JP2017171550A - Conductive porous substrate, gas diffusion electrode, and fuel cell - Google Patents

Conductive porous substrate, gas diffusion electrode, and fuel cell Download PDF

Info

Publication number
JP2017171550A
JP2017171550A JP2016061329A JP2016061329A JP2017171550A JP 2017171550 A JP2017171550 A JP 2017171550A JP 2016061329 A JP2016061329 A JP 2016061329A JP 2016061329 A JP2016061329 A JP 2016061329A JP 2017171550 A JP2017171550 A JP 2017171550A
Authority
JP
Japan
Prior art keywords
porous substrate
conductive porous
resin
conductive
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016061329A
Other languages
Japanese (ja)
Inventor
和代 重田
Kazuyo Shigeta
和代 重田
保高 岡野
Yasutaka Okano
保高 岡野
将道 宇都宮
Masamichi Utsunomiya
将道 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016061329A priority Critical patent/JP2017171550A/en
Publication of JP2017171550A publication Critical patent/JP2017171550A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive porous substrate in which, when it is used for a fuel cell, a short circuit is unlikely to occur and a fuel cell having high durability can be obtained.SOLUTION: A conductive porous substrate is a conductive porous substrate including carbon fiber, and in which, characterized, when setting the in-plane direction of the conductive porous substrate as 0° and the thickness direction as 90°, and letting the number of carbon fibers oriented in the direction of 0° or more and less than 10° be N1 and the number of carbon fibers oriented in the direction of 10° or more and 90° or less be N2, N1/N2 is 85/15 to 100/0. Here, both N1 and N2 are integer from 0 to 100, and the sum of N1 and N2 is 100.SELECTED DRAWING: None

Description

燃料電池は、水素と酸素を反応させて水が生成する際に生起するエネルギーを電気的に取り出す機構であり、エネルギー効率が高く、排出物が水しかないことから、クリーンエネルギーとしてその普及が期待されている。本発明は、燃料電池に用いられるガス拡散電極に適用可能な導電性多孔質基材に関し、特に、燃料電池の中でも燃料電池車などの電源として使用される高分子電解質型燃料電池に好適な導電性多孔質基材に関する。   A fuel cell is a mechanism that electrically extracts the energy generated when water is produced by reacting hydrogen and oxygen. It is highly energy efficient and has only water, so it is expected to spread as clean energy. Has been. The present invention relates to a conductive porous substrate that can be applied to a gas diffusion electrode used in a fuel cell, and in particular, a conductive material suitable for a polymer electrolyte fuel cell used as a power source for a fuel cell vehicle among fuel cells. Relates to a porous porous substrate.

高分子電解質型燃料電池に使用される電極は、高分子電解質型燃料電池において2つのセパレータで挟まれてその間に配置されるもので、高分子電解質膜の両面において、高分子電解質膜の表面に形成される触媒層と、この触媒層の外側に形成されるガス拡散層とからなる構造を有する。電極でのガス拡散層を形成するための個別の部材として、ガス拡散電極が流通している。そして、このガス拡散電極に求められる性能としては、例えばガス拡散性、触媒層で発生した電気を集電するための導電性、および触媒層表面に発生した水分を効率よく除去する排水性などがあげられる。このようなガス拡散電極を得るため、一般的に、ガス拡散能および導電性を兼ね備えた導電性多孔質基材が用いられる。   An electrode used in a polymer electrolyte fuel cell is sandwiched between two separators in a polymer electrolyte fuel cell, and is disposed between the two separators. On both surfaces of the polymer electrolyte membrane, the electrode is on the surface of the polymer electrolyte membrane. It has a structure comprising a formed catalyst layer and a gas diffusion layer formed outside the catalyst layer. A gas diffusion electrode is distributed as an individual member for forming a gas diffusion layer on the electrode. The performance required for the gas diffusion electrode includes, for example, gas diffusivity, conductivity for collecting electricity generated in the catalyst layer, and drainage for efficiently removing moisture generated on the surface of the catalyst layer. can give. In order to obtain such a gas diffusion electrode, generally, a conductive porous substrate having gas diffusion ability and conductivity is used.

導電性多孔質基材としては、具体的には、炭素繊維からなるカーボンフェルト、カーボンペーパーおよびカーボンクロスなどが用いられ、中でも機械的強度などの点からカーボンペーパーが最も好ましいとされる。   Specifically, carbon felt made of carbon fiber, carbon paper, carbon cloth, and the like are used as the conductive porous substrate, and carbon paper is most preferable from the viewpoint of mechanical strength.

また、燃料電池は水素と酸素が反応し水が生成する際に生じるエネルギーを電気的に取り出すシステムであるため、電気的な負荷が大きくなると、即ち電池外部へ取り出す電流を大きくすると、多量の水(水蒸気)が発生し、この水蒸気が低温では凝縮して水滴になり、ガス拡散電極の細孔を塞いでしまうと、ガス(酸素あるいは水素)の触媒層への供給量が低下し、最終的に全ての細孔が塞がれてしまうと、発電が停止することになる(この現象をフラッディングという)。   In addition, since a fuel cell is a system that electrically extracts energy generated when hydrogen and oxygen react to produce water, if the electrical load increases, that is, if the current taken out of the cell increases, a large amount of water When (water vapor) is generated and the water vapor condenses into water droplets at low temperatures and closes the pores of the gas diffusion electrode, the supply amount of gas (oxygen or hydrogen) to the catalyst layer decreases, and finally If all the pores are blocked, the power generation stops (this phenomenon is called flooding).

このフラッディングを可能な限り発生させないように、ガス拡散電極には排水性が求められる。この排水性を高める手段として、通常、導電性多孔質基材に撥水処理を施したガス拡散電極基材を用いて撥水性を高めている。   The gas diffusion electrode is required to have drainage so as not to generate this flooding as much as possible. As means for improving the drainage, the water repellency is usually increased by using a gas diffusion electrode base material obtained by subjecting the conductive porous base material to water repellency treatment.

また、上記のような撥水処理された導電性多孔質基材をそのままガス拡散電極として用いると、その繊維の目が粗いため、水蒸気が凝縮すると大きな水滴が発生し、フラッディングを起こしやすい。このため、撥水処理を施した導電性多孔質基材の上に、カーボンブラックなどの導電性微粒子を分散した塗液を塗布し乾燥焼結することにより、微多孔層と呼ばれる層(マイクロポーラスレイヤーともいう)を設ける場合がある。   Further, if the conductive porous substrate subjected to the water repellent treatment as described above is used as a gas diffusion electrode as it is, the fiber has a coarse mesh, so that when water vapor is condensed, large water droplets are generated and flooding is likely to occur. For this reason, a layer called a microporous layer (microporous layer) is formed by applying a coating liquid in which conductive fine particles such as carbon black are dispersed on a conductive porous substrate that has been subjected to a water repellent treatment, followed by drying and sintering. (Also referred to as a layer).

導電性多孔質基材の炭素繊維の毛羽が高分子電解質膜を貫通すると、短絡や貫通した部分を起点とした高分子電解質膜の劣化により、燃料電池の性能が低下するおそれがある。特に初期の発電への影響は小さくても、燃料電池の起動、停止の繰り返しによる高分子電解質膜の膨潤、収縮の繰り返しにより、短絡や高分子電解質膜の劣化が進行し燃料電池の耐久性を低下させる。   If the carbon fiber fluff of the conductive porous base material penetrates the polymer electrolyte membrane, the performance of the fuel cell may be reduced due to short circuit or deterioration of the polymer electrolyte membrane starting from the penetrated portion. In particular, even if the impact on the initial power generation is small, the shortage and deterioration of the polymer electrolyte membrane progress due to repeated swelling and shrinkage of the polymer electrolyte membrane due to repeated starting and stopping of the fuel cell, thereby improving the durability of the fuel cell. Reduce.

そこで、特許文献1には、導電性多孔質基材の少なくとも片側表面に、気体を吹き付ける処理を行い、樹脂炭化物による結着が外れた炭素短繊維が十分に除去された導電性多孔質基材の製造方法が示されている。   Therefore, Patent Document 1 discloses a conductive porous substrate in which a gas is sprayed on at least one surface of the conductive porous substrate, and the carbon short fibers from which the binding due to the resin carbide is removed are sufficiently removed. The manufacturing method is shown.

また、特許文献2には、炭素繊維から成る層と撥水層とが積層して成るガス拡散層の撥水層側に複数の連通孔を有する絶縁部材を配置し、さらにガス拡散層と絶縁部材を一対の電極で挟み、一対の電極のそれぞれの背面に一対の面圧板を配置して挟み込み、一対の面圧板によりガス拡散層を加圧する。加圧状態のまま、一対の電極に電圧が印加されると、絶縁部材の連通孔を介して撥水層側の電極に接触している炭素繊維の突き出し部分に電流を流し、ジュール熱による突出した炭素繊維を燃焼除去する方法が示されている。   Further, in Patent Document 2, an insulating member having a plurality of communication holes is disposed on the water repellent layer side of a gas diffusion layer formed by laminating a carbon fiber layer and a water repellent layer, and further insulated from the gas diffusion layer. The member is sandwiched between a pair of electrodes, a pair of surface pressure plates are disposed and sandwiched between the back surfaces of the pair of electrodes, and the gas diffusion layer is pressurized by the pair of surface pressure plates. When a voltage is applied to the pair of electrodes in a pressurized state, an electric current is passed through the protruding portion of the carbon fiber that is in contact with the electrode on the water repellent layer through the communication hole of the insulating member, and the protrusion due to Joule heat A method for burning and removing the carbon fibers is shown.

一方、特許文献3には、炭素短繊維が炭素により結着された導電性多孔質基材の少なくとも一方の面に弾性を有するシートを配置し、連続的な加圧手段を用いて線圧5kN/m〜30kN/mで加圧した後、導電性多孔質基材に付着した炭素粉を、刷毛などで掃く方法、吸引する方法、超音波洗浄などの方法で連続的に除去する方法が示されている。   On the other hand, in Patent Document 3, a sheet having elasticity is disposed on at least one surface of a conductive porous base material in which short carbon fibers are bound by carbon, and a linear pressure is 5 kN using a continuous pressurizing means. Shows a method of continuously removing carbon powder adhering to the conductive porous substrate by a method such as brushing, sucking, or ultrasonic cleaning after pressurizing at / m to 30 kN / m. Has been.

特開2010−70433号公報JP 2010-70433 A 特開2012−33458号公報JP 2012-33458 A 特開2012−204142号公報JP 2012-204142 A

しかしながら、特許文献1に記載の方法では、ガス拡散層の表面はある程度清浄にできるが、高分子電解質膜との接合工程など、ガス拡散層が圧縮された際に新たに炭素繊維の突き出しが発生してしまい、それらが高分子電解質膜に突き刺さってしまって大きな短絡電流が発生してしまうという問題がある。   However, in the method described in Patent Document 1, the surface of the gas diffusion layer can be cleaned to some extent, but when the gas diffusion layer is compressed, such as a joining process with a polymer electrolyte membrane, new carbon fiber protrusion occurs. As a result, they pierce the polymer electrolyte membrane and cause a large short-circuit current.

特許文献2に記載の方法では、発熱の大きい、突出した炭素繊維の細い部分や、放熱の少ない、突出した炭素繊維の長手方向中央付近での燃焼、切断が発生しやすいため、ガス拡散層と切断部の間の突出した炭素繊維が残ったり、切断部より先の突出した炭素繊維が混入したりして、高分子電解質膜の短絡を起こす問題がある。   In the method described in Patent Document 2, since the protruding portion of the carbon fiber that generates a large amount of heat is easy to burn or cut near the center in the longitudinal direction of the protruding carbon fiber that generates little heat, the gas diffusion layer and There is a problem that the carbon fibers protruding between the cut portions remain, or the protruding carbon fibers ahead of the cut portions are mixed to cause a short circuit of the polymer electrolyte membrane.

また、特許文献3に記載の方法でも、導電性多孔質基材の少なくとも一方の面に弾性を有するシートを配置することで、加圧による炭素短繊維除去効果が低減してしまう問題がある。   Further, the method described in Patent Document 3 also has a problem that the effect of removing carbon short fibers by pressurization is reduced by disposing an elastic sheet on at least one surface of the conductive porous substrate.

そこで本発明は、前記のような問題点を克服し、燃料電池に用いた際に短絡が生じにくい導電性多孔質基材を提供することを目的とする。   Accordingly, an object of the present invention is to overcome the above-described problems and to provide a conductive porous substrate that is less likely to cause a short circuit when used in a fuel cell.

本発明は上記の課題を解決するため、次のような手段を採用するものである。
(1) 炭素繊維を含む導電性多孔質基材であって、
導電性多孔質基材の面内方向を0°として、厚み方向を90°とした際に、0°以上10°未満の方向を向いている炭素繊維の数をN1、10°以上90°以下の方向を向いている炭素繊維の数をN2とすると、N1/N2が85/15〜100/0であることを特徴とする、導電性多孔質基材。
In order to solve the above problems, the present invention employs the following means.
(1) A conductive porous substrate containing carbon fiber,
When the in-plane direction of the conductive porous substrate is 0 ° and the thickness direction is 90 °, the number of carbon fibers facing the direction of 0 ° to less than 10 ° is N1, 10 ° to 90 ° A conductive porous substrate, wherein N1 / N2 is 85/15 to 100/0, where N2 is the number of carbon fibers facing the direction.

ここで、N1及びN2は、いずれも0以上100以下の整数であり、N1とN2の和は100である。
(2) 炭素繊維と樹脂炭化物を含む導電性多孔質基材であって、
前記樹脂炭化物が複数の塊からなり、かつ、
前記導電性多孔質基材の厚みを100%とした際に、前記樹脂炭化物の塊の短径が3%〜20%であることを特徴とする、導電性多孔質基材。
Here, N1 and N2 are both integers of 0 to 100, and the sum of N1 and N2 is 100.
(2) A conductive porous substrate containing carbon fiber and resin carbide,
The resin carbide consists of a plurality of lumps, and
The conductive porous base material, wherein a short diameter of the mass of the resin carbide is 3% to 20% when the thickness of the conductive porous base material is 100%.

本発明の導電性多孔質基材は、燃料電池に用いた際に短絡が生じにくく、耐久性が高い燃料電池を得ることができる。   When the conductive porous substrate of the present invention is used in a fuel cell, a short circuit is unlikely to occur and a highly durable fuel cell can be obtained.

本発明は、炭素繊維を含む導電性多孔質基材であって、導電性多孔質基材の面内方向を0°として、厚み方向を90°とした際に、0°以上10°未満の方向を向いている炭素繊維の数をN1、10°以上90°以下の方向を向いている炭素繊維の数をN2とすると、N1/N2が85/15〜100/0であることを特徴とする、導電性多孔質基材である。ここで、N1及びN2は、いずれも0以上100以下の整数であり、N1とN2の和は100である。   The present invention is a conductive porous substrate containing carbon fiber, and when the in-plane direction of the conductive porous substrate is 0 ° and the thickness direction is 90 °, it is 0 ° or more and less than 10 °. N1 / N2 is 85/15 to 100/0, where N1 is the number of carbon fibers facing the direction and N2 is the number of carbon fibers facing the direction of 10 ° to 90 °. A conductive porous substrate. Here, N1 and N2 are both integers of 0 to 100, and the sum of N1 and N2 is 100.

なお、以下このような本発明を第1の態様といい、第1の態様と後述する第2の態様を総称して、本発明という。   Hereinafter, the present invention is referred to as a first aspect, and the first aspect and a second aspect described later are collectively referred to as the present invention.

本発明の導電性多孔質基材としては、具体的には、例えば、炭素繊維織物、炭素繊維抄紙体、炭素繊維不織布、カーボンフェルト、カーボンペーパー、カーボンクロスなどの炭素繊維を含む多孔質基材、発泡焼結金属、金属メッシュ、エキスパンドメタルなどの金属多孔質基材を用いることが好ましい。中でも、耐腐食性が優れることから、炭素繊維を含むカーボンフェルト、カーボンペーパー、カーボンクロスなどの多孔質基材を用いることが好ましく、さらには、電解質膜の厚み方向の寸法変化を吸収する特性、すなわち「ばね性」に優れることから、炭素繊維抄紙体を炭化物で結着することで得られる、樹脂炭化物を含む基材、すなわちカーボンペーパーを用いることが好適である。   Specifically, as the conductive porous substrate of the present invention, for example, a porous substrate containing carbon fibers such as carbon fiber woven fabric, carbon fiber papermaking body, carbon fiber nonwoven fabric, carbon felt, carbon paper, carbon cloth, etc. It is preferable to use a porous metal substrate such as a foam sintered metal, a metal mesh, or an expanded metal. Among them, since the corrosion resistance is excellent, it is preferable to use a porous substrate such as carbon felt containing carbon fiber, carbon paper, carbon cloth, and moreover, a property of absorbing a dimensional change in the thickness direction of the electrolyte membrane, That is, since it is excellent in “spring property”, it is preferable to use a substrate containing a resin carbide obtained by binding a carbon fiber papermaking body with a carbide, that is, carbon paper.

第1の態様においては、導電性多孔質基材の面内方向を0°として、厚み方向を90°とした際に、0°以上10°未満の方向を向いている炭素繊維の数をN1、10°以上90°以下の方向を向いている炭素繊維の数をN2とすると、N1/N2が85/15〜100/0である。なお、N1及びN2は、いずれも0以上100以下の整数である。   In the first aspect, when the in-plane direction of the conductive porous substrate is 0 ° and the thickness direction is 90 °, the number of carbon fibers facing the direction of 0 ° or more and less than 10 ° is N1. N1 / N2 is 85/15 to 100/0, where N2 is the number of carbon fibers facing in the direction of 10 ° to 90 °. N1 and N2 are both integers of 0 or more and 100 or less.

前述のとおり、N1/N2は85/15〜100/0であり、84/16以下になると、導電性多孔質基材の厚さ方向に向いた炭素繊維が多くなり、短絡が起きやすくなるため、N1/N2は85/15以上が好ましい。   As described above, N1 / N2 is 85/15 to 100/0, and when it is 84/16 or less, the number of carbon fibers oriented in the thickness direction of the conductive porous substrate increases, and short-circuiting easily occurs. N1 / N2 is preferably 85/15 or more.

また第1の態様においては、導電性多孔質基材の内部に存在する炭素繊維において、0°以上10°未満の方向を向いている炭素繊維の数をN3、10°以上90°以下の方向を向いている炭素繊維の数をN4とすると、N3/N4が85/15〜100/0であることが好ましい。ここで、N3及びN4は、いずれも0以上100以下の整数であり、N3とN4の和は100である。なお、導電性多孔質基材の内部とは、導電性多孔質基材の厚さを100%とした際に、導電性多孔質基材の表面から20%以上の長さ内側に入った部分をいう。   In the first aspect, in the carbon fibers existing inside the conductive porous substrate, the number of carbon fibers facing the direction of 0 ° to less than 10 ° is N3, the direction of 10 ° to 90 ° N3 / N4 is preferably 85/15 to 100/0, where N4 is the number of carbon fibers facing the surface. Here, N3 and N4 are both integers of 0 or more and 100 or less, and the sum of N3 and N4 is 100. Note that the inside of the conductive porous substrate is a portion that is 20% or more inside from the surface of the conductive porous substrate when the thickness of the conductive porous substrate is 100%. Say.

N1/N2を85/15〜100/0、または、N3/N4を85/15〜100/0とするためには、導電性多孔質基材が所望の厚さになるように、加圧処理時の圧力または上下プレス面板の間隔を調整することができる。   In order to set N1 / N2 to 85/15 to 100/0 or N3 / N4 to 85/15 to 100/0, pressure treatment is performed so that the conductive porous substrate has a desired thickness. The pressure of the hour or the distance between the upper and lower press face plates can be adjusted.

本発明の導電性多孔質基材は、例えば、平均繊維長が3〜20mmの炭素繊維を用いて、乾式抄紙法および湿式抄紙法のいずれかの方法によって炭素繊維シートとすることができる。水を抄紙媒体とする湿式抄紙法の方が、炭素繊維が導電性多孔質基材の面内方向に向きやすい、つまりN1/N2を85/15〜100/0としやすく、さらにN3/N4も85/15〜100/0に制御しやすいために好ましい。すなわち湿式抄紙法を用いると、炭素繊維が厚み方向に向きにくいため、高分子電解質膜を貫通する短絡が発生しにくく、短絡電流を低く抑えることができる。しかも、炭素繊維の分散性が良い均質なシートが得られるため、多数の測定点において短絡電流を低く抑えることができるため、好ましい。   The conductive porous substrate of the present invention can be made into a carbon fiber sheet by using either a dry papermaking method or a wet papermaking method using carbon fibers having an average fiber length of 3 to 20 mm, for example. In the wet papermaking method using water as a papermaking medium, the carbon fibers are more easily oriented in the in-plane direction of the conductive porous substrate, that is, N1 / N2 is easily set to 85/15 to 100/0, and N3 / N4 is also set. Since it is easy to control to 85 / 15-100 / 0, it is preferable. That is, when the wet papermaking method is used, since the carbon fibers are difficult to face in the thickness direction, a short circuit penetrating the polymer electrolyte membrane hardly occurs, and the short circuit current can be suppressed low. Moreover, since a homogeneous sheet with good carbon fiber dispersibility can be obtained, the short-circuit current can be kept low at a large number of measurement points, which is preferable.

なお、N3及びN4の測定方法は、前述のN1及びN2の測定方法と同一である。但し、N3及びN4を測定するに際しては、導電性多孔質基材の厚さを100%とした際に、導電性多孔質基材の表面から20%以上の長さ内側に入った部分を観察範囲として測定するものとする。   In addition, the measuring method of N3 and N4 is the same as the measuring method of above-mentioned N1 and N2. However, when measuring N3 and N4, when the thickness of the conductive porous substrate is set to 100%, the portion that is 20% or more inside from the surface of the conductive porous substrate is observed. It shall be measured as a range.

また、形態保持性やハンドリング性等を向上させるためには、炭素繊維シートにポリビニルアルコール、セルロース、ポリエステル、エポキシ樹脂、フェノール樹脂、アクリル樹脂等の有機質バインダを含有させることが好ましい。その場合、炭素繊維シート100質量%中に、有機質バインダの合計が1〜30質量%であることが好ましい。   Moreover, in order to improve form retention property, handling property, etc., it is preferable to contain organic binders, such as polyvinyl alcohol, a cellulose, polyester, an epoxy resin, a phenol resin, an acrylic resin, in a carbon fiber sheet. In that case, it is preferable that the total of the organic binder is 1 to 30% by mass in 100% by mass of the carbon fiber sheet.

得られた炭素繊維シートに、残炭率35%(質量基準)以上の樹脂を含浸するなどして、炭素繊維および樹脂を含む組成物(つまり、炭素繊維シートに樹脂を含浸したシートであり、以下、これを前駆体シートという)を準備して、この組成物を加熱して、樹脂を炭化させることで、炭素繊維及び樹脂炭化物を含む導電性多孔質基材とすることができる。   The obtained carbon fiber sheet is impregnated with a resin having a residual carbon ratio of 35% (mass basis) or more, and the like, and a composition containing carbon fiber and resin (that is, a sheet in which a carbon fiber sheet is impregnated with resin Hereinafter, this is referred to as a precursor sheet), and the composition is heated to carbonize the resin, whereby a conductive porous substrate containing carbon fiber and resin carbide can be obtained.

ここで樹脂は、焼成時に炭化して導電性の樹脂炭化物になる。したがって、焼成後に、炭素繊維が樹脂炭化物で結着された構造の導電性多孔質基材とすることができる。樹脂には、溶媒などを必要に応じて添加してもよい。残炭率が35質量%以上であると、導電性多孔質基材が機械強度、導電性、熱伝導性の優れたものとなり、好ましい。炭化収率は高ければ高いほど好ましいが、現在の技術水準では一般的に70質量%以下である。   Here, the resin is carbonized during baking to become a conductive resin carbide. Therefore, after firing, a conductive porous substrate having a structure in which carbon fibers are bound with resin carbide can be obtained. A solvent or the like may be added to the resin as necessary. A residual carbon ratio of 35% by mass or more is preferable because the conductive porous substrate has excellent mechanical strength, conductivity, and thermal conductivity. The higher the carbonization yield, the better. However, in the current technical level, it is generally 70% by mass or less.

前駆体シートにするために、炭素繊維シートに対して含浸させる樹脂は、フェノール樹脂、エポキシ樹脂、メラミン樹脂、フラン樹脂などの熱硬化性樹脂が挙げられる。なかでも、残炭率が高いことから、フェノール樹脂が好ましく用いられる。   Examples of the resin to be impregnated into the carbon fiber sheet to form the precursor sheet include thermosetting resins such as phenol resin, epoxy resin, melamine resin, and furan resin. Among these, a phenol resin is preferably used because of a high residual carbon ratio.

樹脂には、黒鉛粉末、カーボンブラック、カーボンナノチューブなどの炭素粉末を含有させることも好ましい。樹脂に炭素繊維を含有させることにより、得られる導電性多孔質基材も炭素粉末を含有することになり、樹脂が炭化する際の収縮やクラック発生が抑制される。したがって、樹脂の炭化物と炭素繊維の結着低下による炭素繊維の脱落や高分子電解質膜の短絡を防止することができ、短絡電流を低く抑えることができる。   The resin preferably contains carbon powder such as graphite powder, carbon black, and carbon nanotube. By containing carbon fiber in the resin, the conductive porous substrate obtained also contains carbon powder, and shrinkage and crack generation when the resin is carbonized are suppressed. Accordingly, it is possible to prevent the carbon fibers from dropping or the polymer electrolyte membrane from being short-circuited due to a decrease in the binding between the resin carbide and the carbon fiber, and the short-circuit current can be kept low.

本発明の第2の態様は、炭素繊維と樹脂炭化物を含む導電性多孔質基材であって、前記樹脂炭化物が複数の塊からなり、かつ、前記導電性多孔質基材の厚みを100%とした際に、前記樹脂炭化物の塊の短径が3%〜20%であることを特徴とする、導電性多孔質基材である。   A second aspect of the present invention is a conductive porous substrate containing carbon fibers and resin carbide, wherein the resin carbide is composed of a plurality of lumps, and the thickness of the conductive porous substrate is 100%. In this case, the conductive carbide base material is characterized in that a minor axis of the lump of the resin carbide is 3% to 20%.

また、本発明の第1の態様は、樹脂炭化物を含んでもよい。そして、本発明の第1の態様が樹脂炭化物を含む場合には、前記樹脂炭化物が複数の塊からなり、かつ、導電性多孔質基材の厚みを100%とした際に、前記樹脂炭化物の塊の短径が3%〜20%であることを特徴とする導電性多孔質基材である。   In addition, the first aspect of the present invention may include a resin carbide. And when the 1st mode of the present invention contains resin carbide, when the resin carbide consists of a plurality of lumps and the thickness of the conductive porous substrate is 100%, the resin carbide The conductive porous substrate is characterized in that the short axis of the lump is 3% to 20%.

樹脂炭化物の塊の短径を制御して、導電性多孔質基材の厚みを100%とした際に樹脂炭化物の塊の短径を3%〜20%とするためには、加圧処理時の圧力または上下プレス面板の間隔を調整することができる。   In order to control the short diameter of the resin carbide lump so that the short diameter of the resin carbide lump is 3% to 20% when the thickness of the conductive porous substrate is 100%, The pressure or the distance between the upper and lower press face plates can be adjusted.

本発明においては樹脂炭化物を含むことが好ましい。そしてこの樹脂炭化物は、複数の塊となっていることが好ましい。このようにすることで炭素繊維同士を結着させ、導電性多孔質基材の機械的強度を向上しつつ、導電性多孔質基材内を流れる電子、熱、ガス、水を阻害しにくくなり、燃料電池として高い発電性能を発揮することができる。   In the present invention, a resin carbide is preferably included. And it is preferable that this resin carbide becomes a plurality of lump. In this way, carbon fibers are bound together, improving the mechanical strength of the conductive porous substrate, while making it difficult to inhibit electrons, heat, gas, and water flowing in the conductive porous substrate. As a fuel cell, high power generation performance can be exhibited.

本発明において、導電性多孔質基材の厚み100%とした際に、樹脂炭化物の塊の短径が3%〜20%であることが好ましい。樹脂炭化物の塊の短径が、導電性多孔質基材の厚みの3%を下回ると、樹脂炭化物が少なすぎて、炭素繊維を結着させることができず、毛羽が発生して短絡が発生する。樹脂炭化物の塊の短径が、導電性多孔質基材の厚みの20%を超えると、導電性多孔質基材内の電子、熱、ガス、水の流れを阻害し、燃料電池の発電性能が低下する。   In the present invention, when the thickness of the conductive porous substrate is 100%, the minor axis of the mass of the resin carbide is preferably 3% to 20%. If the short axis of the resin carbide block is less than 3% of the thickness of the conductive porous substrate, the resin carbide is too small to bind the carbon fibers, causing fluffing and short circuiting. To do. If the short diameter of the mass of resin carbide exceeds 20% of the thickness of the conductive porous substrate, the flow of electrons, heat, gas, and water in the conductive porous substrate is inhibited, and the power generation performance of the fuel cell Decreases.

さらに、導電性多孔質基材の断面積を100%とした際に、樹脂炭化物の塊の断面積が1%〜5%であることが好ましい。導電性多孔質基材の断面積を100%とした際の樹脂炭化物の塊の断面積が1%未満であると、樹脂炭化物量が小さすぎて、炭素繊維を十分結着させることができず、5%を超えると、樹脂炭化物が大きすぎて、導電性多孔質基材内の電子、熱、ガス、水の流れを阻害し、燃料電池の発電性能を低下させる。   Furthermore, when the cross-sectional area of the conductive porous substrate is 100%, the cross-sectional area of the lump of resin carbide is preferably 1% to 5%. If the cross-sectional area of the mass of the resin carbide is less than 1% when the cross-sectional area of the conductive porous substrate is 100%, the amount of the resin carbide is too small to bind the carbon fibers sufficiently. If it exceeds 5%, the resin carbide is too large, obstructing the flow of electrons, heat, gas, and water in the conductive porous substrate, and lowering the power generation performance of the fuel cell.

樹脂炭化物の塊のサイズを制御して、導電性多孔質基材の断面積を100%とした際に樹脂炭化物の塊の断面積を1%〜5%とするためには、加圧処理時の圧力または上下プレス面板の間隔を調整することができる。   In order to control the size of the resin carbide lump so that the cross-sectional area of the resin carbide lump is 1% to 5% when the cross-sectional area of the conductive porous substrate is 100%, The pressure or the distance between the upper and lower press face plates can be adjusted.

本発明においてガス拡散性を高める観点から、また、カーボンペーパーなどの導電性多孔質基材の厚みを薄くすることが好ましい。つまりカーボンペーパーなどの導電性多孔質基材の厚みは220μm以下が好ましく、150μm以下がさらに好ましく、特に好ましくは120μm以下であるが、余り薄くすると機械的強度が弱くなり、製造工程でのハンドリングが難しくなるので、通常70μmが下限である。   In the present invention, it is preferable to reduce the thickness of the conductive porous substrate such as carbon paper from the viewpoint of enhancing gas diffusibility. That is, the thickness of the conductive porous substrate such as carbon paper is preferably 220 μm or less, more preferably 150 μm or less, and particularly preferably 120 μm or less. Since it becomes difficult, 70 μm is usually the lower limit.

本発明の導電性多孔質基材は、フッ素樹脂を付与することで撥水処理が施されたものが好適に用いられる。フッ素樹脂は撥水性樹脂として作用するので、本発明の導電性多孔質基材は、フッ素樹脂などの撥水性樹脂を含むことが好ましい。導電性多孔質基材が含む撥水性樹脂、つまり導電性多孔質基材が含むフッ素樹脂としては、PTFE(ポリテトラフルオロエチレン)(たとえば“テフロン”(登録商標))、FEP(四フッ化エチレン六フッ化プロピレン共重合体)、PFA(ペルフルオロアルコキシフッ化樹脂)、ETFA(エチレン四フッ化エチレン共重合体)、PVDF(ポリフッ化ビニリデン)、PVF(ポリフッ化ビニル)等が挙げられるが、強い撥水性を発現するPTFE、あるいはFEPが好ましい。   As the conductive porous substrate of the present invention, a material subjected to water repellent treatment by applying a fluororesin is suitably used. Since the fluororesin acts as a water repellent resin, the conductive porous substrate of the present invention preferably contains a water repellent resin such as a fluororesin. As the water-repellent resin contained in the conductive porous substrate, that is, the fluororesin contained in the conductive porous substrate, PTFE (polytetrafluoroethylene) (for example, “Teflon” (registered trademark)), FEP (tetrafluoroethylene) Hexafluoropropylene copolymer), PFA (perfluoroalkoxy fluoride resin), ETFA (ethylene tetrafluoroethylene copolymer), PVDF (polyvinylidene fluoride), PVF (polyvinyl fluoride), etc. are strong, but strong PTFE or FEP that exhibits water repellency is preferred.

撥水性樹脂の量は特に限定されないが、導電性多孔質基材の全体100質量%中に0.1質量%以上20質量%以下程度が適切である。0.1質量%より少ないと撥水性が十分に発揮されないことがあり、20質量%を超えるとガスの拡散経路あるいは排水経路となる細孔を塞いでしまったり、電気抵抗が上がったりする可能性がある。   The amount of the water-repellent resin is not particularly limited, but about 0.1% by mass to 20% by mass is appropriate for 100% by mass of the entire conductive porous substrate. If the amount is less than 0.1% by mass, the water repellency may not be sufficiently exerted. If the amount exceeds 20% by mass, pores serving as gas diffusion paths or drainage paths may be blocked, and electrical resistance may increase. is there.

導電性多孔質基材を撥水処理する方法は、一般的に知られている撥水性樹脂を含むディスパージョンに導電性多孔質基材を浸漬する処理技術のほか、ダイコート、スプレーコートなどによって導電性多孔質基材に撥水性樹脂を塗布する塗布技術も適用可能である。また、フッ素樹脂のスパッタリングなどのドライプロセスによる加工も適用できる。なお、撥水処理の後、必要に応じて乾燥工程、さらには焼結工程を加えても良い。   The method of water-repellent treatment of the conductive porous base material is conducted by die coating, spray coating, etc. in addition to the treatment technique of immersing the conductive porous base material in a dispersion containing a generally known water-repellent resin. An application technique for applying a water-repellent resin to a porous porous substrate is also applicable. Further, processing by a dry process such as sputtering of a fluororesin can also be applied. In addition, you may add a drying process and also a sintering process as needed after water-repellent treatment.

本発明の導電性多孔質基材は、その少なくとも片面に微多孔層を有するガス拡散電極として用いることが好ましい。そこで、以下より微多孔層について説明する。   The conductive porous substrate of the present invention is preferably used as a gas diffusion electrode having a microporous layer on at least one surface thereof. Therefore, the microporous layer will be described below.

微多孔層は、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、炭素繊維のチョップドファイバー、グラフェン、黒鉛などの導電性微粒子を含んだ層である。   The microporous layer is a layer containing conductive fine particles such as carbon black, carbon nanotube, carbon nanofiber, carbon chopped fiber, graphene, and graphite.

導電性多孔質基材の少なくとも片面に微多孔層を形成する方法としては、微多孔層塗液をスクリーン印刷、ロータリースクリーン印刷、スプレー噴霧、凹版印刷、グラビア印刷、ダイコーター印刷、バー塗布、ブレード塗布、ナイフコーター等により、塗布する方法が好ましい。微多孔層塗液中の導電性微粒子の濃度は、生産性の観点から、好ましくは5重量%以上、より好ましくは10質量%以上である。粘度、導電性粒子の分散安定性、塗液の塗布性などが公的であれば濃度に上限はないが、実際的には微多孔層塗液中の導電性微粒子の濃度が50質量%を超えると塗液としての適正が損なわれることがある。微多孔層塗液を塗布した後に、250℃以上400℃以下に焼結を行うことが一般的である。   As a method for forming a microporous layer on at least one side of a conductive porous substrate, a microporous layer coating solution is screen-printed, rotary screen printing, spray spraying, intaglio printing, gravure printing, die coater printing, bar coating, blade A coating method by coating, knife coater or the like is preferable. From the viewpoint of productivity, the concentration of the conductive fine particles in the microporous layer coating solution is preferably 5% by weight or more, more preferably 10% by weight or more. If the viscosity, dispersion stability of the conductive particles, and coating properties of the coating liquid are official, there is no upper limit to the concentration, but in practice, the concentration of the conductive fine particles in the microporous layer coating liquid is 50% by mass. When it exceeds, the appropriateness as a coating liquid may be impaired. Generally, after applying the microporous layer coating solution, sintering is performed at 250 ° C. or more and 400 ° C. or less.

また本発明の燃料電池は、本発明の導電性多孔質基材を有することを特徴とする。本発明の燃料電池は、本発明の導電性多孔質基材を有するので、短絡の生じにくい特徴を有する。   The fuel cell of the present invention is characterized by having the conductive porous substrate of the present invention. Since the fuel cell of the present invention has the conductive porous substrate of the present invention, the fuel cell has a characteristic that a short circuit hardly occurs.

以下、実施例によって本発明を具体的に説明する。実施例で用いた材料、導電性多孔質基材の作製方法、短絡評価方法を次に示した。   Hereinafter, the present invention will be described specifically by way of examples. The materials used in the examples, the method for producing the conductive porous substrate, and the short-circuit evaluation method are shown below.

(実施例1)
<材料>
東レ(株)製PAN系炭素繊維“トレカ”(登録商標)T300(平均直径:7μm)を短繊維の平均長さ12mmにカットし、水中に分散させて湿式抄紙法により連続的に抄紙した。さらに、バインダとしてポリビニルアルコールの10質量%水溶液を当該抄紙に塗布して乾燥させ、炭素繊維の目付が26g/mの炭素繊維シートを作製した。ポリビニルアルコールの付着量は、炭素繊維100質量部に対して18質量部であった。
Example 1
<Material>
A PAN-based carbon fiber “Torayca” (registered trademark) T300 (average diameter: 7 μm) manufactured by Toray Industries, Inc. was cut into an average length of 12 mm of short fibers, dispersed in water, and continuously made by wet paper making. Furthermore, a 10% by mass aqueous solution of polyvinyl alcohol as a binder was applied to the paper and dried to prepare a carbon fiber sheet having a carbon fiber basis weight of 26 g / m 2 . The adhesion amount of polyvinyl alcohol was 18 parts by mass with respect to 100 parts by mass of the carbon fiber.

次に、熱硬化性樹脂としてレゾール型フェノール樹脂とノボラック型フェノール樹脂を不揮発分が1:1の質量比となるように混合したフェノール樹脂と、炭素粉末として鱗片状黒鉛粉末(平均粒径5μm)と、溶媒としてメタノールを用い、熱硬化性樹脂(不揮発分)/炭素粉末/溶媒=10質量部/5質量部/85質量部の配合比でこれらを混合し、均一に分散した樹脂組成物(混合液)を得た。   Next, a phenolic resin in which a resol type phenolic resin and a novolac type phenolic resin are mixed as a thermosetting resin so as to have a mass ratio of non-volatile content of 1: 1, and scaly graphite powder (average particle size 5 μm) as a carbon powder And methanol as a solvent, and these are mixed at a blending ratio of thermosetting resin (non-volatile content) / carbon powder / solvent = 10 parts by mass / 5 parts by mass / 85 parts by mass, and uniformly dispersed resin composition ( A mixed solution) was obtained.

次に、炭素繊維シートを上記樹脂組成物の混合液に連続的に浸漬し、ロールで挟んで絞る樹脂含浸工程を経た後、ロール状に巻き取って前駆体繊維シートを得た。この際、ロールはドクターブレードで余分な樹脂組成物を取り除くことができる構造を持つ平滑な金属ロールであり、一定のクリアランスをあけて水平に2本配置して炭素繊維シートを垂直に上に引き上げることで全体の樹脂組成物の付着量を調整した。炭素短繊維シートの一方の表面側を金属ロールで、他方の表面側をグラビアロールで挟み、樹脂組成物の含浸液を絞ることで、炭素繊維シートの一方の表面と他方の表面の樹脂組成物の付着量に差を付けた。前駆体繊維シートにおけるフェノール樹脂の付着量は、炭素繊維100質量部に対し、104質量部であった。   Next, the carbon fiber sheet was continuously immersed in the mixed solution of the resin composition, followed by a resin impregnation step in which the carbon fiber sheet was squeezed between rolls and then wound up into a roll shape to obtain a precursor fiber sheet. At this time, the roll is a smooth metal roll having a structure capable of removing excess resin composition with a doctor blade. Two rolls are horizontally arranged with a certain clearance, and the carbon fiber sheet is pulled up vertically. Thus, the adhesion amount of the entire resin composition was adjusted. By sandwiching one surface side of the short carbon fiber sheet with a metal roll and the other surface side with a gravure roll and squeezing the impregnating liquid of the resin composition, the resin composition on one surface and the other surface of the carbon fiber sheet The amount of adhesion was different. The adhesion amount of the phenol resin in the precursor fiber sheet was 104 parts by mass with respect to 100 parts by mass of the carbon fiber.

プレス成型機に熱板が互いに平行になるようにセットし、下熱板上にスペーサーを配置して、上下から離型紙で挟み込んだ樹脂含浸炭素繊維紙を間欠的に搬送し、圧縮処理した。その際、加圧処理後に所望の前駆体繊維シートの厚さになるように、上下プレス面板の間隔を調整した。   The hot plate was set in a press molding machine so as to be parallel to each other, a spacer was disposed on the lower hot plate, and the resin-impregnated carbon fiber paper sandwiched between release papers from above and below was intermittently conveyed and compressed. In that case, the space | interval of an up-and-down press face plate was adjusted so that it might become the thickness of a desired precursor fiber sheet after a pressurization process.

また、加熱加圧、型開き、炭素繊維の送り、を繰り返すことによって圧縮処理を行い、ロール状に巻き取った。圧縮工程における加圧処理後の前駆体繊維シートの0.15MPaでの厚さを測定したところ、171μmであった。   Moreover, the compression process was performed by repeating heating and pressurization, mold opening, and sending of carbon fiber, and it wound up in roll shape. It was 171 micrometers when the thickness in 0.15 MPa of the precursor fiber sheet after the pressurization process in a compression process was measured.

加圧処理をした前駆体繊維シートを、窒素ガス雰囲気に保たれた、最高温度が2400℃の加熱炉に導入し、加熱炉内を連続的に走行させながら焼成する炭化工程に通した後、ロール状に巻き取って導電性多孔質基材を得た。得られた導電性多孔質基材の0.15MPaでの厚さは、129μmであった。   The precursor fiber sheet subjected to the pressure treatment was introduced into a heating furnace having a maximum temperature of 2400 ° C. maintained in a nitrogen gas atmosphere, and passed through a carbonization step of firing while continuously running in the heating furnace. It was wound up in a roll shape to obtain a conductive porous substrate. The thickness of the obtained conductive porous substrate at 0.15 MPa was 129 μm.

この導電性多孔質基材の両面にクラフト紙を配し、連続的にカレンダー加工を行った。カレンダー加工を行った導電性多孔質基材に非接触式ダスト除去クリーナーを用いて、導電性多孔質基材の両面に、空気を吹き付け、両面から空気を吸引した。   Kraft paper was placed on both sides of this conductive porous substrate, and calendering was performed continuously. Using a non-contact type dust removing cleaner on the calendered conductive porous substrate, air was blown onto both surfaces of the conductive porous substrate, and air was sucked from both surfaces.

<評価>
A.短絡確率
導電性多孔質基材は、厚み25μmの高分子電解質膜を重ね合わせ、5MPaに加圧しながら2Vの電圧をかけて厚み方向の短絡電流密度を測定した場合に、90%以上の測定点において短絡電流密度が111mA/cm以下であることが好ましい。ここで本発明で規定する短絡確率は、以下の(1)〜(3)の手順により特定される値を意味する。
<Evaluation>
A. The short-circuit probability conductive porous substrate has a measuring point of 90% or more when a short-circuit current density in the thickness direction is measured by applying a voltage of 2V while pressing a pressure of 5 MPa on a polymer electrolyte membrane having a thickness of 25 μm. It is preferable that a short circuit current density is 111 mA / cm < 2 > or less. Here, the short-circuit probability defined in the present invention means a value specified by the following procedures (1) to (3).

(1)高分子電解質膜“Nafion”(登録商標)NR211(DuPont社製)膜厚25μmの両面を、導電性多孔質基材で挟み込む。ここで導電性多孔質基材は1辺5cmの正方形、高分子電解質膜は1辺6cm以上の正方形として、高分子電解質膜の各辺と導電性多孔質基材の各辺とを平行にして、高分子電解質膜の中心と導電性多孔質基材の中心とが一致するように重ねる。   (1) The polymer electrolyte membrane “Nafion” (registered trademark) NR211 (manufactured by DuPont) is sandwiched on both sides by a conductive porous substrate with a film thickness of 25 μm. Here, the conductive porous substrate is a square having a side of 5 cm, the polymer electrolyte membrane is a square having a side of 6 cm or more, and each side of the polymer electrolyte membrane is parallel to each side of the conductive porous substrate. Then, the polymer electrolyte membrane is overlaid so that the center of the polymer electrolyte membrane coincides with the center of the conductive porous substrate.

(2)前記重ねた高分子電解質膜と導電性多孔質基材を、金メッキしたステンレスブロック電極2個で挟み(挟む面は1辺3cmの正方形)、導電性多孔質基材の9cmの面積に圧力が5MPaとなるように加圧する。この際、ステンレスブロック電極の挟む面の各辺と導電性多孔質基材の各辺とを平行にして、ステンレスブロック電極の中心と導電性多孔質基材の中心とが一致するように挟む。 (2) The stacked polymer electrolyte membrane and the conductive porous base material are sandwiched between two gold-plated stainless steel block electrodes (the surface to be sandwiched is a 3 cm square), and the conductive porous base material has an area of 9 cm 2 . The pressure is increased to 5 MPa. At this time, each side of the surface sandwiched by the stainless steel block electrode and each side of the conductive porous substrate are parallel, and the stainless block electrode is sandwiched so that the center of the stainless steel block electrode coincides with the center of the conductive porous substrate.

(3)デジタルマルチメーター(KEITHLEY Model196 SYSTEM DMM)を用いて金メッキしたステンレスブロック電極間に2Vの直流電圧を印加し、電極間の電流を測定し、得られた値を短絡電流とする。短絡電流密度は導電性多孔質基材に加圧印加している面積9cmで前記短絡電流を除して短絡電流密度とする。 (3) Using a digital multimeter (KEITHLEY Model196 SYSTEM DMM), apply a DC voltage of 2 V between the gold-plated stainless steel block electrodes, measure the current between the electrodes, and use the obtained value as the short-circuit current. The short-circuit current density is obtained by dividing the short-circuit current at an area of 9 cm 2 where pressure is applied to the conductive porous substrate.

そして短絡確率は、導電性多孔質基材の測定サンプルを変更して(1)から(3)を10回繰り返し、得られた値が111mA/cmを超える確率によって求める。 The short-circuit probability is obtained by the probability that the obtained value exceeds 111 mA / cm 2 by changing the measurement sample of the conductive porous substrate and repeating (1) to (3) 10 times.

測定した短絡電流密度が111mA/cmを超えると、導電性多孔質基材から突き出した炭素繊維などの凸部によって、高分子電解質膜に短絡が生じている可能性があり、燃料電池の長期運転下での発電性能低下の原因となる可能性がある。そのため本発明の導電性多孔質基材は、前述の方法で測定した短絡電流密度が90%以上の測定点において111mA/cm以下であることが好ましい。 When the measured short-circuit current density exceeds 111 mA / cm 2 , there is a possibility that a short circuit occurs in the polymer electrolyte membrane due to the protrusions such as carbon fibers protruding from the conductive porous substrate, and the long-term of the fuel cell It may cause a decrease in power generation performance under operation. Therefore, the conductive porous substrate of the present invention is preferably 111 mA / cm 2 or less at a measurement point where the short-circuit current density measured by the above method is 90% or more.

B.導電性多孔質基材の厚みの測定方法
導電性多孔質基材の断面の作製に際しては、(株)日立ハイテクノロジーズ製イオンミリング装置IM4000を用いた。SEM画像の倍率は、200倍とした。
B. Method for Measuring the Thickness of the Conductive Porous Base Material When producing the cross section of the conductive porous base material, an ion milling device IM4000 manufactured by Hitachi High-Technologies Corporation was used. The magnification of the SEM image was 200 times.

導電性多孔質基材の厚みをSEM画像の視野内で5カ所測定し、その平均値を導電性多孔質基材の厚みとした。   The thickness of the conductive porous substrate was measured at five locations within the field of view of the SEM image, and the average value was taken as the thickness of the conductive porous substrate.

C.N1、N2、N3、および、N4の測定方法
炭素繊維の傾きを測定する方法、つまり、N1、N2、N3、および、N4の測定方法は以下の通りである。Bに記載の方法と同様にして、導電性多孔質基材の断面を観察し、導電性多孔質基材の面内方向を0°として、厚み方向を90°とした際の炭素繊維1本ずつの角度を測定した。なお、N1およびN2を数える場合の観察範囲には、必ず、導電性多孔質基材の少なくとも一方の表面が観察されるように決定した。一方で、N3およびN4を数える場合の観察範囲には、導電性多孔質基材の表面から導電性多孔質基材の厚みの20%の長さ内側に入った部分が観察されるように決定した。さらに炭素繊維が曲がっていたり折れていたりしている場合は、1本の炭素繊維の端部と端部を直線で結んでできる線分の角度をその炭素繊維の角度とした。
C. Measuring method of N1, N2, N3, and N4 The method of measuring the inclination of carbon fiber, that is, the measuring method of N1, N2, N3, and N4 is as follows. One carbon fiber when the cross section of the conductive porous substrate is observed in the same manner as described in B, the in-plane direction of the conductive porous substrate is 0 °, and the thickness direction is 90 ° Each angle was measured. It should be noted that the observation range when counting N1 and N2 was determined so that at least one surface of the conductive porous substrate was observed. On the other hand, when observing N3 and N4, the observation range is determined so that a portion entering 20% of the thickness of the conductive porous substrate from the surface of the conductive porous substrate is observed. did. Furthermore, when the carbon fiber is bent or bent, the angle of the line segment formed by connecting the ends of one carbon fiber with a straight line is defined as the angle of the carbon fiber.

導電性多孔質基材の少なくとも一方の表面が観察される領域における0°以上10°未満の方向に向いている炭素繊維の数、導電性多孔質基材の少なくとも一方の表面が観察される領域における10°以上90°以下の方向に向いている炭素繊維の数、導電性多孔質基材の表面から導電性多孔質基材の厚みの20%の長さ内側に入った部分において0°以上10°未満の方向に向いている炭素繊維の数、および、導電性多孔質基材の表面から導電性多孔質基材の厚みの20%の長さ内部に入った部分において10°以上90°以下の方向に向いている炭素繊維の数を、それぞれN1、N2、N3、および、N4とした。   The number of carbon fibers facing in the direction of 0 ° or more and less than 10 ° in the region where at least one surface of the conductive porous substrate is observed, the region where at least one surface of the conductive porous substrate is observed The number of carbon fibers facing in the direction of 10 ° or more and 90 ° or less, and 0 ° or more in a portion that enters the inside of 20% of the thickness of the conductive porous substrate from the surface of the conductive porous substrate The number of carbon fibers facing in the direction of less than 10 °, and 10 ° or more and 90 ° in the portion that enters the length of 20% of the thickness of the conductive porous substrate from the surface of the conductive porous substrate The numbers of carbon fibers facing in the following directions were N1, N2, N3, and N4, respectively.

D.樹脂炭化物の塊の短径の測定方法
樹脂炭化物の塊の短径は、Bで作製した導電性多孔質基材の断面を観察し、塊1つ1つを楕円と近似し、その短径を測定することにより、求めた。求めた樹脂炭化物の塊1つ1つの短径の平均値をそれぞれ計算し、得られた値を樹脂炭化物の塊の短径とした。
D. Method of measuring the minor axis of resin carbide chunks The minor axis of resin carbide chunks is to observe the cross section of the conductive porous substrate prepared in B, approximating each of the chunks as an ellipse. Obtained by measuring. The average value of the short diameter of each of the obtained resin carbide lumps was calculated, and the obtained value was defined as the short diameter of the resin carbide lumps.

E.導電性多孔質基材の断面積の測定方法
導電性多孔質基材の断面積は、Bで作製した導電性多孔質基材の断面を観察し、5カ所の平均値として求めた導電性多孔質基材の厚みにSEM画像の幅を乗じて得られた値を、導電性多孔質基材の断面積とした。
E. Method of measuring cross-sectional area of conductive porous substrate The cross-sectional area of the conductive porous substrate was determined by observing the cross-section of the conductive porous substrate prepared in B and determining the average value of five locations. A value obtained by multiplying the thickness of the porous substrate by the width of the SEM image was taken as the cross-sectional area of the conductive porous substrate.

F.樹脂炭化物の塊の断面積の測定方法
樹脂炭化物の塊の断面積は、次のように求めた。Eで用いた断面の画像を用いて、まず、画像処理ソフト(JTrim)を用い、輝度で明るさの最大と最小を256段階に区切り、樹脂炭化物は黒く炭素繊維が白く見える段階を閾値1とし、樹脂炭化物も炭素繊維も白く見える閾値2として、閾値1の時のレベル20以下の画素数から、閾値2の時のレベル20以下の画素数を差し引くことで、樹脂炭化物の複数の塊の断面積の合計値を求めた。この断面積の合計値を樹脂炭化物の塊の数で除し、さらに、導電性多孔質基材の厚みとSEM画像の幅を乗じた値で除すことで、導電性多孔質基材の断面積を100%とした際の樹脂炭化物の塊の断面積の割合(%)を求めた。
F. Method for Measuring Cross Section Area of Resin Carbide Mass The cross sectional area of the resin carbide mass was determined as follows. Using the image of the cross section used in E, first, image processing software (JTrim) is used to divide the maximum and minimum brightness by 256 levels, and the threshold is 1 when the resin carbide is black and the carbon fiber appears white. By subtracting the number of pixels of level 20 or less at the time of threshold 2 from the number of pixels of level 20 or less at the time of threshold 2 as threshold 2 at which both the resin carbide and carbon fiber appear white, the breakage of a plurality of masses of resin carbide The total area was determined. By dividing the total value of the cross-sectional areas by the number of masses of resin carbide, and further dividing by the value obtained by multiplying the thickness of the conductive porous substrate by the width of the SEM image, the section of the conductive porous substrate is cut. The ratio (%) of the cross-sectional area of the mass of resin carbide when the area was 100% was determined.

測定した物性を表1に示す。   Table 1 shows the measured physical properties.

(実施例2)
得られる導電性多孔質基材の0.15MPaでの厚さが136μmになるように加圧した以外は、実施例1と同様にして導電性多孔質基材を得た。測定した物性を表1に示す。
(Example 2)
A conductive porous substrate was obtained in the same manner as in Example 1 except that the obtained conductive porous substrate was pressurized so that the thickness at 0.15 MPa was 136 μm. Table 1 shows the measured physical properties.

(実施例3)
得られる導電性多孔質基材の0.15MPaでの厚さが143μmになるように加圧した以外は、実施例1と同様にして導電性多孔質基材を得た。測定した物性を表1に示す。
(Example 3)
A conductive porous substrate was obtained in the same manner as in Example 1 except that the obtained conductive porous substrate was pressurized so that the thickness at 0.15 MPa was 143 μm. Table 1 shows the measured physical properties.

(比較例1)
得られる導電性多孔質基材の0.15MPaでの厚さが161μmになるように加圧した以外は、実施例1と同様にして導電性多孔質基材を得た。測定した物性を表1に示す。
(Comparative Example 1)
A conductive porous substrate was obtained in the same manner as in Example 1 except that the obtained conductive porous substrate was pressurized so that the thickness at 0.15 MPa was 161 μm. Table 1 shows the measured physical properties.

(比較例2)
得られる導電性多孔質基材の0.15MPaでの厚さが152μmになるように加圧した以外は、実施例1と同様にして導電性多孔質基材を得た。測定した物性を表1に示す。
(Comparative Example 2)
A conductive porous substrate was obtained in the same manner as in Example 1 except that the obtained conductive porous substrate was pressurized so that the thickness at 0.15 MPa was 152 μm. Table 1 shows the measured physical properties.

Figure 2017171550
Figure 2017171550

Claims (7)

炭素繊維を含む導電性多孔質基材であって、
導電性多孔質基材の面内方向を0°として、厚み方向を90°とした際に、0°以上10°未満の方向を向いている炭素繊維の数をN1、10°以上90°以下の方向を向いている炭素繊維の数をN2とすると、N1/N2が85/15〜100/0であることを特徴とする、導電性多孔質基材。
ここで、N1及びN2は、いずれも0以上100以下の整数であり、N1とN2の和は100である。
A conductive porous substrate comprising carbon fibers,
When the in-plane direction of the conductive porous substrate is 0 ° and the thickness direction is 90 °, the number of carbon fibers facing the direction of 0 ° to less than 10 ° is N1, 10 ° to 90 ° A conductive porous substrate, wherein N1 / N2 is 85/15 to 100/0, where N2 is the number of carbon fibers facing the direction.
Here, N1 and N2 are both integers of 0 to 100, and the sum of N1 and N2 is 100.
前記導電性多孔質基材の内部に存在する炭素繊維において、0°以上10°未満の方向を向いている炭素繊維の数をN3、10°以上90°以下の方向を向いている炭素繊維の数をN4とすると、N3/N4が85/15〜100/0であることを特徴とする、請求項1に記載の導電性多孔質基材。
ここで、N3及びN4は、いずれも0以上100以下の整数であり、N3とN4の和は100である。
In the carbon fibers existing inside the conductive porous substrate, the number of carbon fibers facing the direction of 0 ° or more and less than 10 ° is N3, and the number of carbon fibers facing the direction of 10 ° or more and 90 ° or less The conductive porous substrate according to claim 1, wherein N3 / N4 is 85/15 to 100/0, where N4 is a number.
Here, N3 and N4 are both integers of 0 or more and 100 or less, and the sum of N3 and N4 is 100.
樹脂炭化物を含み、
前記樹脂炭化物が複数の塊からなり、かつ、
前記導電性多孔質基材の厚みを100%とした際に、前記樹脂炭化物の塊の短径が3%〜20%であることを特徴とする、請求項1または請求項2に記載の導電性多孔質基材。
Including resin carbide,
The resin carbide consists of a plurality of lumps, and
3. The conductive material according to claim 1, wherein when the thickness of the conductive porous substrate is 100%, the minor axis of the mass of the resin carbide is 3% to 20%. 4. Porous substrate.
炭素繊維と樹脂炭化物を含む導電性多孔質基材であって、
前記樹脂炭化物が複数の塊からなり、かつ、
前記導電性多孔質基材の厚みを100%とした際に、前記樹脂炭化物の塊の短径が3%〜20%であることを特徴とする、導電性多孔質基材。
A conductive porous substrate containing carbon fiber and resin carbide,
The resin carbide consists of a plurality of lumps, and
The conductive porous base material, wherein a short diameter of the mass of the resin carbide is 3% to 20% when the thickness of the conductive porous base material is 100%.
前記導電性多孔質基材の断面積を100%とした際に、前記樹脂炭化物の塊の断面積が1%〜5%であることを特徴とする、請求項3または4に記載の導電性多孔質基材。   The conductive property according to claim 3 or 4, wherein a cross-sectional area of the mass of the resin carbide is 1% to 5% when a cross-sectional area of the conductive porous substrate is 100%. Porous substrate. 請求項1〜5のいずれかに記載の導電性多孔質基材の少なくとも片面に微多孔層を有することを特徴とする、ガス拡散電極。   A gas diffusion electrode comprising a microporous layer on at least one surface of the conductive porous substrate according to claim 1. 請求項1〜5のいずれかに記載の導電性多孔質基材を有することを特徴とする、燃料電池。   A fuel cell comprising the conductive porous substrate according to claim 1.
JP2016061329A 2016-03-25 2016-03-25 Conductive porous substrate, gas diffusion electrode, and fuel cell Pending JP2017171550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016061329A JP2017171550A (en) 2016-03-25 2016-03-25 Conductive porous substrate, gas diffusion electrode, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061329A JP2017171550A (en) 2016-03-25 2016-03-25 Conductive porous substrate, gas diffusion electrode, and fuel cell

Publications (1)

Publication Number Publication Date
JP2017171550A true JP2017171550A (en) 2017-09-28

Family

ID=59972615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061329A Pending JP2017171550A (en) 2016-03-25 2016-03-25 Conductive porous substrate, gas diffusion electrode, and fuel cell

Country Status (1)

Country Link
JP (1) JP2017171550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098685A (en) * 2018-12-17 2020-06-25 トヨタ自動車株式会社 Manufacturing apparatus of fuel cell separator
CN113169350A (en) * 2018-12-05 2021-07-23 Jntg有限公司 Carbon substrate comprising carbon fibers oriented in one direction and gas diffusion layer using the same
US12034187B2 (en) * 2018-12-05 2024-07-09 Jntg Co., Ltd. Carbon substrate comprising carbon fibers unidirectionally aligned, and gas diffusion layer employing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190951A (en) * 2008-02-18 2009-08-27 Mitsubishi Rayon Co Ltd Method for manufacturing porous carbon electrode base material
JP2012204142A (en) * 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and method for manufacturing the same
JP2013143317A (en) * 2012-01-12 2013-07-22 Toyota Motor Corp Gas diffusion layer base material and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190951A (en) * 2008-02-18 2009-08-27 Mitsubishi Rayon Co Ltd Method for manufacturing porous carbon electrode base material
JP2012204142A (en) * 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and method for manufacturing the same
JP2013143317A (en) * 2012-01-12 2013-07-22 Toyota Motor Corp Gas diffusion layer base material and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169350A (en) * 2018-12-05 2021-07-23 Jntg有限公司 Carbon substrate comprising carbon fibers oriented in one direction and gas diffusion layer using the same
US20220021007A1 (en) * 2018-12-05 2022-01-20 Jntg Co., Ltd. Carbon substrate comprising carbon fibers unidirectionally aligned, and gas diffusion layer employing same
US12034187B2 (en) * 2018-12-05 2024-07-09 Jntg Co., Ltd. Carbon substrate comprising carbon fibers unidirectionally aligned, and gas diffusion layer employing same
JP2020098685A (en) * 2018-12-17 2020-06-25 トヨタ自動車株式会社 Manufacturing apparatus of fuel cell separator
JP7119976B2 (en) 2018-12-17 2022-08-17 トヨタ自動車株式会社 Fuel cell separator manufacturing equipment

Similar Documents

Publication Publication Date Title
JP6819570B2 (en) Gas diffusion electrode and its manufacturing method
JP5621949B1 (en) Gas diffusion layer for fuel cell and manufacturing method thereof
JP6206186B2 (en) Gas diffusion electrode base material for fuel cells
TWI705610B (en) Porous carbon electrode substrate, its manufacturing method, gas diffusion layer, and membrane-electrode assembly for fuel cell
JP6962319B2 (en) Gas diffusion electrode substrate, laminate and fuel cell
KR102120691B1 (en) Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell provided therewith
JP5950031B2 (en) GAS DIFFUSION ELECTRODE SUBSTRATE, MEMBRANE ELECTRODE ASSEMBLY PROVIDED WITH THE SAME, AND FUEL CELL
JP5988009B1 (en) Porous carbon sheet and precursor fiber sheet thereof
JP6330282B2 (en) Gas diffusion electrode substrate for fuel cell and manufacturing method thereof
CN108292757B (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JPWO2018061833A1 (en) Gas diffusion electrode and fuel cell
JP2017171550A (en) Conductive porous substrate, gas diffusion electrode, and fuel cell
JP6969547B2 (en) Gas diffusion electrode and fuel cell
JP7355143B2 (en) Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof
JP6766650B2 (en) Gas diffusion electrode and its manufacturing method
JP6135826B2 (en) Gas diffusion electrode substrate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602