights. In addition, the magnitude | size of the test piece used when calculating | requiring a water absorption is 100x100 mm.

なお、本実施形態で用いられるカソード電極のガス拡散層の差圧測定法により測定された差圧は、0.5884kPa以上1.1768kPa以下である。本明細書における差圧は厚み方向の差圧であり、図2に示すように、ガス拡散層をガス流路の途中に挟持して保持し、反応ガスを流量所定流量、例えば、1分当り500L/cm流したときのガス拡散層前後の差圧から求めることができる。 In addition, the differential pressure measured by the differential pressure measurement method of the gas diffusion layer of the cathode electrode used in this embodiment is 0.5884 kPa or more and 1.1768 kPa or less. The differential pressure in the present specification is a differential pressure in the thickness direction, and as shown in FIG. 2, the gas diffusion layer is sandwiched and held in the middle of the gas flow path, and the reaction gas is supplied at a predetermined flow rate, for example, per minute It can be obtained from the differential pressure before and after the gas diffusion layer when flowing 500 L / cm 2 .

[電極構造体の製造方法]
本実施形態にかかる電極構造体の製造方法は、次の通りである。先ず、白金とコバルトの合金が電気伝導性物質に担持されたPt−Co触媒と、イオン伝導性物質と、結晶性炭素繊維とを混合してカソード触媒ペーストを得る。同様にして、アノード電極用触媒と、イオン伝導性物質等を混合してアノード触媒ペーストを得る。得られたカソード触媒ペーストおよびアノード触媒ペーストのそれぞれをテフロンシート等に塗布し、乾燥させ、カソード電極シートおよびアノード電極シートを得る。次いで、カソード電極シートとアノード電極シートで高分子電解質膜を挟持し、デカール法(転写法)により高分子電解質膜に転写させ、高分子電解質膜と触媒層との接合体を作成する。別途、カーボンペーパー上にポリテトラフルオロエチレン等とカーボンブラックとを溶媒中で混合したペーストを塗布、乾燥し、ガス拡散層シートを得る。次いで、高分子電解質と、結晶性炭素繊維および導電性カーボン粒子を混合したペーストをガス拡散層シート上に塗布、乾燥し、保水層を有するガス拡散層シートを得る。最後に、一対の、保水層を有するガス拡散層シートで高分子電解質膜と触媒層との接合体を挟持し、130℃〜160℃のホットプレスで一体化することにより、電極構造体が得られる。また、この電極構造体を一対のセパレータで挟持することにより、固体高分子型燃料電池の基本構成単位である単セルが得られる。なお、セパレータは溝を有し、反応ガスの供給通路として利用されるものであり、炭素系又は金属系の材質のものを適宜組み合わせて用いることができる。
[Method for producing electrode structure]
The manufacturing method of the electrode structure according to the present embodiment is as follows. First, a Pt—Co catalyst in which an alloy of platinum and cobalt is supported on an electrically conductive material, an ion conductive material, and crystalline carbon fiber are mixed to obtain a cathode catalyst paste. Similarly, an anode electrode paste and an ion conductive material are mixed to obtain an anode catalyst paste. Each of the obtained cathode catalyst paste and anode catalyst paste is applied to a Teflon sheet or the like and dried to obtain a cathode electrode sheet and an anode electrode sheet. Next, the polymer electrolyte membrane is sandwiched between the cathode electrode sheet and the anode electrode sheet, and is transferred to the polymer electrolyte membrane by a decal method (transfer method) to form a joined body of the polymer electrolyte membrane and the catalyst layer. Separately, a paste obtained by mixing polytetrafluoroethylene or the like and carbon black in a solvent is applied onto carbon paper and dried to obtain a gas diffusion layer sheet. Next, a paste in which the polymer electrolyte, the crystalline carbon fiber and the conductive carbon particles are mixed is applied onto the gas diffusion layer sheet and dried to obtain a gas diffusion layer sheet having a water retention layer. Finally, a joined body of the polymer electrolyte membrane and the catalyst layer is sandwiched between a pair of gas diffusion layer sheets having a water retention layer, and integrated by hot pressing at 130 ° C. to 160 ° C. to obtain an electrode structure. It is done. Further, by sandwiching the electrode structure with a pair of separators, a single cell that is a basic structural unit of a polymer electrolyte fuel cell can be obtained. The separator has a groove and is used as a reaction gas supply passage. Carbon or metal materials can be used in appropriate combination.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに限定されるものではない。   Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

<実施例1>
[カソード電極の作成]
イオン導伝性ポリマー(商品名:Nafion(登録商標) DE2020、デュポン社製)35gと、カーボンブラックとPt−Co合金の重量比を48:52としたPt−Co担持カーボン粒子(Pt:Co(モル比)=3:1、商品名:TEC36E52、田中貴金属工業社製)10gに結晶性炭素繊維(商品名:VGCF、昭和電工社製)2.5gを混合し、カソード触媒ペーストを得た。得られた触媒ペーストをFEP(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体)製のシート上に触媒金属量が0.3mg/cmとなるように塗布、乾燥させ、カソード電極シートを作成した。
<Example 1>
[Creation of cathode electrode]
Pt—Co-supported carbon particles (Pt: Co (Pt: Co (trade name) having a weight ratio of 48:52 to 35 g of ion conductive polymer (trade name: Nafion (registered trademark) DE2020, manufactured by DuPont)) and carbon black and Pt—Co alloy. Molar ratio) = 3: 1, trade name: TEC36E52, Tanaka Kikinzoku Kogyo Co., Ltd. (10 g) was mixed with 2.5 g of crystalline carbon fiber (trade name: VGCF, Showa Denko Co., Ltd.) to obtain a cathode catalyst paste. The obtained catalyst paste was applied onto a sheet made of FEP (tetrafluoroethylene-hexafluoropropylene copolymer) so that the amount of catalyst metal was 0.3 mg / cm 2 and dried to prepare a cathode electrode sheet.

[アノード電極の作成]
イオン導伝性ポリマー(商品名:Nafion(登録商標) DE2021、デュポン社製)36.8gと、カーボンブラックとPt−Ru合金の重量比を46:54としたPt−Ru担持カーボン粒子(Pt:Ru(モル比)=1:1、商品名:TEC61E54、田中貴金属工業社製)10gを混合し、アノード触媒ペーストを得た。得られた触媒ペーストをFEPシート上に触媒金属量が0.15mg/cmとなるように塗布、乾燥させ、アノード電極シートを作成した。
[Creation of anode electrode]
Pt—Ru-supported carbon particles (Pt: Pt: Rf) having an ion conductive polymer (trade name: Nafion (registered trademark) DE2021, manufactured by DuPont) 36.8 g and a weight ratio of carbon black to Pt—Ru alloy of 46:54. Ru (molar ratio) = 1: 1, trade name: TEC61E54, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was mixed to obtain an anode catalyst paste. The obtained catalyst paste was applied onto an FEP sheet so that the amount of catalyst metal was 0.15 mg / cm 2 and dried to prepare an anode electrode sheet.

[高分子電解質膜と触媒層との接合体の作成]
高分子電解質膜として、Nafion(デュポン社製)を準備した。上記で得られたアノード電極シート、カソード電極シートでこの高分子電解質膜を挟持し、デカール法(転写法)により高分子電解質膜に転写し、高分子電解質膜と触媒層との接合体を得た。
[Preparation of joined body of polymer electrolyte membrane and catalyst layer]
Nafion (manufactured by DuPont) was prepared as a polymer electrolyte membrane. The polymer electrolyte membrane is sandwiched between the anode electrode sheet and the cathode electrode sheet obtained above, and transferred to the polymer electrolyte membrane by a decal method (transfer method) to obtain a joined body of the polymer electrolyte membrane and the catalyst layer. It was.

[ガス拡散層の作成]
テフロンディスパージョン(商品名:L170J、旭硝子社製)12gとカーボンブラック粉末(商品名:バルカンXC75、Cabot社製)18gとを、エチレングリコール50g中で混合して下地層ペーストAを得た。次いで、予めテフロンディスパージョン(商品名:FEP120J、三井デュポンケミカル社製)で撥水処理を行ったカーボンペーパー(商品名:TGP060、東レ社製)の上に、下地層ペーストA2.0mg/cmを塗布し、乾燥させてガス拡散層を得た。下地層ペーストAの塗布は、Wet状態で連続的に行い、規定の塗布量が塗布された後に乾燥した。
[Create gas diffusion layer]
12 g of Teflon dispersion (trade name: L170J, manufactured by Asahi Glass Co., Ltd.) and 18 g of carbon black powder (trade name: Vulcan XC75, manufactured by Cabot Corp.) were mixed in 50 g of ethylene glycol to obtain a base layer paste A. Subsequently, the base layer paste A 2.0 mg / cm 2 is placed on carbon paper (trade name: TGP060, manufactured by Toray Industries, Inc.) that has been subjected to water repellent treatment in advance using a Teflon dispersion (trade name: FEP120J, manufactured by Mitsui DuPont Chemical Co., Ltd.). Was applied and dried to obtain a gas diffusion layer. The underlayer paste A was applied continuously in a wet state, and dried after a prescribed application amount was applied.

[保水層を有するガス拡散層の作成]
次いで、イオン導伝性ポリマー(商品名:Nafion DE2021、デュポン社製)25gと、カーボンブラック粉末(商品名:ケッチェンブラック、Cabot社製)5gに結晶性炭素繊維(商品名:VGCF、昭和電工社製)2.5gを混合し、下地層ペーストBを得た。上記の方法により得られた下地層ペーストAの層上に、下地層ペーストBを0.3mg/cmとなるように塗布し、乾燥させることにより、保水層を有するガス拡散層を作成した。
[Creating a gas diffusion layer with a water retention layer]
Next, 25 g of ion-conducting polymer (trade name: Nafion DE2021, manufactured by DuPont) and 5 g of carbon black powder (trade name: Ketjen Black, manufactured by Cabot Corporation) were added to crystalline carbon fiber (trade name: VGCF, Showa Denko). 2.5 g) was mixed to obtain a base layer paste B. On the layer of the underlayer paste A obtained by the above method, the underlayer paste B was applied to 0.3 mg / cm 2 and dried to prepare a gas diffusion layer having a water retention layer.

[電極構造体の作成]
保水層を有するガス拡散層2枚を用いて、保水層が触媒層に接するように上記の高分子電解質膜と触媒層との接合体を挟み込み、ホットプレスで一体化することにより、電極構造体を得た。
[Create electrode structure]
By using two gas diffusion layers having a water retention layer, the joined body of the polymer electrolyte membrane and the catalyst layer is sandwiched so that the water retention layer is in contact with the catalyst layer, and integrated by hot pressing, whereby an electrode structure Got.

<実施例2>
下地層ペーストBの塗布量を0.4mg/cmとした以外は、実施例1と同様の方法により電極構造体を得た。
<Example 2>
An electrode structure was obtained in the same manner as in Example 1 except that the coating amount of the base layer paste B was 0.4 mg / cm 2 .

<実施例3>
下地層ペーストBの塗布量を0.2mg/cmとした以外は、実施例1と同様の方法により電極構造体を得た。
<Example 3>
An electrode structure was obtained in the same manner as in Example 1 except that the coating amount of the base layer paste B was 0.2 mg / cm 2 .

比較例4>
下地層ペーストBに添加するカーボンブラック粉末(商品名:ケッチェンブラック、Cabot社製)の量を3.5gとした以外は、実施例1と同様の方法により電極構造体を得た。
< Comparative example 4>
An electrode structure was obtained in the same manner as in Example 1 except that the amount of carbon black powder (trade name: Ketjen Black, manufactured by Cabot) added to the base layer paste B was 3.5 g.

比較例5>
下地層ペーストAのカーボンペーパー上への塗布量を2.3mg/cmとした以外は、実施例1と同様の方法により電極構造体を得た。
< Comparative Example 5>
An electrode structure was obtained in the same manner as in Example 1 except that the coating amount of the base layer paste A on the carbon paper was 2.3 mg / cm 2 .

比較例6>
下地層ペーストAのカーボンペーパー上への塗布量を1.9mg/cmとした以外は、実施例1と同様の方法により電極構造体を得た。
< Comparative Example 6>
An electrode structure was obtained in the same manner as in Example 1 except that the coating amount of the base layer paste A on the carbon paper was 1.9 mg / cm 2 .

比較例7>
下地層ペーストAのカーボンペーパー上への塗布量を1.2mg/cmとした以外は、実施例1と同様の方法により電極構造体を得た。
< Comparative Example 7>
An electrode structure was obtained in the same manner as in Example 1 except that the coating amount of the base layer paste A on the carbon paper was 1.2 mg / cm 2 .

<比較例1>
下地層ペーストBにカーボンブラック粉末を添加しなかった以外は、実施例1と同様の方法により電極構造体を得た。
<Comparative Example 1>
An electrode structure was obtained in the same manner as in Example 1 except that the carbon black powder was not added to the base layer paste B.

<比較例2>
下地層ペーストBを塗布せず、下地層ペーストAのみの塗布とした以外は、実施例1と同様の方法により電極構造体を得た。
<Comparative example 2>
An electrode structure was obtained in the same manner as in Example 1 except that the base layer paste B was not applied and only the base layer paste A was applied.

<比較例3>
下地層ペーストA、Bを塗布せず、あらかじめ撥水処理したカーボンペーパーのみを拡散層として使用した以外は、実施例1と同様の方法により電極構造体を得た。
<Comparative Example 3>
An electrode structure was obtained in the same manner as in Example 1 except that the base layer pastes A and B were not applied and only carbon paper that had been subjected to water repellent treatment in advance was used as the diffusion layer.

<評価>
[面粗度の測定]
実施例及び比較例で得られたガス拡散層について、触針法による面粗度の測定を行い、JIS B 0601−2001に規定される算術平均粗さRaを求めた。
<Evaluation>
[Measurement of surface roughness]
About the gas diffusion layer obtained by the Example and the comparative example, the surface roughness by the stylus method was measured and arithmetic mean roughness Ra prescribed | regulated to JISB0601-2001 was calculated | required.

[70℃飽和水蒸気圧下における吸水率の測定]
実施例及び比較例で得られた保水層を有するガス拡散層を、110℃の真空乾燥機中で2時間乾燥後、重量を測定した。その後、70℃−RH100%(70℃の飽和水蒸気下)の恒温恒湿層内に2時間静置し、表面の水滴を除去した後に重量を測定した。なお、試験片の大きさは100×100mmとした。乾燥状態のガス拡散層重量と飽和水蒸気下におけるガス拡散層重量を用いて、以下の式1により吸水率を求めた。
[Measurement of water absorption rate at 70 ° C saturated water vapor pressure]
The gas diffusion layer having the water retention layer obtained in Examples and Comparative Examples was dried in a vacuum dryer at 110 ° C. for 2 hours, and then the weight was measured. Then, it left still for 2 hours in a 70 degreeC-RH100% (under 70 degreeC saturated water vapor | steam) constant temperature and humidity layer, the weight was measured after removing the water drop on the surface. Note that the size of the test piece was 100 × 100 mm. Using the weight of the gas diffusion layer in the dry state and the weight of the gas diffusion layer under saturated water vapor, the water absorption was determined by the following formula 1.

Figure 0004271127
Figure 0004271127

[差圧の測定]
ガス拡散層の差圧は、図2に示すように、ガス拡散層をガス流路の途中に挟持して保持し、反応ガスを1分当り500L/cm流したときのガス拡散層前後の差圧から求めた。
[Differential pressure measurement]
As shown in FIG. 2, the differential pressure of the gas diffusion layer is obtained by holding the gas diffusion layer in the middle of the gas flow path and before and after the gas diffusion layer when the reaction gas is flowed at 500 L / cm 2 per minute. Obtained from the differential pressure.

[初期性能の測定]
実施例及び比較例で得られた電極構造体を1対のセパレータで挟持して単セルとした後、以下の運転条件により、印加電流1A/cmにおける端子電圧を測定した。尚、利用率とは、供給したガスに対する消費されたガスの割合である。
〔運転条件〕 運転温度:75℃
相対湿度:An(アノード)=Ca(カソード)=80%RH
圧力:An/Ca=160/160kPa
利用率(消費量/供給量):An=Ca=50%
[Measurement of initial performance]
After the electrode structures obtained in Examples and Comparative Examples were sandwiched between a pair of separators to form a single cell, the terminal voltage at an applied current of 1 A / cm 2 was measured under the following operating conditions. The utilization rate is a ratio of consumed gas to supplied gas.
[Operating conditions] Operating temperature: 75 ° C
Relative humidity: An (anode) = Ca (cathode) = 80% RH
Pressure: An / Ca = 160/160 kPa
Utilization rate (consumption / supply): An = Ca = 50%

[電圧変動幅の測定]
以下の運転条件により、相対湿度100%の高加湿条件および相対湿度20%の低加湿条件のそれぞれにおいて、印加電流1A/cmにおける端子電圧を測定した。それぞれの加湿条件下での端子電圧の差の絶対値を電圧変動幅と規定した。以上、得られた評価結果をまとめて表2に示す。
〔運転条件〕 運転温度:75℃
圧力:An/Ca=160/160kPa
利用率(消費量/供給量)An/Ca=50%
高加湿条件:An=Ca=100%RH
低加湿条件:An=Ca=20%RH
[Measurement of voltage fluctuation range]
Under the following operating conditions, the terminal voltage at an applied current of 1 A / cm 2 was measured under each of a high humidification condition with a relative humidity of 100% and a low humidification condition with a relative humidity of 20%. The absolute value of the terminal voltage difference under each humidification condition was defined as the voltage fluctuation range. The evaluation results thus obtained are summarized in Table 2.
[Operating conditions] Operating temperature: 75 ° C
Pressure: An / Ca = 160/160 kPa
Utilization rate (consumption / supply) An / Ca = 50%
High humidification conditions: An = Ca = 100% RH
Low humidification condition: An = Ca = 20% RH

Figure 0004271127
Figure 0004271127

図3は、実施例1、比較例5、比較例6、比較例7における面粗度(Ra)と電圧変動幅の関係を示した図である。これにより、面粗度(Ra)が小さいほど電圧変動幅が小さい傾向にあり、加湿条件変化によらず安定した性能が維持できることが示唆された。電池としての使用に耐えうる範囲の電圧変動幅を考慮すると、面粗度は0.65以下が好ましいことが示された。 FIG. 3 is a diagram showing the relationship between the surface roughness (Ra) and the voltage fluctuation range in Example 1, Comparative Example 5, Comparative Example 6, and Comparative Example 7. As a result, the smaller the surface roughness (Ra), the smaller the voltage fluctuation range, suggesting that stable performance can be maintained regardless of changes in humidification conditions. Considering the voltage fluctuation range that can withstand use as a battery, the surface roughness is preferably 0.65 or less.

図4は、実施例1、2、3および比較例1、2、3における70℃飽和水蒸気圧下における吸水率と端子電圧の関係を示した図である。これにより、吸水率が大きすぎたり小さすぎたりする場合には、端子電圧の変動幅が大きいことが示唆された。これは即ち、吸水率が大きすぎる場合には高加湿条件下の性能が低下し、吸水率が小さすぎる場合には、低加湿条件下の性能が低下することを意味する。電池としての使用に耐えうる範囲の必要最低端子電圧を考慮すると、70℃飽和水蒸気圧下における吸水率として45%以上85%以下が好ましいことが示された。   FIG. 4 is a graph showing the relationship between the water absorption rate and the terminal voltage under the 70 ° C. saturated water vapor pressure in Examples 1, 2, and 3 and Comparative Examples 1, 2, and 3. This suggested that when the water absorption rate was too large or too small, the fluctuation range of the terminal voltage was large. This means that when the water absorption rate is too large, the performance under high humidification conditions decreases, and when the water absorption rate is too small, the performance under low humidification conditions decreases. Considering the necessary minimum terminal voltage within the range that can be used as a battery, it was shown that the water absorption rate at 70 ° C. saturated water vapor pressure is preferably 45% or more and 85% or less.

図5は、実施例1、2、3、比較例4および比較例1における差圧と電圧変動幅の関係を示した図である。これにより、差圧が大きすぎたり小さすぎたりする場合には、端子電圧の変動幅が大きいことが示唆された。これは即ち、差圧が大きすぎる場合には高加湿条件下の性能が低下し、差圧が小さすぎる場合には低加湿条件下の性能が低下することを意味する。電池としての使用に耐えうる範囲の電圧変動幅を考慮すると、差圧は60mmaq以上120mmaq以下が好ましいことが示された。 FIG. 5 is a diagram showing the relationship between the differential pressure and the voltage fluctuation range in Examples 1, 2, and 3, Comparative Example 4 and Comparative Example 1. This suggested that when the differential pressure is too large or too small, the fluctuation range of the terminal voltage is large. This means that when the differential pressure is too large, the performance under high humidification conditions decreases, and when the differential pressure is too small, the performance under low humidification conditions decreases. Considering the voltage fluctuation range that can withstand use as a battery, it was shown that the differential pressure is preferably 60 mmaq or more and 120 mmaq or less.

本発明にかかる固体高分子型燃料電池の電極構造体の全体構成を示す図である。It is a figure which shows the whole structure of the electrode structure of the polymer electrolyte fuel cell concerning this invention. 面圧方向の差圧の測定法を示した図である。It is the figure which showed the measuring method of the differential pressure | voltage of a surface pressure direction. 面粗度(Ra)と電圧変動幅の関係を示した図である。It is the figure which showed the relationship between surface roughness (Ra) and a voltage fluctuation range. 70℃飽和水蒸気圧下における吸水率と端子電圧の関係を示した図である。It is the figure which showed the relationship between the water absorption rate under 70 degreeC saturated water vapor pressure, and a terminal voltage. 差圧と電圧変動幅の関係を示した図である。It is the figure which showed the relationship between differential pressure | voltage and a voltage fluctuation range.

符号の説明Explanation of symbols

1 電極構造体
2 カソード電極
21、41 触媒層
22、42 ガス拡散層
23 保水層
3 高分子電解質膜
4 アノード電極
5 MFC
6 差圧計
DESCRIPTION OF SYMBOLS 1 Electrode structure 2 Cathode electrode 21, 41 Catalyst layer 22, 42 Gas diffusion layer 23 Water retention layer 3 Polymer electrolyte membrane 4 Anode electrode 5 MFC
6 Differential pressure gauge

Claims (5)

アノード電極と、カソード電極と、これらの電極に挟持された高分子電解質膜と、を備えた固体高分子型燃料電池の電極構造体であって、
前記両電極は、前記高分子電解質膜に接する触媒層と、この触媒層に接するガス拡散層を含み、
前記カソード電極の触媒層は、Pt−Co合金が電気伝導性物質に担持されたPt−Co触媒と、イオン伝導性物質と、水の排出性を高めるための造孔材と、を含み、
前記カソード電極のガス拡散層は、前記触媒層に接する保水層を有し、
前記カソード電極のガス拡散層の表面のうち、前記触媒層に接する側の表面は、触針法により測定された面粗度(Ra)が0.65μm以下である固体高分子型燃料電池の電極構造体。
An electrode structure of a polymer electrolyte fuel cell comprising an anode electrode, a cathode electrode, and a polymer electrolyte membrane sandwiched between these electrodes,
The electrodes include a catalyst layer in contact with the polymer electrolyte membrane and a gas diffusion layer in contact with the catalyst layer,
The catalyst layer of the cathode electrode includes a Pt—Co catalyst in which a Pt—Co alloy is supported on an electrically conductive material, an ion conductive material, and a pore-forming material for enhancing water discharge,
The gas diffusion layer of the cathode electrode has a water retention layer in contact with the catalyst layer,
Among the surfaces of the gas diffusion layer of the cathode electrode, the surface in contact with the catalyst layer has a surface roughness (Ra) measured by a stylus method of 0.65 μm or less, and is an electrode of a polymer electrolyte fuel cell Structure.
前記造孔材は、結晶性炭素繊維である請求項1に記載の固体高分子型燃料電池の電極構造体。   The electrode structure for a polymer electrolyte fuel cell according to claim 1, wherein the pore former is a crystalline carbon fiber. 前記保水層は、高分子電解質、結晶性炭素繊維および導電性カーボン粒子を含む請求項1または2に記載の固体高分子型燃料電池の電極構造体。   The electrode structure for a polymer electrolyte fuel cell according to claim 1, wherein the water retention layer includes a polymer electrolyte, crystalline carbon fibers, and conductive carbon particles. 前記カソード電極のガス拡散層は、以下の式1にて表される70℃飽和水蒸気圧下における吸水率が45%以上85%以下である請求項1から3いずれかに記載された固体高分子型燃料電池の電極構造体。
Figure 0004271127
4. The solid polymer type according to claim 1, wherein the gas diffusion layer of the cathode electrode has a water absorption rate of 45% or more and 85% or less under 70 ° C. saturated water vapor pressure represented by the following formula 1. Fuel cell electrode structure.
Figure 0004271127
前記カソード電極のガス拡散層は、差圧測定法により測定された差圧が0.5884kPa以上1.1768kPa以下である請求項1から4いずれかに記載された固体高分子型燃料電池の電極構造体。 The electrode structure of the polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein the gas diffusion layer of the cathode electrode has a differential pressure measured by a differential pressure measurement method of 0.5884 kPa to 1.1768 kPa. body.
JP2004320678A 2004-11-04 2004-11-04 Electrode structure of polymer electrolyte fuel cell Expired - Fee Related JP4271127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320678A JP4271127B2 (en) 2004-11-04 2004-11-04 Electrode structure of polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320678A JP4271127B2 (en) 2004-11-04 2004-11-04 Electrode structure of polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2006134648A JP2006134648A (en) 2006-05-25
JP4271127B2 true JP4271127B2 (en) 2009-06-03

Family

ID=36727998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320678A Expired - Fee Related JP4271127B2 (en) 2004-11-04 2004-11-04 Electrode structure of polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4271127B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784075B2 (en) * 2004-11-22 2011-09-28 日産自動車株式会社 Fuel cell
KR100786869B1 (en) 2006-06-29 2007-12-20 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
JP5432443B2 (en) * 2007-09-25 2014-03-05 Jx日鉱日石エネルギー株式会社 Membrane electrode assembly and fuel cell
JP6379662B2 (en) * 2014-05-19 2018-08-29 凸版印刷株式会社 Production device for porous substrate with resin layer and method for producing porous substrate with resin layer
CN107851805A (en) * 2015-08-27 2018-03-27 东丽株式会社 Gas-diffusion electrode
WO2021202750A1 (en) * 2020-04-03 2021-10-07 The Board Of Trustees Of The Leland Stanford Junior University Examples of typical defects in the request and corrections thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874380B2 (en) * 1996-08-26 2007-01-31 エヌ・イーケムキャット株式会社 Carbon-supported platinum skeleton alloy electrocatalyst with vacancy-type lattice defects
JP4974403B2 (en) * 2000-05-31 2012-07-11 日本ゴア株式会社 Solid polymer electrolyte fuel cell
JP2001357857A (en) * 2000-06-12 2001-12-26 Asahi Glass Co Ltd Solid high polymer type fuel cell and its manufacturing method
JP3643552B2 (en) * 2001-10-31 2005-04-27 田中貴金属工業株式会社 Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JP3778506B2 (en) * 2002-11-08 2006-05-24 本田技研工業株式会社 Electrode for polymer electrolyte fuel cell
JP4421264B2 (en) * 2002-12-18 2010-02-24 本田技研工業株式会社 Method for manufacturing membrane-electrode structure
JP2004185905A (en) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd Electrode for fuel cell and fuel cell

Also Published As

Publication number Publication date
JP2006134648A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
US10923752B2 (en) Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same
US7232627B2 (en) Electrode for solid polymer fuel cell
JP2006054165A (en) Polymer fuel electrolyte cell and manufacturing method of polymer electrolyte fuel cell
JP2006012832A (en) Electrode for fuel cell, membrane for fuel cell-electrode assembly including this, fuel cell, and manufacturing method of electrode for fuel cell
JP2006134630A (en) Electrode structure of polymer electrolyte fuel cell
JP5034172B2 (en) Gas diffusion layer for fuel cell and fuel cell using the same
JP4133654B2 (en) Polymer electrolyte fuel cell
JP5298436B2 (en) Membrane-electrode assembly and fuel cell having the same
JP2006318707A (en) Electrode structure of solid polymer fuel cell
EP3553862B1 (en) Membrane catalyst layer assembly of electrochemical device, membrane electrode assembly, electrochemical device, method for manufacturing membrane catalyst layer assembly of electrochemical device
JP4429142B2 (en) Electrode structure of polymer electrolyte fuel cell
JP5596277B2 (en) Membrane electrode assembly and fuel cell
JP3812901B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4271127B2 (en) Electrode structure of polymer electrolyte fuel cell
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
CN101978536A (en) Membrane electrode assembly and fuel cell
JP4863721B2 (en) Membrane electrode assembly, manufacturing method of membrane electrode assembly, fuel cell
JP5065289B2 (en) Fuel cell electrode with reduced amount of noble metal and solid polymer fuel cell having the same
KR101117630B1 (en) Membrane-electrode assembly for fuel cell and method for preparating the same
JP2006085984A (en) Mea for fuel cell and fuel cell using this
WO2008127045A1 (en) Anode catalyst layer and membrane-electrode assembly of direct liquid feed fuel cell and direct liquid feed fuel cell
JP5057798B2 (en) Fuel cell electrode and fuel cell
KR20150138103A (en) Electrode for fuel cell, membrane electrode assembly comprising the same and fuel cell comprising the membrane electrode assembly
JP4779278B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP4179847B2 (en) Electrode structure for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4271127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees