JP5311538B2 - Method for producing porous carbon electrode substrate - Google Patents

Method for producing porous carbon electrode substrate Download PDF

Info

Publication number
JP5311538B2
JP5311538B2 JP2008035823A JP2008035823A JP5311538B2 JP 5311538 B2 JP5311538 B2 JP 5311538B2 JP 2008035823 A JP2008035823 A JP 2008035823A JP 2008035823 A JP2008035823 A JP 2008035823A JP 5311538 B2 JP5311538 B2 JP 5311538B2
Authority
JP
Japan
Prior art keywords
porous carbon
carbon electrode
electrode substrate
polymer electrolyte
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008035823A
Other languages
Japanese (ja)
Other versions
JP2009190951A (en
Inventor
和宏 隅岡
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2008035823A priority Critical patent/JP5311538B2/en
Publication of JP2009190951A publication Critical patent/JP2009190951A/en
Application granted granted Critical
Publication of JP5311538B2 publication Critical patent/JP5311538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a porous carbon electrode base material which can reduce the damage to a polymer electrolyte membrane used in a solid polymer-type fuel cell while holding high gas permeability. <P>SOLUTION: The method for manufacturing the porous carbon electrode base material includes pressurizing a carbon sheet, obtained by bonding carbon short fibers with carbon and having bulk density of &le;0.27 g/cm<SP>3</SP>, at pressure of 0.5-2 MPa by using a pressurizing means holding the carbon sheet with flat metal faces. The pressurizing means holding the carbon sheet with the flat metal faces is a batch press apparatus, a continuous roll press or a continuous press apparatus having a couple of endless belts. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、固体高分子型燃料電池に好適に用いられる多孔質炭素電極基材の製造方法に関するものである。   The present invention relates to a method for producing a porous carbon electrode substrate suitably used for a polymer electrolyte fuel cell.

固体高分子型燃料電池はプロトン伝導性の高分子電解質膜を用いることを特徴としており、水素等の燃料ガスと酸素等の酸化ガスを電気化学的に反応させることにより起電力を得る装置である。固体高分子型燃料電池は、自家発電装置や、自動車等の移動体用の発電装置として利用可能である。   A polymer electrolyte fuel cell is characterized by using a proton-conducting polymer electrolyte membrane, and is an apparatus for obtaining an electromotive force by electrochemically reacting a fuel gas such as hydrogen and an oxidizing gas such as oxygen. . The polymer electrolyte fuel cell can be used as a self-power generation device or a power generation device for a moving body such as an automobile.

このような固体高分子型燃料電池は、水素イオン(プロトン)を選択的に伝導する高分子電解質膜を有する。また、貴金属系触媒を担持したカーボン粉末を主成分とする触媒層と多孔質炭素電極基材とを有するガス拡散電極が、触媒層側を内側にして、高分子電解質膜の両面に接合された構造となっている。   Such a polymer electrolyte fuel cell has a polymer electrolyte membrane that selectively conducts hydrogen ions (protons). In addition, a gas diffusion electrode having a catalyst layer mainly composed of carbon powder supporting a noble metal catalyst and a porous carbon electrode substrate was bonded to both surfaces of the polymer electrolyte membrane with the catalyst layer side inside. It has a structure.

このような高分子電解質膜と2枚のガス拡散電極からなる接合体は膜−電極接合体(MEA: Membrane Electrode Assembly)と呼ばれている。またMEAの両外側には燃料ガスまたは酸化ガスを供給し、かつ生成ガスおよび過剰ガスを排出することを目的としたガス流路を形成したセパレーターが設置されている。   Such a joined body composed of a polymer electrolyte membrane and two gas diffusion electrodes is called a membrane-electrode assembly (MEA: Membrane Electrode Assembly). In addition, separators are provided on both outer sides of the MEA so as to supply a fuel gas or an oxidizing gas and to form a gas flow path for the purpose of discharging generated gas and excess gas.

多孔質炭素電極基材は主に次の3つの機能を持つ。第1に多孔質炭素電極基材の外側に配置されたセパレーターに形成されたガス流路より触媒層中の貴金属系触媒に均一に燃料ガスまたは酸化ガスを供給する機能である。第2に触媒層で反応により生成した水を排出する機能である。第3に触媒層での反応に必要な電子または生成される電子をセパレーターへ導電する機能である。   The porous carbon electrode substrate mainly has the following three functions. The first function is to supply the fuel gas or the oxidizing gas uniformly to the noble metal catalyst in the catalyst layer from the gas flow path formed in the separator disposed outside the porous carbon electrode substrate. The second function is to discharge water generated by the reaction in the catalyst layer. The third function is to conduct electrons necessary for the reaction in the catalyst layer or generated electrons to the separator.

したがって、多孔質炭素電極基材には、反応ガスおよび酸化ガス透過能、水の排出性、および電子導電性が必要とされる。さらに、固体高分子型燃料電池の発電性能を向上させ、かつ低コスト化を進めるためには、高出力密度領域での運転が必要となり、多孔質炭素電極基材には嵩密度を下げ、高いガス透過性を有すること求められている。また、一般的な固体高分子型燃料電池では、多孔質炭素電極基材はMEA作製時に高分子電解質膜の両側に加圧により接合され、これを2枚のセパレーターではさみ締結されるため、多孔質炭素電極基材中の炭素材料が高分子電解質膜へ突き刺さることによる反応ガスのクロスリークや、アノード、カソード両極間での微小ショートなどを引き起こす高分子電解質膜へのダメージを低減することが求められている。   Therefore, the porous carbon electrode base material is required to have reactive gas and oxidizing gas permeability, water dischargeability, and electronic conductivity. Furthermore, in order to improve the power generation performance of the polymer electrolyte fuel cell and promote cost reduction, it is necessary to operate in a high power density region, and the porous carbon electrode base material has a low bulk density and is high. It is required to have gas permeability. Further, in a general solid polymer fuel cell, the porous carbon electrode base material is bonded to both sides of the polymer electrolyte membrane by pressure when the MEA is manufactured, and is sandwiched between two separators and fastened. It is necessary to reduce damage to the polymer electrolyte membrane that causes cross-leakage of reaction gas due to the carbon material in the porous carbon electrode base material penetrating into the polymer electrolyte membrane, and micro shorts between the anode and cathode. It has been.

反応ガスのクロスリークや、アノード、カソード両極間での微小ショートなどを抑制し、高分子電解質膜へのダメージを低減するための最も一般的な手法として、フッ素樹脂やカーボンブラックなどからなる緻密な層を多孔質炭素電極基材上へ塗布する手法が用いられている。その他の方法として、特許文献1には、合成樹脂からなる多孔質のシート状支持体、並びに導電性カーボン粒子および熱可塑性樹脂からなり、前記シート状支持体を被覆する被覆層からなることを特徴とする燃料電池用ガス拡散層が開示されている。また、特許文献2には、高分子電解質膜と、該高分子電解質膜の表面に設けられた触媒層と、該触媒層の表面に設けられた拡散層と、からなる膜−電極接合体を備えた固体高分子型燃料電池において該触媒層が、繊維状の導電材を有し、かつ該触媒層の厚さ方向の該拡散層の端部の領域の近傍の導電材の含有量が、該高分子電解質膜の端部の近傍の領域の該導電材の含有量より多いことを特徴とする固体高分子型燃料電池が開示されている。また、特許文献3には、繊維状の構造体からなる燃料電池用のガス拡散層であって少なくとも一方の面における繊維の毛羽立ちの一部または全部が切断処理あるいは破断処理されていることを特徴とするガス拡散層が開示されている。
特開2004−152744号公報 特開2005−228601号公報 特開2007−149613号公報
The most common method for reducing cross-leakage of reactive gases and micro-shorts between the anode and cathode and reducing damage to the polymer electrolyte membrane is a dense material made of fluororesin or carbon black. A technique of applying a layer onto a porous carbon electrode substrate is used. As another method, Patent Document 1 includes a porous sheet-like support made of a synthetic resin, and a coating layer made of conductive carbon particles and a thermoplastic resin that covers the sheet-like support. A gas diffusion layer for a fuel cell is disclosed. Patent Document 2 discloses a membrane-electrode assembly comprising a polymer electrolyte membrane, a catalyst layer provided on the surface of the polymer electrolyte membrane, and a diffusion layer provided on the surface of the catalyst layer. In the polymer electrolyte fuel cell provided, the catalyst layer has a fibrous conductive material, and the content of the conductive material in the vicinity of the end region of the diffusion layer in the thickness direction of the catalyst layer is A solid polymer fuel cell is disclosed in which the content of the conductive material in a region in the vicinity of the end of the polymer electrolyte membrane is greater than that of the polymer electrolyte membrane. Further, Patent Document 3 is a gas diffusion layer for a fuel cell made of a fibrous structure, and a part or all of the fluff of fibers on at least one surface is cut or broken. A gas diffusion layer is disclosed.
JP 2004-152744 A JP 2005-228601 A JP 2007-149613 A

しかし、緻密な層を多孔質炭素電極基材上へ塗布する手法では、緻密な層を形成することにより多孔質炭素電極基材のガス透気度等の物性が変化するという問題があり、この緻密な層の組成や構造、厚みに制限が生じている。特許文献1記載の方法では、反応ガスのクロスリークや、アノード、カソード両極間での微小ショートなどを引き起こす高分子電解質膜のダメージを低減するために、多孔質炭素電極基材を用いず、合成樹脂からなる多孔質シート状に導電性カーボン粒子と熱可塑性樹脂からなる被覆層によりガス拡散電極を形成しているため、十分なガス拡散性と電気導電性を得ることが困難となる。また、特許文献2記載の方法では、触媒層中に高分子電解質膜と接する領域においても少量の繊維状の物質が含まれていることより、反応ガスのクロスリークや、アノード、カソード両極間での微小ショートなどを引き起こす高分子電解質膜のダメージを十分に低減することは困難である。さらに、また、特許文献3記載の方法では、荷重がかかっていない状態での織布状あるいは不織布状の繊維状構造体の毛羽立ちを取り除くことは可能であるが、荷重がかかり多孔質炭素電極基材が変形した状態では十分な毛羽を除去することは困難である。また、抄紙構造からなるシート状の多孔質炭素電極基材においては、炭素短繊維はほぼ2次元平面内において配向しているため、織布状あるいは不織布状の多孔質炭素電極基材(クロスタイプ)と比べ、毛羽立っている繊維はほとんどなく、特許文献3記載の方法で反応ガスのクロスリークや、アノード、カソード両極間での微小ショートなどを引き起こす高分子電解質膜のダメージを十分に低減することは困難である。   However, the technique of applying a dense layer on the porous carbon electrode substrate has a problem that the physical properties such as gas permeability of the porous carbon electrode substrate change by forming the dense layer. There are limitations on the composition, structure, and thickness of the dense layer. In the method described in Patent Document 1, a porous carbon electrode substrate is not used in order to reduce damage to the polymer electrolyte membrane that causes cross-leakage of the reaction gas or micro short-circuit between the anode and cathode electrodes. Since the gas diffusion electrode is formed of a coating layer made of conductive carbon particles and a thermoplastic resin in the form of a porous sheet made of resin, it becomes difficult to obtain sufficient gas diffusibility and electrical conductivity. Further, in the method described in Patent Document 2, since a small amount of fibrous material is contained in the catalyst layer in the region in contact with the polymer electrolyte membrane, the reaction gas cross-leakage and between the anode and cathode both electrodes. It is difficult to sufficiently reduce the damage of the polymer electrolyte membrane that causes a micro short circuit. Furthermore, in the method described in Patent Document 3, it is possible to remove the fluff of the woven or non-woven fibrous structure in a state where no load is applied, but the load is applied and the porous carbon electrode base is removed. It is difficult to remove sufficient fluff when the material is deformed. Further, in the sheet-like porous carbon electrode substrate having a papermaking structure, the short carbon fibers are oriented in a substantially two-dimensional plane, so that the woven or non-woven porous carbon electrode substrate (cross type) Compared with), there is almost no fuzzy fiber, and the method described in Patent Document 3 sufficiently reduces damage to the polymer electrolyte membrane that causes cross-leakage of the reaction gas and micro-shorts between the anode and cathode. It is difficult.

また、高分子電解質膜へのダメージを低減するためには、高分子電解質膜の機械的強度を上げることや膜厚を厚くすることも可能ではあるが、一般的には機械的強度を上げることや膜厚を厚くすることによりプロトン伝導抵抗が増加し、固体高分子型燃料電池に用いた場合、発電性能が低下するため、固体高分子型燃料電池に用いられる高分子電解質膜の機械的強度や膜厚には制限が生じている。   In order to reduce damage to the polymer electrolyte membrane, it is possible to increase the mechanical strength of the polymer electrolyte membrane or increase the film thickness, but in general increase the mechanical strength. The proton conduction resistance increases by increasing the film thickness, and the power generation performance decreases when used in a polymer electrolyte fuel cell. Therefore, the mechanical strength of the polymer electrolyte membrane used in the polymer electrolyte fuel cell is reduced. There is a limit to film thickness.

本発明はこれら上記従来の技術の課題を解決するもので、高いガス透過性を保持したまま、固体高分子型燃料電池に用いられる高分子電解質膜へのダメージを低減することができる多孔質炭素電極基材の製造方法を提供することを目的とするものである。   The present invention solves the above-mentioned problems of the prior art, and porous carbon that can reduce damage to a polymer electrolyte membrane used in a polymer electrolyte fuel cell while maintaining high gas permeability. It aims at providing the manufacturing method of an electrode base material.

本発明は以下の通りである。
(1)炭素化して得られた炭素シートであって、炭素短繊維を炭素により結着した、嵩密度が0.27g/cm以下の炭素シートを平滑な金属面で挟む加圧手段で0.5MPa〜2MPaの圧力で加圧する多孔質炭素電極基材の製造方法。
(2)平滑な金属面で挟む加圧手段がバッチプレス装置である(1)の多孔質炭素電極基材の製造方法。
(3)平滑な金属面で挟む加圧手段が連続式ロールプレスである(1)の多孔質炭素電極基材の製造方法。
(4)平滑な金属面で挟む加圧手段が一対のエンドレスベルトを備えた連続式プレス装置である(1)の多孔質炭素電極基材の製造方法。
The present invention is as follows.
(1) A carbon sheet obtained by carbonization, wherein a carbon sheet having carbon bulk fibers bound by carbon and having a bulk density of 0.27 g / cm 3 or less is sandwiched between smooth metal surfaces. The manufacturing method of the porous carbon electrode base material pressurized with the pressure of 0.5 Mpa-2 Mpa.
(2) The method for producing a porous carbon electrode substrate according to (1), wherein the pressurizing means sandwiched between smooth metal surfaces is a batch press apparatus.
(3) The method for producing a porous carbon electrode substrate according to (1), wherein the pressurizing means sandwiched between smooth metal surfaces is a continuous roll press.
(4) The method for producing a porous carbon electrode substrate according to (1), wherein the pressurizing means sandwiched between smooth metal surfaces is a continuous press device provided with a pair of endless belts.

本発明によれば、高いガス透過性を保持したまま、固体高分子型燃料電池に用いられる高分子電解質膜へのダメージを低減することができる多孔質炭素電極基材の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the porous carbon electrode base material which can reduce the damage to the polymer electrolyte membrane used for a polymer electrolyte fuel cell can be provided, maintaining high gas permeability.

以下、本発明について詳細に説明する。   The present invention will be described in detail below.

図1は本発明に係る多孔質炭素電極基材を用いた膜−電極接合体および固体高分子型燃料電池の概略的構成図である。図1に示されるように、本実施形態に係る膜−電極接合体および固体高分子型燃料電池は、プロトン伝導性を有する高分子電解質膜1の一方の面に酸化ガス用触媒からなるカソード側触媒層2を、もう一方の面に燃料ガス用触媒からなるアノード側触媒層3を備えており、それぞれの触媒層2,3の外側には、カソード側多孔質炭素電極基材4およびアノード側多孔質炭素電極基材5が備えられている。ここで、高分子電解質膜1、触媒層2,3、および多孔質炭素電極基材4,5からなる部分が、膜−電極接合体6である。さらに、この膜−電極接合体6を挟持するように、カソード側ガス流路13が形成されたカソード側セパレーター7、およびアノード側ガス流路14が形成されたアノード側セパレーター8を備えている。また、それぞれのセパレーター7,8には、酸化ガス導入部9と酸化ガス排出部10、および燃料ガス導入部11と燃料ガス排出部12が備えられている。   FIG. 1 is a schematic configuration diagram of a membrane-electrode assembly and a polymer electrolyte fuel cell using a porous carbon electrode substrate according to the present invention. As shown in FIG. 1, the membrane-electrode assembly and the polymer electrolyte fuel cell according to this embodiment include a cathode side made of an oxidizing gas catalyst on one surface of a polymer electrolyte membrane 1 having proton conductivity. The catalyst layer 2 is provided with an anode side catalyst layer 3 made of a catalyst for fuel gas on the other side, and the cathode side porous carbon electrode substrate 4 and the anode side are provided outside the catalyst layers 2 and 3, respectively. A porous carbon electrode substrate 5 is provided. Here, the portion composed of the polymer electrolyte membrane 1, the catalyst layers 2 and 3, and the porous carbon electrode base materials 4 and 5 is the membrane-electrode assembly 6. Furthermore, a cathode-side separator 7 in which a cathode-side gas flow path 13 is formed and an anode-side separator 8 in which an anode-side gas flow path 14 is formed are provided so as to sandwich the membrane-electrode assembly 6. Each separator 7, 8 is provided with an oxidizing gas introducing part 9 and an oxidizing gas discharging part 10, and a fuel gas introducing part 11 and a fuel gas discharging part 12.

このような固体高分子型燃料電池において、燃料ガスは、燃料ガス導入部11から導入され、アノード側セパレーター8に形成されたアノード側ガス流路14からアノード側多孔質炭素電極基材5を介してアノード側触媒層3に供給され、プロトンと電子に解離される。この電子は、アノード側触媒層3からアノード側多孔質炭素電極基材5を介してアノード側セパレーター8に伝導され、外部の負荷に供給される。またプロトンは、高分子電解質膜1中を伝導し、カソード側へ移動する。一方、酸化ガスは、酸化ガス導入部9から導入され、カソード側セパレーター7に形成されたカソード側ガス流路13からカソード側多孔質炭素電極基材4を介してカソード側触媒層2に供給され、高分子電解質膜1中を伝導してきたプロトンと結合して水を生成する。このようにして所望の起電力が取り出せる。   In such a polymer electrolyte fuel cell, the fuel gas is introduced from the fuel gas introduction part 11 and from the anode side gas flow path 14 formed in the anode side separator 8 through the anode side porous carbon electrode substrate 5. Is supplied to the anode catalyst layer 3 and dissociated into protons and electrons. The electrons are conducted from the anode side catalyst layer 3 to the anode side separator 8 through the anode side porous carbon electrode base material 5 and supplied to an external load. Protons are conducted through the polymer electrolyte membrane 1 and move to the cathode side. On the other hand, the oxidizing gas is introduced from the oxidizing gas introduction part 9 and supplied to the cathode side catalyst layer 2 through the cathode side porous carbon electrode substrate 4 from the cathode side gas flow path 13 formed in the cathode side separator 7. In combination with protons conducted through the polymer electrolyte membrane 1, water is generated. In this way, a desired electromotive force can be taken out.

高分子電解質膜1としては、プロトン解離性の基、例えば−OH基、−OSO3H基、―COOH基、−SO3H基等が導入された高分子を用いることが好ましく、パーフルオロスルホン酸系の膜を用いることが、化学的安定性、プロトン伝導性の点よりさらに好ましい。   As the polymer electrolyte membrane 1, it is preferable to use a polymer into which proton dissociable groups such as —OH group, —OSO 3 H group, —COOH group, —SO 3 H group and the like are introduced. Is more preferable from the viewpoints of chemical stability and proton conductivity.

カソード側触媒層2およびアノード側触媒層3を構成する触媒としては、白金、白金合金、パラジウム、マグネシウム、バナジウム等があるが、白金または白金合金を用いることが好ましい。この触媒は、炭素粉末等の担体に担持されている状態で、各触媒層を構成していることが好ましい。   Examples of the catalyst constituting the cathode side catalyst layer 2 and the anode side catalyst layer 3 include platinum, platinum alloy, palladium, magnesium, vanadium, etc., but platinum or platinum alloy is preferably used. The catalyst preferably constitutes each catalyst layer in a state of being supported on a carrier such as carbon powder.

カソード側セパレーター7およびアノード側セパレーター8としては、従来と同様のセパレーターを用いることができる。   As the cathode-side separator 7 and the anode-side separator 8, the same separators as in the past can be used.

アノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材の少なくとも一方には、本発明に係る多孔質炭素電極基材を使用する。ここで、本発明に係る多孔質炭素電極基材は、炭素短繊維を炭素により結着した嵩密度が0.27g/cm以下の炭素シートを0.5MPa〜2MPaで加圧することで製造される。そして、アノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材の少なくとも一方として、本発明に係る多孔質炭素電極基材が配置される。アノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材の両方に、本発明に係る多孔質炭素電極基材が配置されていることが好ましい。アノード側多孔質炭素電極基材およびカソード側多孔質炭素電極基材の一方に本発明に係る多孔質炭素電極基材を使用する場合、他方には従来と同様の多孔質炭素電極基材を用いることもできる。 The porous carbon electrode substrate according to the present invention is used for at least one of the anode side porous carbon electrode substrate and the cathode side porous carbon electrode substrate. Here, the porous carbon electrode substrate according to the present invention is manufactured by pressing a carbon sheet having a bulk density of 0.27 g / cm 3 or less obtained by binding carbon short fibers with carbon at 0.5 MPa to 2 MPa. The And the porous carbon electrode base material which concerns on this invention is arrange | positioned as at least one of an anode side porous carbon electrode base material and a cathode side porous carbon electrode base material. It is preferable that the porous carbon electrode substrate according to the present invention is disposed on both the anode-side porous carbon electrode substrate and the cathode-side porous carbon electrode substrate. When the porous carbon electrode substrate according to the present invention is used for one of the anode-side porous carbon electrode substrate and the cathode-side porous carbon electrode substrate, the same porous carbon electrode substrate as that used in the past is used for the other. You can also.

本発明に係る炭素電極基材は、炭素短繊維を炭素により結着した、嵩密度が0.27g/cm以下の炭素シートを平滑な金属面で挟む加圧手段で0.5MPa〜2MPaの圧力で加圧して製造されるものである。 The carbon electrode substrate according to the present invention has a pressure means of 0.5 MPa to 2 MPa by pressing a carbon sheet having carbon bulk fibers bound by carbon and having a bulk density of 0.27 g / cm 3 or less between smooth metal surfaces. It is manufactured by pressurizing with pressure.

炭素シートとしては、表面平滑性が高く、電気的接触が良好で、かつ機械的強度が高い複数本の炭素短繊維が集合してなる抄紙体が好ましい。   The carbon sheet is preferably a paper body made up of a plurality of short carbon fibers having high surface smoothness, good electrical contact, and high mechanical strength.

炭素短繊維としては、その原料によらず用いることができるが、ポリアクリロニトリル(以後PANと略す。)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維から選ばれる1つ以上の炭素繊維を含むことが好ましく、PAN系炭素繊維を含むことがより好ましい。   The short carbon fiber can be used regardless of the raw material, but one or more selected from polyacrylonitrile (hereinafter abbreviated as PAN) carbon fiber, pitch carbon fiber, rayon carbon fiber, and phenolic carbon fiber. It is preferable that carbon fiber is included, and it is more preferable that PAN-based carbon fiber is included.

炭素短繊維の平均直径は、3〜30μm程度が好ましく、4〜20μmがより好ましく、4〜8μmがさらに好ましい。この範囲内であると多孔質炭素電極基材としての表面平滑性と導電性がよい。   The average diameter of the short carbon fibers is preferably about 3 to 30 μm, more preferably 4 to 20 μm, and still more preferably 4 to 8 μm. Within this range, the surface smoothness and conductivity as a porous carbon electrode substrate are good.

炭素短繊維の長さは、2〜12mmが好ましく、3〜9mmがさらに好ましい。この範囲内であると抄紙時の分散性と多孔質炭素電極基材としての機械的強度が高くなる。   The length of the short carbon fiber is preferably 2 to 12 mm, and more preferably 3 to 9 mm. Within this range, the dispersibility during papermaking and the mechanical strength as a porous carbon electrode substrate are increased.

炭素短繊維を互いに結着させるための炭素材としては、樹脂を加熱によって炭素化して得られる炭素材を用いることができる。このために用いる樹脂としては、炭素化した段階で多孔質炭素電極基材の炭素繊維を結着することのできる公知の樹脂から適宜選んで用いることができる。炭素化後に導電性物質として残存しやすいという観点から、フェノール樹脂、エポキシ樹脂、フラン樹脂、ピッチ等が好ましく、加熱による炭素化の際の炭化率の高いフェノール樹脂が特に好ましい。   As a carbon material for binding the short carbon fibers to each other, a carbon material obtained by carbonizing a resin by heating can be used. The resin used for this purpose can be appropriately selected from known resins that can bind the carbon fibers of the porous carbon electrode substrate at the stage of carbonization. From the viewpoint of easily remaining as a conductive substance after carbonization, a phenol resin, an epoxy resin, a furan resin, pitch, and the like are preferable, and a phenol resin having a high carbonization rate upon carbonization by heating is particularly preferable.

炭素材の炭素化は、不活性ガス中において1500〜2200℃で焼成することで行うことができる。   Carbonization of the carbon material can be performed by firing at 1500 to 2200 ° C. in an inert gas.

多孔質炭素電極基材に高いガス透過性を持たせるために、炭素シートの嵩密度は、0.27g/cm以下とする。炭素シートの嵩密度は、0.18〜0.27g/cmが好ましく、0.20〜0.26g/cmがより好ましい。この範囲内であると高いガス透過性を維持したまま、十分な機械的強度も持つという点で好ましい。
炭素シートの厚みは、通常50〜500μmが好ましく、100〜300μmがより好ましい。
In order to give the porous carbon electrode substrate high gas permeability, the bulk density of the carbon sheet is 0.27 g / cm 3 or less. The bulk density of the carbon sheet is preferably 0.18~0.27g / cm 3, 0.20~0.26g / cm 3 is more preferable. Within this range, it is preferable in that it has sufficient mechanical strength while maintaining high gas permeability.
The thickness of the carbon sheet is usually preferably 50 to 500 μm, and more preferably 100 to 300 μm.

多孔質炭素電極基材は、通常、高分子電解質膜や触媒層と接着させるためにホットプレスに供されたり、燃料電池に組み込む際に0.2MPa〜3MPa程度で加圧される。この際に、多孔質炭素電極基材から脱落する炭素短繊維や、炭素短繊維を結着している炭素が高分子電解質膜へのダメージの原因となる。したがって、孔質炭素電極基材の加圧によって孔質炭素電極基材から脱落する炭素短繊維や炭素短繊維を結着している炭素を事前に取り除くことで、高分子電解質膜へのダメージを低減することができる。膜−電極接合体や固体高分子型燃料電池において、このような本発明に係る多孔質炭素電極基材を配置することで、膜−電極接合体の組み立て時、固体高分子型燃料電池セルの作製時または発電時の加圧による炭素短繊維および炭素短繊維を結着している炭素による高分子電解質膜へのダメージを低減できる。   The porous carbon electrode substrate is usually subjected to hot pressing in order to adhere to a polymer electrolyte membrane or a catalyst layer, or pressurized at about 0.2 MPa to 3 MPa when incorporated in a fuel cell. At this time, short carbon fibers that fall off the porous carbon electrode base material and carbon binding carbon short fibers cause damage to the polymer electrolyte membrane. Therefore, damage to the polymer electrolyte membrane can be prevented by removing in advance carbon short fibers that fall off the porous carbon electrode substrate due to pressurization of the porous carbon electrode substrate and carbon binding carbon short fibers. Can be reduced. In a membrane-electrode assembly or a polymer electrolyte fuel cell, by disposing such a porous carbon electrode substrate according to the present invention, when the membrane-electrode assembly is assembled, the polymer electrolyte fuel cell It is possible to reduce damage to the polymer electrolyte membrane due to carbon short fibers and carbon binding carbon short fibers due to pressurization during production or power generation.

多孔質炭素電極基材の加圧によって孔質炭素電極基材から脱落する炭素短繊維や炭素短繊維を結着している炭素を事前に取り除く方法としては、例えば、炭素シートを平滑な金属面で挟む加圧手段が挙げられる。装置としては、バッチプレス装置を用いて、シートを加圧する方法や連続式ロールプレスあるいは一対のエンドレスベルトを備えた連続式プレス装置を用いて、シートを搬送しながら連続的に加圧する方法等が挙げられる。   As a method for removing in advance carbon short fibers or carbon short fibers that fall off the porous carbon electrode base material by pressurization of the porous carbon electrode base material, for example, a carbon sheet with a smooth metal surface And a pressurizing means sandwiched between As an apparatus, there are a method of pressurizing a sheet using a batch press apparatus, a method of continuously pressing while conveying a sheet using a continuous roll press or a continuous press apparatus having a pair of endless belts, and the like. Can be mentioned.

固体高分子型燃料電池では、カソード側において電極反応生成物としての水や高分子電解質膜を浸透した水が発生する。また、アノード側において高分子電解質膜の乾燥を抑制するために加湿された燃料が供給される。そこで、本発明に係る多孔質炭素電極基材は、加湿ガス雰囲気下でのガス透過性を確保するために、撥水剤として撥水性の高分子を含むこともできる。撥水性の高分子としては、化学的に安定でかつ高い撥水性を有する、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂を用いることが好ましい。   In a polymer electrolyte fuel cell, water as an electrode reaction product and water penetrating a polymer electrolyte membrane are generated on the cathode side. Further, humidified fuel is supplied on the anode side to suppress drying of the polymer electrolyte membrane. Therefore, the porous carbon electrode substrate according to the present invention can also contain a water-repellent polymer as a water-repellent agent in order to ensure gas permeability in a humidified gas atmosphere. As the water-repellent polymer, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether, which is chemically stable and has high water repellency. It is preferable to use a fluororesin such as a copolymer (PFA).

撥水性の高分子を多孔質炭素電極基材へ導入する方法としては、撥水性の高分子の微粒子が分散した分散液中に多孔質炭素電極基材を浸漬させるディップ法、分散液を噴霧するスプレー法などが好ましい。   As a method for introducing the water-repellent polymer into the porous carbon electrode substrate, a dip method in which the porous carbon electrode substrate is immersed in a dispersion in which fine particles of the water-repellent polymer are dispersed, or spraying the dispersion A spray method or the like is preferable.

〔実施例1〕
炭素短繊維として、長さ3mmにカットした平均直径7μmのPAN系炭素短繊維100質量部と、長さ3mmのポリビニルアルコール(PVA)繊維(商品名:VBP105−1、クラレ株式会社製)を11質量部とを水中で分散し、連続的に金網上に抄造した後、乾燥して炭素繊維紙を得た。
この炭素繊維紙100質量部に、フェノール樹脂(商品名:フェノライトJ−325、大日本インキ化学株式会社製)のメタノール溶液を含浸させ、室温でメタノールを十分に乾燥させ、フェノール樹脂の不揮発分を84質量部付着させたフェノール樹脂含浸炭素繊
維紙を得た。
[Example 1]
As carbon short fibers, 100 parts by mass of PAN-based carbon short fibers having an average diameter of 7 μm cut to a length of 3 mm and polyvinyl alcohol (PVA) fibers having a length of 3 mm (trade name: VBP105-1, manufactured by Kuraray Co., Ltd.) 11 After mass parts were dispersed in water and continuously formed on a wire mesh, they were dried to obtain carbon fiber paper.
100 parts by mass of this carbon fiber paper is impregnated with a methanol solution of a phenol resin (trade name: Phenolite J-325, manufactured by Dainippon Ink and Chemicals), and the methanol is sufficiently dried at room temperature, so that the nonvolatile content of the phenol resin 84 mass parts of phenol resin impregnated carbon fiber paper was obtained.

このフェノール樹脂含浸炭素繊維紙を2枚重ねて、250℃の温度で8×104N/mの線力のロールプレスを行い、フェノール樹脂を硬化させた。その後、不活性ガス(窒素)雰囲気中、1900℃で連続的に炭素化して、厚みが220μm、嵩密度が、0.26g/cmの炭素短繊維の抄紙体からなる炭素シートを得た。
この炭素シートをバッチプレス装置(平滑な金属面)にて面圧0.5MPaで加圧することによって多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が10.7mA/cm2と低く良好な特性を示した。
Two sheets of this phenol resin-impregnated carbon fiber paper were stacked and subjected to a roll press with a linear force of 8 × 10 4 N / m at a temperature of 250 ° C. to cure the phenol resin. Then, it carbonized continuously at 1900 degreeC in inert gas (nitrogen) atmosphere, and obtained the carbon sheet which consists of a papermaking body of the carbon short fiber whose thickness is 220 micrometers and whose bulk density is 0.26 g / cm < 3 >.
The carbon sheet was pressed at a surface pressure of 0.5 MPa with a batch press apparatus (smooth metal surface) to obtain a porous carbon electrode substrate. The obtained porous carbon electrode substrate showed a good characteristic with a low leak current of 10.7 mA / cm 2 .

〔実施例2〕
面圧を1MPaとしたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が9.9mA/cm2と低く良好な特性を示した。
[Example 2]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the surface pressure was 1 MPa. The obtained porous carbon electrode substrate showed a good characteristic with a low leakage current of 9.9 mA / cm 2 .

〔実施例3〕
面圧を1.5MPaとしたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が8.7mA/cm2と低く良好な特性を示した。
Example 3
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the surface pressure was 1.5 MPa. The obtained porous carbon electrode base material showed a good characteristic with a low leakage current of 8.7 mA / cm 2 .

〔実施例4〕
面圧を2MPaとしたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が11.0mA/cm2と低く良好な特性を示した。
Example 4
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the surface pressure was 2 MPa. The obtained porous carbon electrode substrate showed a good characteristic with a low leak current of 11.0 mA / cm 2 .

〔比較例1〕
加圧をしなかったこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が12.7mA/cm2であった。この値は、実施例1と比較して高いリーク電流であった。
[Comparative Example 1]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that no pressure was applied. The obtained porous carbon electrode substrate had a leakage current of 12.7 mA / cm 2 . This value was a higher leakage current than that of Example 1.

〔比較例2〕
面圧を3MPaとしたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。得られた多孔質炭素電極基材は、リーク電流が12.7mA/cm2であった。この値は、実施例1と比較して高いリーク電流であった。
[Comparative Example 2]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the surface pressure was 3 MPa. The obtained porous carbon electrode substrate had a leakage current of 12.7 mA / cm 2 . This value was a higher leakage current than that of Example 1.

測定したリーク電流の結果を表1に示す。 The results of the measured leakage current are shown in Table 1.

Figure 0005311538
Figure 0005311538

〔リーク電流の測定方法〕
パーフルオロスルホン酸系の高分子電解質膜(膜厚:30μm)の片面に、得られた多
孔質炭素電極基材の表面処理した面(比較例1の場合は、いずれか一方の面)が接するように配置し、それを金メッキした銅板電極ではさみ、2.5MPaまで加圧した後、デジタルマルチメーターTR6487(アドバンテスト社製)を使用し、高分子電解質膜へのダメージによるリーク電流を測定した。なお、このときの電極間の電位差は0.6Vで行った。
[Measurement method of leakage current]
One surface of the perfluorosulfonic acid polymer electrolyte membrane (film thickness: 30 μm) is in contact with the surface of the obtained porous carbon electrode substrate (one surface in the case of Comparative Example 1). Then, the metal plate was sandwiched between gold-plated copper plate electrodes, pressurized to 2.5 MPa, and then a digital multimeter TR6487 (manufactured by Advantest) was used to measure the leakage current due to damage to the polymer electrolyte membrane. The potential difference between the electrodes at this time was 0.6V.

〔実施例5〕
(1)膜―電極接合体の作製
実施例1で得られた多孔質炭素電極基材をカソード用、アノード用に2組用意した。両面に触媒担持カーボン(触媒:Pt、触媒担持量:50質量%)からなる触媒層(触媒層面積:25cm2、Pt付着量:0.3mg/cm2)を形成したパーフルオロスルホン酸系の高分子電解質膜(膜厚:30μm)を、この2組の多孔質炭素電極基材の表面処理した面を内側として挟持し、これらを接合して膜―電極接合体を得た。
Example 5
(1) Production of membrane-electrode assembly Two sets of the porous carbon electrode base material obtained in Example 1 were prepared for the cathode and the anode. Perfluorosulfonic acid based catalyst in which a catalyst layer (catalyst layer area: 25 cm 2 , Pt adhesion amount: 0.3 mg / cm 2 ) made of catalyst-supported carbon (catalyst: Pt, catalyst support amount: 50% by mass) is formed on both surfaces. A polymer electrolyte membrane (film thickness: 30 μm) was sandwiched with the surface treated surfaces of the two sets of porous carbon electrode base materials as the inside, and these were joined to obtain a membrane-electrode assembly.

(2)膜―電極接合体の燃料電池特性評価
前記(1)において作製した膜―電極接合体を、蛇腹状のガス流路を有する2枚のカーボンセパレーターによってはさみ、固体高分子型燃料電池(単セル)を形成した。
この単セルについて、電流密度−電圧特性を測定することによって、燃料電池特性評価を行った。燃料ガスとしては水素ガスを用い、酸化ガスとしては空気を用いた。測定条件としては、セル温度を80℃、燃料ガス利用率を60%、酸化ガス利用率を40%とした。また、ガス加湿は、70℃のバブラーにそれぞれ燃料ガスと酸化ガスを通すことによって行った。
その結果、電流密度が0.4A/cm2のときの燃料電池セルのセル電圧は0.687Vであり、また開回路電圧が0.936Vと高く、アノード、カソード間のクロスリークおよび微少ショートが小さく良好な特性を示した。
(2) Evaluation of fuel cell characteristics of membrane-electrode assembly The membrane-electrode assembly produced in (1) above was sandwiched between two carbon separators having bellows-like gas flow paths, and a polymer electrolyte fuel cell ( Single cell).
This single cell was evaluated for fuel cell characteristics by measuring current density-voltage characteristics. Hydrogen gas was used as the fuel gas, and air was used as the oxidizing gas. As measurement conditions, the cell temperature was 80 ° C., the fuel gas utilization rate was 60%, and the oxidizing gas utilization rate was 40%. Gas humidification was performed by passing fuel gas and oxidizing gas through a bubbler at 70 ° C., respectively.
As a result, when the current density is 0.4 A / cm 2 , the cell voltage of the fuel cell is 0.687 V, the open circuit voltage is as high as 0.936 V, and the cross leak between the anode and the cathode and the micro short circuit are small. Small and good characteristics.

〔比較例3〕
比較例1で得られた多孔質炭素電極基材を用いたこと以外は、実施例5と同様にして単セルを組み立て、燃料電池特性評価を行った。
その結果、電流密度が0.4A/cm2のときの燃料電池セルのセル電圧は0.687Vであったが、開回路電圧が0.911Vと実施例5より低下しており、アノード、カソード間のクロスリークおよび微少ショートが実施例5より増加した特性を示した。
[Comparative Example 3]
A single cell was assembled in the same manner as in Example 5 except that the porous carbon electrode substrate obtained in Comparative Example 1 was used, and the fuel cell characteristics were evaluated.
As a result, the cell voltage of the fuel cell when the current density was 0.4 A / cm 2 was 0.687 V, but the open circuit voltage was 0.911 V, which is lower than that of Example 5, and the anode, cathode The cross leak and the micro short circuit between them showed an increased characteristic as compared with Example 5.

固体高分子型燃料電池の一形態を示す模式的断面図である。It is a typical sectional view showing one form of a polymer electrolyte fuel cell.

符号の説明Explanation of symbols

1:高分子電解質膜
2:カソード側触媒層
3:アノード側触媒層
4:カソード側多孔質炭素電極基材
5:アノード側多孔質炭素電極基材
6:膜−電極接合体(MEA)
7:カソード側セパレーター
8:アノード側セパレーター
9:酸化ガス導入部
10:酸化ガス排出部
11:燃料ガス導入部
12:燃料ガス排出部
13:カソード側ガス流路
14:アノード側ガス流路
1: Polymer electrolyte membrane 2: Cathode side catalyst layer 3: Anode side catalyst layer 4: Cathode side porous carbon electrode base material 5: Anode side porous carbon electrode base material 6: Membrane-electrode assembly (MEA)
7: Cathode side separator 8: Anode side separator 9: Oxidizing gas introduction part 10: Oxidizing gas discharge part 11: Fuel gas introduction part 12: Fuel gas discharge part 13: Cathode side gas flow path 14: Anode side gas flow path

Claims (4)

炭素化して得られた炭素シートであって、炭素短繊維を炭素により結着した、嵩密度が0.27g/cm以下の炭素シートを平滑な金属面で挟む加圧手段で0.5MPa〜2MPaの圧力で加圧する多孔質炭素電極基材の製造方法。 A carbon sheet obtained by carbonization, in which a carbon sheet having a bulk density of 0.27 g / cm 3 or less in which carbon short fibers are bound by carbon is sandwiched between smooth metal surfaces by 0.5 MPa. A method for producing a porous carbon electrode substrate which is pressurized at a pressure of ˜2 MPa. 平滑な金属面で挟む加圧手段がバッチプレス装置である請求項1記載の多孔質炭素電極基材の製造方法。 The method for producing a porous carbon electrode substrate according to claim 1, wherein the pressurizing means sandwiched between smooth metal surfaces is a batch press apparatus. 平滑な金属面で挟む加圧手段が連続式ロールプレスである請求項1記載の多孔質炭素電極基材の製造方法。 The method for producing a porous carbon electrode substrate according to claim 1, wherein the pressurizing means sandwiched between smooth metal surfaces is a continuous roll press. 平滑な金属面で挟む加圧手段が一対のエンドレスベルトを備えた連続式プレス装置である請求項1記載の多孔質炭素電極基材の製造方法。 2. The method for producing a porous carbon electrode substrate according to claim 1, wherein the pressurizing means sandwiched between smooth metal surfaces is a continuous press device provided with a pair of endless belts.
JP2008035823A 2008-02-18 2008-02-18 Method for producing porous carbon electrode substrate Active JP5311538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008035823A JP5311538B2 (en) 2008-02-18 2008-02-18 Method for producing porous carbon electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008035823A JP5311538B2 (en) 2008-02-18 2008-02-18 Method for producing porous carbon electrode substrate

Publications (2)

Publication Number Publication Date
JP2009190951A JP2009190951A (en) 2009-08-27
JP5311538B2 true JP5311538B2 (en) 2013-10-09

Family

ID=41073297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035823A Active JP5311538B2 (en) 2008-02-18 2008-02-18 Method for producing porous carbon electrode substrate

Country Status (1)

Country Link
JP (1) JP5311538B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023548B2 (en) * 2011-12-07 2016-11-09 フタムラ化学株式会社 Method for producing conductive continuous porous film
JP2017171550A (en) * 2016-03-25 2017-09-28 東レ株式会社 Conductive porous substrate, gas diffusion electrode, and fuel cell
JP2018085332A (en) 2016-11-11 2018-05-31 三菱ケミカル株式会社 Porous electrode substrate, gas diffusion layer, gas diffusion electrode, and method of manufacturing the same
JP7052301B2 (en) 2016-11-11 2022-04-12 三菱ケミカル株式会社 Porous electrode base material, gas diffusion layer, gas diffusion electrode and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4266699B2 (en) * 2002-12-02 2009-05-20 三菱レイヨン株式会社 Porous electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP5055682B2 (en) * 2003-03-27 2012-10-24 東レ株式会社 Porous carbon plate and method for producing the same
JP2005104779A (en) * 2003-09-30 2005-04-21 Toray Ind Inc Method of manufacturing porous carbon board
JP4591128B2 (en) * 2004-03-17 2010-12-01 東レ株式会社 Method for producing porous carbon plate
CA2623129C (en) * 2005-09-29 2013-07-02 Toray Industries, Inc. Porous carbon sheet and process for production thereof
JP2009176610A (en) * 2008-01-25 2009-08-06 Toyota Motor Corp Porous body for gas diffusion layer, its manufacturing method, membrane-electrode assembly for fuel cell, and fuel cell

Also Published As

Publication number Publication date
JP2009190951A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
EP1944819B1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
JP4837298B2 (en) Humidity adjustment film
JP5069927B2 (en) Membrane electrode assembly for fuel cell and method for producing the same
EP2461401B1 (en) Use of a gas diffusion layer member in a solid polymer fuel cell
JP5482066B2 (en) Microporous layer for fuel cell, gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer and membrane-electrode assembly, and polymer electrolyte fuel cell
JP2008311180A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP5004489B2 (en) FUEL CELL CELL AND METHOD FOR PRODUCING THE SAME
JP2010146965A (en) Membrane-electrode assembly for solid polymer fuel cell, coating liquid for forming catalyst layer of solid polymer fuel cell, and manufacturing method for membrane-electrode assembly of solid polymer fuel cell
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5106808B2 (en) Porous carbon electrode substrate and polymer electrolyte fuel cell using the same
JP4959945B2 (en) Polymer electrolyte fuel cell
JP2005026174A (en) Solid polymer type fuel cell
JP5311538B2 (en) Method for producing porous carbon electrode substrate
JP2007214019A (en) Membrane electrode assembly for fuel cell and gas diffusion layer for fuel cell
JP4942362B2 (en) Membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP2007214019A5 (en)
JP2016181488A (en) Electrode for fuel cell, membrane-electrode composite for fuel cell, and fuel cell
JP7355143B2 (en) Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof
JP5391968B2 (en) Gas diffusion layer for polymer electrolyte fuel cell and method for producing the same
JP2008311181A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP2011049179A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and gas diffusion electrode substrate
JP4872202B2 (en) Fuel cell and fuel cell manufacturing method
JP2007227009A (en) Porous carbon electrode substrate and fuel cell using it
JP2009181738A (en) Manufacturing method of porous carbon electrode base material, and membrane-electrode assembly
JP2006173028A (en) Catalyst layer for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R151 Written notification of patent or utility model registration

Ref document number: 5311538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250