JP2022082646A - Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof - Google Patents

Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof Download PDF

Info

Publication number
JP2022082646A
JP2022082646A JP2022051008A JP2022051008A JP2022082646A JP 2022082646 A JP2022082646 A JP 2022082646A JP 2022051008 A JP2022051008 A JP 2022051008A JP 2022051008 A JP2022051008 A JP 2022051008A JP 2022082646 A JP2022082646 A JP 2022082646A
Authority
JP
Japan
Prior art keywords
base material
porous electrode
electrode base
gas diffusion
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022051008A
Other languages
Japanese (ja)
Other versions
JP7355143B2 (en
Inventor
究 太田
Kiwamu Ota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2022082646A publication Critical patent/JP2022082646A/en
Application granted granted Critical
Publication of JP7355143B2 publication Critical patent/JP7355143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Nonwoven Fabrics (AREA)
  • Inert Electrodes (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous electrode base material from which an excess binder at a carbon fiber binding portion on the surface of the base material is sufficiently removed, and which are less likely to cause a short circuit or cross leakage of reaction gas when used in a fuel cell, a gas diffusion layer, and a gas diffusion electrode.
SOLUTION: There is provided a carbon fiber sheet to which the carbon fibers are bound, a porous electrode base material for a polymer electrolyte fuel cell in which the maximum thickness of a binder attached to a carbon fiber binding portion on the surface of the sheet is within 5 μm, and a gas diffusion layer for a polymer electrolyte fuel cell, preferably formed by forming a coating layer composed of carbon powder and a water repellent on at least one surface of the porous electrode base material for the polymer electrolyte fuel cell.
SELECTED DRAWING: None
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法に関する。 The present invention relates to a porous electrode base material, a gas diffusion layer, a gas diffusion electrode, and a method for producing the same.

固体高分子形燃料電池のガス拡散層や、レドックスフロー電池の電極には、炭素繊維紙、炭素繊維クロス、炭素繊維フェルト等の炭素繊維を用いた基材が一般的に用いられる。これらの基材は炭素繊維によって高い導電性を示すだけでなく、多孔質材料であるため、燃料ガスおよび生成水、電解液などの液体の透過性が高いためガス拡散層に好適な材料である。 A base material using carbon fibers such as carbon fiber paper, carbon fiber cloth, and carbon fiber felt is generally used for the gas diffusion layer of the solid polymer fuel cell and the electrode of the redox flow battery. Not only do these substrates exhibit high conductivity due to carbon fiber, but because they are porous materials, they are highly permeable to fuel gas and liquids such as generated water and electrolytic solutions, making them suitable materials for gas diffusion layers. ..

しかしながら、固体高分子形燃料電池のガス拡散層や、レドックスフロー電池の電極として用いられる基材は、電池を製造する際の電解質膜の接合工程やスタックの締結工程において生じる摩擦や圧縮などにより炭素繊維の毛羽立ちや脱落・折損が生じるおそれがある。これらの脱落・折損した炭素繊維や樹脂炭化物は電解質膜に比べ剛直であるため、電解質膜に突き刺さることがある。 However, the gas diffusion layer of the polymer electrolyte fuel cell and the base material used as the electrode of the redox flow battery are carbon due to friction and compression generated in the bonding process of the electrolyte membrane and the fastening process of the stack when manufacturing the battery. There is a risk of fiber fluffing, falling off, or breaking. Since these carbon fibers and resin carbides that have fallen off or broken are more rigid than the electrolyte membrane, they may pierce the electrolyte membrane.

電解質膜に突き刺さることにより、アノード極とカソード極との間がショートするといった不具合、電解液及び/又はアノード極側の水素ガス及び/又はカソード極側の酸素ガスがクロスリークするといった不具合を生じ、燃料電池及びレドックスフロー電池の起電力や耐久性が著しく損なわれる傾向にあった。 By piercing the electrolyte film, a short circuit occurs between the anode electrode and the cathode electrode, and a problem such as cross-leakage of the electrolyte and / or the hydrogen gas on the anode electrode side and / or the oxygen gas on the cathode electrode side occurs. The electrolysis and durability of the fuel cell and the redox flow battery tended to be significantly impaired.

ところで電解質膜への炭素繊維の突き刺さりによるダメージを低減する方法として、例えば特許文献1には電解質膜や触媒層との接合工程やスタック締結工程においてガス拡散層に掛かる面圧を、あらかじめガス拡散層に付与し、生じる結着の弱い炭素繊維および炭化物の脱落や破損したものをあらかじめ取り除く方法が開示されている。また、特許文献2には、カーボンペーパーを、一対の弾性ロール間に圧入することにより、前記カーボンペーパーの表面の毛羽を除去する方法が開示されている。 By the way, as a method for reducing damage caused by piercing the carbon fiber into the electrolyte membrane, for example, Patent Document 1 describes in advance the surface pressure applied to the gas diffusion layer in the bonding step with the electrolyte membrane and the catalyst layer and the stack fastening step. Disclosed is a method of preliminarily removing the weakly bound carbon fiber and the carbon fiber that has fallen off or is damaged. Further, Patent Document 2 discloses a method of removing fluff on the surface of the carbon paper by press-fitting the carbon paper between a pair of elastic rolls.

特開2009-190951号公報Japanese Unexamined Patent Publication No. 2009-190951 特開2016-143468号公報Japanese Unexamined Patent Publication No. 2016-143468

しかしながら、特許文献1に記載の方法ではプレスにより後工程で生じる炭素粉を、予め除去することはできるが、プレス時に付与する圧力やプレス後の除去処理が不十分であるため、発生した炭素粉が十分に除去されておらず、燃料電池に用いた際に短絡電流が生じてしまうおそれがあった。 However, although the carbon powder generated in the subsequent step by pressing can be removed in advance by the method described in Patent Document 1, the generated carbon powder is insufficient because the pressure applied at the time of pressing and the removal treatment after pressing are insufficient. Was not sufficiently removed, and there was a risk that a short-circuit current would occur when used in a fuel cell.

特許文献2に記載の方法では、弾性ロールの変形量に対し、カーボンペーパーの厚み方向の変形量が追従できず、連続運転の際にはカーボンペーパーの破断が生じやすいという問題がある。
本発明は、前記のような問題点を克服し、燃料電池及びレドックスフロー電池に用いた際に短絡や反応ガス、電解液のクロスリークが生じにくい、多孔質電極基材表面における炭素繊維の結着部分における余剰バインダーが十分に除去された多孔質電極基材及び、ガ
ス拡散層、及びガス拡散電極とその製造方法を提供することを目的とする。
The method described in Patent Document 2 has a problem that the deformation amount in the thickness direction of the carbon paper cannot follow the deformation amount of the elastic roll, and the carbon paper is liable to break during continuous operation.
The present invention overcomes the above-mentioned problems and is less likely to cause a short circuit, a reaction gas, or a cross leak of an electrolytic solution when used in a fuel cell or a redox flow battery. It is an object of the present invention to provide a porous electrode base material from which excess binder in a bonded portion is sufficiently removed, a gas diffusion layer, a gas diffusion electrode, and a method for producing the same.

本発明者等は上記課題を解決すべく鋭意検討した結果、本発明を完成するに至った。即ち本発明の要旨は、以下の(1)~(7)に存する。
(1) 炭素繊維が炭素により結着された炭素繊維シートであって、シート表面の炭素繊維結着部分に付着したバインダーの最大厚みが5μm以内である多孔質電極基材。
(2) 上記(1)に記載の多孔質電極基材の厚みが80~300μm、嵩密度が、0.18~0.42g/cm、貫通抵抗が、3.0~7.0mΩ・cm、厚み方向の透気度が、0.2~7.1L/(m・Pa・s)であり、少なくとも一方の面にカーボン粉と撥水剤からなるコーティング層を有する固体高分子形燃料電池用ガス拡散層。
(3) 上記(2)に記載の固体高分子形燃焼電池用ガス拡散層のコーティング層上に電極触媒層を有する固体高分子形ガス拡散電極。
(4) 上記(1)に記載の多孔質電極基材、上記(2)に記載の固体高分子形燃料電池用ガス拡散層、または上記(3)に記載の固体高分子形ガス拡散電極を用いた固体高分子形燃料電池用膜電極接合体。
(5) 以下の工程[1]~[6]を含む、上記(2)に記載の固体高分子形燃料電池用ガス拡散層の製造方法。
工程[1]:多孔質電極基材をシート流れ方向に沿って直径40~150mmのロールに2~180°の角度で抱かせ、10~100N/mのシート張力にて走行せしめること
で多孔質電極基材中に含まれる結合の弱い炭素粉を脱離させる工程。
工程[2]:上記工程[1]で得られた多孔質電極基材上の炭素粉および炭素繊維結着部分の余剰バインダーを線径0.05mm~0.3mmの回転ブラシによって連続的に除去せしめる工程。
工程[3]:上記工程[2]で得られた多孔質電極基材上の炭素粉を除去せしめる工程。
工程[4]:上記工程[3]で得られた多孔質電極基材上に導電剤と撥水剤と界面活性剤および水からなるコーティング液を塗布することでコーティング層を形成する工程。
工程[5]:上記工程[4]にて多孔質電極基材上に形成したコーティング層を50~150℃に加熱し、乾燥する工程。
工程[6]:上記工程[5]にてコーティング層を形成した多孔質電極基材を200~400℃に加熱して撥水剤を焼結し、ガス拡散層を得る工程。
As a result of diligent studies to solve the above problems, the present inventors have completed the present invention. That is, the gist of the present invention lies in the following (1) to (7).
(1) A carbon fiber sheet in which carbon fibers are bound by carbon, and a porous electrode base material having a maximum thickness of a binder attached to a carbon fiber bound portion on the sheet surface of 5 μm or less.
(2) The thickness of the porous electrode substrate according to (1) above is 80 to 300 μm, the bulk density is 0.18 to 0.42 g / cm 3 , and the penetration resistance is 3.0 to 7.0 mΩ · cm. 2. Solid polymer type having an air permeability in the thickness direction of 0.2 to 7.1 L / (m 2 · Pa · s) and having a coating layer composed of carbon powder and a water repellent on at least one surface. Gas diffusion layer for fuel cells.
(3) A polymer electrolyte gas diffusion electrode having an electrode catalyst layer on a coating layer of the gas diffusion layer for a polymer electrolyte fuel cell according to (2) above.
(4) The porous electrode base material according to (1) above, the gas diffusion layer for a polymer electrolyte fuel cell according to (2) above, or the polymer electrolyte gas diffusion electrode according to (3) above. Membrane electrode assembly for polymer electrolyte fuel cell used.
(5) The method for producing a gas diffusion layer for a polymer electrolyte fuel cell according to (2) above, which comprises the following steps [1] to [6].
Step [1]: The porous electrode base material is held by a roll having a diameter of 40 to 150 mm at an angle of 2 to 180 ° along the sheet flow direction, and is run at a sheet tension of 10 to 100 N / m to be porous. A process of desorbing weakly bonded carbon powder contained in the electrode base material.
Step [2]: The carbon powder on the porous electrode base material obtained in the above step [1] and the excess binder of the carbon fiber binding portion are continuously removed by a rotary brush having a wire diameter of 0.05 mm to 0.3 mm. The process of squeezing.
Step [3]: A step of removing the carbon powder on the porous electrode base material obtained in the above step [2].
Step [4]: A step of forming a coating layer by applying a coating liquid consisting of a conductive agent, a water repellent agent, a surfactant, and water on the porous electrode base material obtained in the above step [3].
Step [5]: A step of heating the coating layer formed on the porous electrode substrate in the above step [4] to 50 to 150 ° C. and drying the coating layer.
Step [6]: A step of heating the porous electrode base material on which the coating layer is formed in the above step [5] to 200 to 400 ° C. and sintering the water repellent to obtain a gas diffusion layer.

(6) 前記工程[1]に代えて下記工程[1’]を含む、上記(5)に記載の固体高分子形燃料電池用ガス拡散層の製造方法。
工程[1’]:多孔質電極基材を、JIS‐Aゴム硬度A60~A100のゴムロール
とハードクロムメッキの施された金属ロールとで1~10kNの荷重にてプレスすることで、多孔質電極基材中に含まれる結合の弱い炭素粉を脱離させる工程。
(6) The method for producing a gas diffusion layer for a polymer electrolyte fuel cell according to (5) above, which comprises the following step [1'] instead of the step [1].
Step [1']: The porous electrode base material is pressed with a rubber roll having a JIS-A rubber hardness of A60 to A100 and a metal roll plated with hard chrome with a load of 1 to 10 kN to obtain the porous electrode. A process of removing weakly bonded carbon powder contained in a base material.

(7) 前記(5)および(6)の工程[6]の後に、以下の工程[7]を含む、前記(3)に記載の固体高分子形ガス拡散電極の製造方法。
工程[7]:コーティング層を形成したガス拡散層に電極触媒層を形成させる工程。
(7) The method for producing a polymer electrolyte gas diffusion electrode according to (3) above, which comprises the following step [7] after the steps [6] of (5) and (6).
Step [7]: A step of forming an electrode catalyst layer on the gas diffusion layer on which the coating layer is formed.

燃料電池やレドックスフロー電池に用いた際に短絡や反応ガスおよび電解液のクロスリークが生じにくい、基材表面における炭素繊維の結着部分における余剰バインダーが十分に除去された多孔質電極基材及び、ガス拡散層、及びガス拡散電極を得ることができる。 Porous electrode base material from which excess binder at the carbon fiber binding portion on the surface of the base material is sufficiently removed, which is less likely to cause short circuit or cross leakage of reaction gas and electrolyte when used in fuel cells and redox flow batteries. , A gas diffusion layer, and a gas diffusion electrode can be obtained.

以下、本発明について詳細に示す。
本発明の多孔質電極基材、ガス拡散層、ガス拡散電極は、例えば以下の(1)~(6)の工程により製造することができる。
(1)炭素繊維が炭素等により結着された多孔質電極基材を製造する工程。
(2)前記多孔質電極基材をシート流れ方向に沿って直径40~150mmのロールに2~180°の角度で抱かせ、10~100N/mのシート張力にて走行せしめることで
ガス拡散層基材中に含まれる結合の弱い炭素粉を脱離させる工程。
(3)多孔質電極基材を、JIS‐Aゴム硬度A60~A100のゴムロールとハード
クロムメッキの施された金属ロールとで1~10kNの荷重にてプレスすることで、多孔質電極基材中に含まれる結合の弱い炭素粉を脱離させる工程
(4)次いで、多孔質電極基材に付着した炭素粉を連続的に除去する工程。
(5)前記(4)で得られた多孔質電極基材にコーティング層を形成したガス拡散層を得る工程。
(6)前記(5)で得られたガス拡散層のコーティング層上に電極触媒層を形成しガス拡散電極を得る工程。
Hereinafter, the present invention will be described in detail.
The porous electrode base material, the gas diffusion layer, and the gas diffusion electrode of the present invention can be manufactured, for example, by the following steps (1) to (6).
(1) A step of manufacturing a porous electrode base material in which carbon fibers are bound by carbon or the like.
(2) The gas diffusion layer is formed by holding the porous electrode base material on a roll having a diameter of 40 to 150 mm at an angle of 2 to 180 ° along the sheet flow direction and running it with a sheet tension of 10 to 100 N / m. A step of removing weakly bonded carbon powder contained in a base material.
(3) The porous electrode base material is pressed into the porous electrode base material with a rubber roll having a JIS-A rubber hardness of A60 to A100 and a metal roll plated with hard chrome with a load of 1 to 10 kN. Step of removing the carbon powder having a weak bond contained in (4) Next, a step of continuously removing the carbon powder adhering to the porous electrode base material.
(5) A step of obtaining a gas diffusion layer in which a coating layer is formed on the porous electrode base material obtained in (4) above.
(6) A step of forming an electrode catalyst layer on the coating layer of the gas diffusion layer obtained in (5) above to obtain a gas diffusion electrode.

<(1)炭素繊維が炭素等により結着された多孔質電極基材を製造する工程>
まず、第一の工程において、炭素繊維が炭素等により結着された多孔質電極基材を製造する。ここで、多孔質電極基材は、例えば炭素繊維を抄紙して炭素繊維紙を得る抄紙工程、該炭素繊維紙に樹脂を含浸させる樹脂含浸工程、該樹脂が含浸した炭素繊維紙を加熱し、該樹脂を炭化させる炭化工程を経ることによって製造される。製造される多孔質電極基材は、表面平滑性が高く、電気的接触が良好で、かつ機械的強度が高い複数本の炭素繊維が集合してなる抄紙体が好ましい。炭素繊維同士を決着させるバインダーとして導電性成分を選択することによって、上記の炭化工程を省き低コストに多孔質電極基材を製造することも可能である。
<(1) Step of manufacturing a porous electrode base material in which carbon fibers are bound by carbon or the like>
First, in the first step, a porous electrode base material in which carbon fibers are bound by carbon or the like is manufactured. Here, the porous electrode base material is, for example, a paper making step of making carbon fibers to obtain carbon fiber paper, a resin impregnation step of impregnating the carbon fiber paper with a resin, and heating the carbon fiber paper impregnated with the resin. It is manufactured by undergoing a carbonization step of carbonizing the resin. The porous electrode base material to be produced is preferably a papermaking body formed by aggregating a plurality of carbon fibers having high surface smoothness, good electrical contact, and high mechanical strength. By selecting a conductive component as a binder for fixing carbon fibers to each other, it is possible to omit the above carbonization step and manufacture a porous electrode base material at low cost.

炭素繊維としては、その原料によらず用いることができるが、ポリアクリロニトリル(以後PANと略す。)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維から選ばれる1つ以上の炭素繊維を含むことが好ましく、PAN系炭素繊維あるいはピッチ系炭素繊維を含むことがより好ましい。 The carbon fiber can be used regardless of its raw material, but one or more selected from polyacrylonitrile (hereinafter abbreviated as PAN) -based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, and phenol-based carbon fiber. It preferably contains carbon fibers, and more preferably contains PAN-based carbon fibers or pitch-based carbon fibers.

炭素繊維の平均直径は、3~30μm程度が好ましく、4~20μmがより好ましく、4~14μmがさらに好ましい。この範囲内であると多孔質電極基材としての表面平滑性と導電性がよい。
炭素繊維の平均長は、2~16mmが好ましく、3~9mmがさらに好ましい。この範囲内であると抄紙時の分散性と多孔質電極基材としての機械的強度が高くなる。
The average diameter of the carbon fibers is preferably about 3 to 30 μm, more preferably 4 to 20 μm, still more preferably 4 to 14 μm. Within this range, the surface smoothness and conductivity of the porous electrode base material are good.
The average length of the carbon fibers is preferably 2 to 16 mm, more preferably 3 to 9 mm. Within this range, the dispersibility during papermaking and the mechanical strength as a porous electrode base material become high.

炭素繊維を互いに結着させるための炭素材としては、樹脂を加熱によって炭素化して得られる炭素材を用いることができる。このために用いる樹脂としては、炭素化した段階で多孔質電極基材の炭素繊維を結着することのできる公知の樹脂から適宜選んで用いることができる。炭素化後に導電性物質として残存しやすいという観点から、フェノール樹脂、エポキシ樹脂、フラン樹脂、ピッチ等が好ましく、加熱による炭素化の際の炭化率の高いフェノール樹脂が特に好ましい。炭素化を経ない場合は、上記樹脂に加え撥水性を担保できるポリテトラフルオロエチレンに加え、黒鉛、カーボンブラック、カーボンナノチューブ等を添加することで炭素化を経ずとも導電性の高い多孔質電極基材を得ることができる。 As the carbon material for binding the carbon fibers to each other, a carbon material obtained by carbonizing a resin by heating can be used. As the resin used for this purpose, a known resin capable of binding the carbon fibers of the porous electrode base material at the stage of carbonization can be appropriately selected and used. From the viewpoint that it easily remains as a conductive substance after carbonization, phenol resin, epoxy resin, furan resin, pitch and the like are preferable, and phenol resin having a high carbonization rate at the time of carbonization by heating is particularly preferable. In the case of not undergoing carbonization, by adding graphite, carbon black, carbon nanotubes, etc. in addition to polytetrafluoroethylene that can guarantee water repellency in addition to the above resin, a porous electrode with high conductivity without undergoing carbonization is added. A base material can be obtained.

炭素材の炭素化は、不活性ガス中において1500~2200℃で焼成することで行うことができる。
炭素化を行う前に、熱成型・酸化処理を行うことでより残炭率が高く、表面平滑性が高く、厚みばらつきの小さい多孔質電極基材を製造することができる。
The carbonization of the carbon material can be carried out by firing at 1500 to 2200 ° C. in an inert gas.
By performing thermoforming and oxidation treatment before carbonization, it is possible to produce a porous electrode base material having a higher residual carbon content, higher surface smoothness, and less thickness variation.

多孔質電極基材の厚みは、通常50~500μmが好ましく、50~300μmがより好ましい。この範囲内にあれば、ロール状に巻き取りやすい上に高いシート強度を保持できる。
第2の工程において、上述のごとく得られた多孔質電極基材をシート流れ方向に沿って直径40~150mmのロールに2~180°の角度で抱かせ、10~100N/mのシ
ート張力にて走行せしめることで多孔質電極基材中に含まれる結合の弱い炭素粉を脱離させる。
The thickness of the porous electrode base material is usually preferably 50 to 500 μm, more preferably 50 to 300 μm. If it is within this range, it can be easily wound into a roll and can maintain high sheet strength.
In the second step, the porous electrode base material obtained as described above is held by a roll having a diameter of 40 to 150 mm at an angle of 2 to 180 ° along the sheet flow direction to a sheet tension of 10 to 100 N / m. The carbon powder with a weak bond contained in the porous electrode base material is desorbed by running the powder.

<(2)前記多孔質電極基材をシート流れ方向に沿って直径40~150mmのロールに2~180°の角度で抱かせ、10~100N/mのシート張力にて走行せしめること
で多孔質電極基材中に含まれる結合の弱い炭素粉を脱離させる工程>
<(2) The porous electrode base material is held in a roll having a diameter of 40 to 150 mm at an angle of 2 to 180 ° along the sheet flow direction, and is run at a sheet tension of 10 to 100 N / m to be porous. Step to remove carbon powder with weak bond contained in the electrode base material>

多孔質電極基材は、通常、高分子電解質膜や触媒層と接着させる際や、電池に組み込む際に加圧される。この際に、多孔質電極基材表面に付着した炭素繊維片や炭素粉が高分子電解質膜へのダメージの原因となる。したがって、第2の工程を経ることで、加圧によって多孔質電極基材から脱落する炭素繊維や炭素粉を事前に取り除くことができ、高分子電解質膜へのダメージを低減することができる。
膜-電極接合体や固体高分子形燃料電池において、このような本発明に係る多孔質電極基材を配置することで、膜-電極接合体の組み立て時、固体高分子形燃料電池セルやレドックスフロー電池セルの作製時または発電時の加圧において、炭素繊維および炭素粉が高分子電解質膜へ与えるダメージを低減することができる。
The porous electrode base material is usually pressurized when it is adhered to a polymer electrolyte membrane or a catalyst layer, or when it is incorporated into a battery. At this time, the carbon fiber pieces and carbon powder adhering to the surface of the porous electrode base material cause damage to the polyelectrolyte film. Therefore, by going through the second step, the carbon fibers and carbon powder that fall off from the porous electrode base material due to pressurization can be removed in advance, and the damage to the polyelectrolyte film can be reduced.
By arranging such a porous electrode base material according to the present invention in a membrane-electrode assembly or a polymer electrolyte fuel cell, a solid polymer fuel cell or a redox can be used when assembling the membrane-electrode assembly. It is possible to reduce the damage caused by the carbon fiber and the carbon powder to the polymer electrolyte membrane during the production of the flow battery cell or the pressurization during power generation.

ここで「シート流れ方向」とは、多孔質電極基材を搬送する方向のことを指す。多孔質電極基材を抱かせるロールとしては直径40~150mmが好適である。直径40mm以上であれば多孔質電極基材に割れが生じることなく安定して搬送が可能であり、150mm以内であれば十分に多孔質電極基材に付着した炭素繊維や炭素粉を脱離させることが可能である。ロールの表面性状としては、多孔質電極基材の表面を傷つけない材質であれば良く、ゴム、各種金属、カーボン等が使用できる。ロールを汚染しにくいという観点から、ハードクロムメッキを施したロールを用いることが好ましい。多孔質電極基材を抱かせる角度としては、ロール中心に対し、2~180度とすることが好ましい。角度が小さいと抱かせることによる炭素繊維および炭素粉の脱離が困難となる。 Here, the "sheet flow direction" refers to the direction in which the porous electrode base material is conveyed. A roll having a diameter of 40 to 150 mm is suitable for holding the porous electrode base material. If the diameter is 40 mm or more, the porous electrode base material can be stably transported without cracking, and if it is 150 mm or less, the carbon fibers and carbon powder adhering to the porous electrode base material are sufficiently desorbed. It is possible. The surface texture of the roll may be any material as long as it does not damage the surface of the porous electrode base material, and rubber, various metals, carbon and the like can be used. From the viewpoint of not easily contaminating the roll, it is preferable to use a roll plated with hard chrome. The angle at which the porous electrode base material is held is preferably 2 to 180 degrees with respect to the center of the roll. If the angle is small, it becomes difficult to separate the carbon fiber and carbon powder by hugging them.

<(3)多孔質電極基材を、JIS‐Aゴム硬度A60~A100のゴムロールとハー
ドクロムメッキの施された金属ロールとで1~10kNの荷重にてプレスすることで、多孔質電極基材中に含まれる結合の弱い炭素粉を脱離させる工程>
工程2の代わりに工程3によって、多孔質電極基材を、プレスすることで多孔質電極基材中に含まれる結合の弱い炭素粉を脱離させることもできる。プレスには一対のロールを用いるが、一方にはゴムロールを用い、もう一方には金属ロールを用いる。ゴムロールの硬度としてはJISK6523にて規定されるゴム硬度A60~A100が好ましい。上記範囲のゴム硬度とすることで、立ち上がった炭素繊維を折損処理するだけでなく、多孔質電極基材中の炭素繊維結着部における弱い部分を破壊することができる。また、多孔質電極基材の変形に対して追従することが可能であるため、ワレ等が発生せず安定して処理することが可能である。またもう一方のロールにはハードクロムメッキの施された金属ロールを用いることで、多孔質電極基材よりも剛直であることから所定の荷重で均一にプレスすることが可能となる。プレスの際に与える荷重としては1~10kNの荷重が好ましい1kN以上であれば立ち上がった炭素繊維を折損するのに十分であり、かつ結着の弱い部分を破壊することができる。10kN未満であれば多孔質電極基材の主要部分を破壊することなく、均一に処理することが可能である。
<(3) The porous electrode base material is pressed with a rubber roll having a JIS-A rubber hardness of A60 to A100 and a metal roll plated with hard chrome with a load of 1 to 10 kN. Step to remove carbon powder with weak bond contained in>
By step 3 instead of step 2, the porous electrode base material can be pressed to desorb the carbon powder having a weak bond contained in the porous electrode base material. A pair of rolls is used for the press, one is a rubber roll and the other is a metal roll. As the hardness of the rubber roll, the rubber hardnesses A60 to A100 specified by JIS K6523 are preferable. By setting the rubber hardness within the above range, it is possible not only to break the raised carbon fibers but also to break the weak portion in the carbon fiber binding portion in the porous electrode base material. Further, since it is possible to follow the deformation of the porous electrode base material, it is possible to perform stable processing without causing cracks or the like. By using a metal roll plated with hard chrome for the other roll, it is more rigid than the porous electrode base material, so that it can be uniformly pressed with a predetermined load. As the load applied at the time of pressing, a load of 1 to 10 kN is preferable, and if it is 1 kN or more, it is sufficient to break the raised carbon fibers, and it is possible to break the weakly bound portion. If it is less than 10 kN, it can be uniformly treated without destroying the main part of the porous electrode base material.

<(4)次いで、多孔質電極基材に付着した炭素粉を連続的に除去する工程>
工程4において上流工程にて発生した炭素繊維を含む炭素粉を除去する。除去には非接触方式、接触方式のいずれかまたは両方を適用できる。非接触方式では多孔質電極基材にダメージを与える損傷はないといった利点が挙げられるが、サイズの小さい炭素粉はエアーで巻き上げることが困難であるため、除去できない。サイズの小さい炭素粉に対しては接触方式のクリーニングが有効である。接触方式としては回転ブラシを適用できる。回転ブラシに用いるブラシの材質としては多孔質電極基材を損傷しないものであればよく、各種プラスチックたとえばナイロン、ポリプロピレン、帯電によるブラシおよび多孔質電極基材の汚染を防ぐため、導電性繊維を一部用いることが好ましい。
<(4) Next, a step of continuously removing carbon powder adhering to the porous electrode base material>
In step 4, carbon powder containing carbon fibers generated in the upstream step is removed. Non-contact method, contact method, or both can be applied to the removal. The non-contact method has the advantage that it does not damage the porous electrode base material, but it cannot be removed because it is difficult to wind up the small carbon powder with air. Contact-type cleaning is effective for small-sized carbon powder. A rotating brush can be applied as the contact method. The material of the brush used for the rotating brush may be any material that does not damage the porous electrode base material, and various plastics such as nylon, polypropylene, and conductive fibers are used to prevent the brush and the porous electrode base material from being contaminated by charging. It is preferable to use the part.

ブラシの繊維径は多孔質電極基材の細孔内への侵入および炭素繊維結着部の余剰バインダーの除去を行う観点から、0.02mm~0.5mmが好ましく、0.05~0.3mmがさらに好ましい。繊維径を細くし過ぎるとブラシの腰がなくなり、掻き取る力がそがれてしまう。一方繊維径を太くし過ぎると、ブラシの腰が強いため、必要以上にガス拡散層表面を削り取ってしまうため好ましくない。また、細い繊維径のブラシを使用する場合は、ブラシ同士が絡みやすくなってしまうため、繊維にクリンプを入れることで繊維同士が絡まらず、ブラシ先端が独立した状態となるよう処理しておくことが好ましい。回転ブラシの回転数はライン速度に応じて変更することができる。好適な範囲は60~1200rpmであり、さらに好適な範囲は60~400rpmである。回転方向は多孔質電極基材の流れに対して、正方向、逆方向の両方に回転させることで、平面にランダムに配置した炭素繊維の破片を均一に除去することが可能となる。回転ブラシの押し込み量は、多孔質電極基材とブラシの先端が接触する位置を基準に、0.2~5.0mm押し込むことが好ましい。 The fiber diameter of the brush is preferably 0.02 mm to 0.5 mm, preferably 0.05 to 0.3 mm, from the viewpoint of invading the pores of the porous electrode base material and removing the excess binder at the carbon fiber binding portion. Is even more preferable. If the fiber diameter is made too small, the brush will lose its waist and the scraping force will be reduced. On the other hand, if the fiber diameter is made too large, the brush is stiff and the surface of the gas diffusion layer is scraped off more than necessary, which is not preferable. Also, when using a brush with a small fiber diameter, the brushes tend to get entangled with each other, so by putting a crimp in the fiber, the fibers should not be entangled with each other and the brush tips should be treated so that they are independent. Is preferable. The number of rotations of the rotating brush can be changed according to the line speed. A preferred range is 60 to 1200 rpm, and a more preferred range is 60 to 400 rpm. By rotating the porous electrode base material in both the forward direction and the reverse direction with respect to the flow of the porous electrode base material, it is possible to uniformly remove the carbon fiber fragments randomly arranged on the plane. The pushing amount of the rotating brush is preferably 0.2 to 5.0 mm based on the position where the porous electrode base material and the tip of the brush come into contact with each other.

<(5)(4)で得られた多孔質電極基材にコーティング層を形成したガス拡散層を得る工程。>
工程5において、工程4までで得られた多孔質電極基材にコーティング層を形成し、ガス拡散層を得る。ここで言う「コーティング層」とは、多孔質電極基材の少なくとも一方の面に配されるものであって、導電剤と撥水剤からなる層のことを指す。コーティング層に用いる導電剤としてはカーボン粉等を用いることができる。カーボン粉は、たとえば、黒鉛粉やカーボンブラック、カーボンナノチューブ、カーボンナノファイバーなどを用いることができる。中でも製造コストの観点からカーボンブラックを用いることが好ましい。例えばファーネスブラック(例えばCABOT社製のバルカンXC72)、アセチレンブラック(例えば電気化学工業(株)製のデンカブラック)、ケッチェンブラック(例えばライオン(株)製のKetjen Black EC)などを用いることができる。カーボン粉を用いる割合としては、カーボン粉を溶媒に分散させた際の濃度が、5~30%となるように用いることが好ましい。撥水剤としてはフッ素樹脂やシリコーン樹脂などが挙げられ、これらを水などの溶媒に分散させて用いることが出来る。撥水性の高さから特に好ましくはフッ素樹脂である。フッ素樹脂としては例えばテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-エチレン共重合体などがあげられ、特にPTFEが好ましい。撥水剤を用いる割合としては、撥水剤を溶媒に分散させた際の濃度が、5~60%となるように用いることが好ましい。本発明においては撥水剤を繊維化させるため、乳化重合により製造されるPTFEが好ましく、中でもディスパージョンタイプの使用が好ましい。
<(5) A step of obtaining a gas diffusion layer in which a coating layer is formed on the porous electrode base material obtained in (4). >
In step 5, a coating layer is formed on the porous electrode base material obtained up to step 4, and a gas diffusion layer is obtained. The "coating layer" referred to here refers to a layer composed of a conductive agent and a water repellent agent, which is arranged on at least one surface of the porous electrode base material. As the conductive agent used for the coating layer, carbon powder or the like can be used. As the carbon powder, for example, graphite powder, carbon black, carbon nanotubes, carbon nanofibers and the like can be used. Above all, it is preferable to use carbon black from the viewpoint of manufacturing cost. For example, furnace black (for example, Balkan XC72 manufactured by CABOT), acetylene black (for example, Denka black manufactured by Electrochemical Industry Co., Ltd.), Ketjen black (for example, Ketjen Black EC manufactured by Lion Co., Ltd.) and the like can be used. .. As the ratio of using the carbon powder, it is preferable to use it so that the concentration when the carbon powder is dispersed in the solvent is 5 to 30%. Examples of the water repellent agent include fluororesin and silicone resin, and these can be dispersed in a solvent such as water and used. Fluororesin is particularly preferable because of its high water repellency. Examples of the fluororesin include tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene (PTFE), tetrafluoroethylene-ethylene copolymer and the like, and PTFE is particularly preferable. As a ratio of using the water repellent agent, it is preferable to use the water repellent agent so that the concentration when the water repellent agent is dispersed in the solvent is 5 to 60%. In the present invention, in order to make the water repellent into fibers, PTFE produced by emulsion polymerization is preferable, and the dispersion type is particularly preferable.

カーボン粉および撥水剤を分散させる溶媒としては、水や有機溶媒を用いることが出来る。有機溶媒の危険性、コスト及び環境負荷の観点から、水を使用することが好ましい。ただし、カーボン粉は疎水性が高くそのままでは水に分散しないため、界面活性剤等を用いることで、水に分散させることができる。有機溶媒を使用する際には、水と混合可能な溶媒である低級アルコールやアセトンなどの使用が好ましい。これら有機溶媒を用いる割
合としては、水10に対して0.5~2の比率で用いることが好ましい。
Water or an organic solvent can be used as the solvent for dispersing the carbon powder and the water repellent. It is preferable to use water from the viewpoint of the danger, cost and environmental load of the organic solvent. However, since carbon powder is highly hydrophobic and does not disperse in water as it is, it can be dispersed in water by using a surfactant or the like. When using an organic solvent, it is preferable to use a lower alcohol or acetone which is a solvent that can be mixed with water. The ratio of these organic solvents to water 10 is preferably 0.5 to 2.

カーボン粉と撥水剤からなるコーティング層とは、カーボン粉がバインダーである撥水剤によって結合されたものである。言い換えれば、撥水剤によって形成されるネットワーク中にカーボン粉が取り込まれ、微細な網目構造を有する。コーティング層を形成させる際に、組成物の一部が多孔質電極基材へと染み込むため、コーティング層と多孔質電極基材との明確な境界線の定義は困難であるが、本発明においてはコーティング層組成物の多孔質電極基材へのしみこみが生じていない部分、すなわちカーボン粉と撥水剤のみから構成される層のみをコーティング層と定義する。形本発明のガス拡散層は、多孔質電極基材の面のいずれか一方の面上にカーボン粉と撥水剤からなるコーティング層を有している。両面に当該コーティング層を有していてもよいが、プロセスが増加による生産性の低下および両面にコーティング層を有することでガス拡散性と排水性が低下する可能性があることから片面塗布が好ましい。コーティング層を形成させる表面はどちらでも良いが、強固なコーティング層を形成させるためにはある程度の表面粗さを有する面であることが好ましい。ただし、多孔質電極基材の一方の面にガス流路を形成したものなどはこの限りではなく、もう一方の平滑な面に形成することが好ましい。 The coating layer composed of the carbon powder and the water repellent is formed by binding the carbon powder with the water repellent which is a binder. In other words, carbon powder is incorporated into the network formed by the water repellent agent and has a fine network structure. It is difficult to define a clear boundary line between the coating layer and the porous electrode base material because a part of the composition soaks into the porous electrode base material when the coating layer is formed. Only the portion where the coating layer composition does not soak into the porous electrode base material, that is, the layer composed of carbon powder and the water repellent agent, is defined as the coating layer. Shape The gas diffusion layer of the present invention has a coating layer composed of carbon powder and a water repellent on either one of the surfaces of the porous electrode base material. Although the coating layer may be provided on both sides, single-sided coating is preferable because the increase in the process may reduce productivity and the presence of the coating layer on both sides may reduce gas diffusivity and drainage. .. The surface on which the coating layer is formed may be either, but in order to form a strong coating layer, it is preferable that the surface has a certain degree of surface roughness. However, the case where the gas flow path is formed on one surface of the porous electrode base material is not limited to this, and it is preferable to form the gas flow path on the other smooth surface.

<(6)(5)で得られたガス拡散層のコーティング層上に電極触媒層を形成しガス拡散電極を得る工程>
ここで言う電極触媒層とは、触媒として白金担持カーボンおよびバインダーとしてイオン交換能を有する高分子からなる層であって、水素の酸化反応および酸素の還元反応が起こる反応場である。触媒としては白金を使用しない例えば、他の金属やカーボンアロイ触媒などを適用してもよい。また、バインダーとしてはフッ素系イオン交換樹脂だけでなく、炭化水素系のイオン交換樹脂を適用することも出来る。触媒層の厚みは2~30μmとすることで効率よく発電可能である。触媒層を形成する方法としては各種の塗工方法を適用することができる。例えばバーコート法、ブレード法、スクリーン印刷法、スプレー法、カーテンコーティング法およびロールコート法などがあげられる。これらの方法により、ガス拡散層のコーティング層上に均一な触媒層膜を形成することができる。形成した触媒層の塗工膜は一般的な方法で乾燥され触媒層を形成したガス拡散電極を製造することができる。
本発明の多孔質電極基材は、炭素繊維が炭素により結着された炭素繊維シートであって、シート表面の炭素繊維結着部分に付着したバインダーの最大厚みが5μm以内である多孔質電極基材である。バインダーの最大厚みが厚すぎると、燃料電池やレドックスフロー電池に用いた際に短絡や反応ガスおよび電解液のクロスリークが生じやすくなってしまう。
上記の多孔質電極基材は、その厚みが80~300μm、嵩密度が、0.18~0.42g/cm、貫通抵抗が、3.0~7.0mΩ・cm、厚み方向の透気度が、0.2~7.1L/(m・Pa・s)であることが性能面で好ましい。
上記の多孔質電極基材の少なくとも一方の面にカーボン粉と撥水剤からなるコーティング層を形成すると、固体高分子形燃料電池用ガス拡散層として用いることができる。
また、上記の固体高分子形燃焼電池用ガス拡散層のコーティング層上に電極触媒層を設けると、固体高分子形燃料電池用ガス拡散電極として用いることができる。
<Steps of forming an electrode catalyst layer on the coating layer of the gas diffusion layer obtained in (6) and (5) to obtain a gas diffusion electrode>
The electrode catalyst layer referred to here is a layer composed of platinum-supported carbon as a catalyst and a polymer having an ion exchange ability as a binder, and is a reaction field in which an oxidation reaction of hydrogen and a reduction reaction of oxygen occur. Platinum is not used as the catalyst. For example, another metal or a carbon alloy catalyst may be applied. Further, as the binder, not only a fluorine-based ion exchange resin but also a hydrocarbon-based ion exchange resin can be applied. Efficient power generation can be achieved by setting the thickness of the catalyst layer to 2 to 30 μm. As a method for forming the catalyst layer, various coating methods can be applied. Examples thereof include a bar coating method, a blade method, a screen printing method, a spray method, a curtain coating method and a roll coating method. By these methods, a uniform catalyst layer film can be formed on the coating layer of the gas diffusion layer. The coated film of the formed catalyst layer is dried by a general method to produce a gas diffusion electrode having the catalyst layer formed.
The porous electrode base material of the present invention is a carbon fiber sheet in which carbon fibers are bound by carbon, and the maximum thickness of the binder attached to the carbon fiber bound portion on the sheet surface is within 5 μm. It is a material. If the maximum thickness of the binder is too thick, short circuits and cross leaks of the reaction gas and the electrolytic solution are likely to occur when used in a fuel cell or a redox flow battery.
The above-mentioned porous electrode base material has a thickness of 80 to 300 μm, a bulk density of 0.18 to 0.42 g / cm 3 , a penetration resistance of 3.0 to 7.0 mΩ · cm 2 , and transparency in the thickness direction. It is preferable that the air temperature is 0.2 to 7.1 L / (m 2 · Pa · s) in terms of performance.
When a coating layer made of carbon powder and a water repellent is formed on at least one surface of the above-mentioned porous electrode base material, it can be used as a gas diffusion layer for a polymer electrolyte fuel cell.
Further, if an electrode catalyst layer is provided on the coating layer of the gas diffusion layer for a polymer electrolyte fuel cell, it can be used as a gas diffusion electrode for a polymer electrolyte fuel cell.

以下、実施例において本発明をより具体的に説明する。
<嵩密度の算出>
製造した多孔質電極基材から、3×3cm角の試験片を20点、ランダムに取り出し、それぞれの厚みをマイクロメーター(ミツトヨ社製)により各サンプルに対して5点ずつ測定して平均厚みを算出し、重量を電子天秤により秤量した。下式に従って多孔質炭素電極の嵩密度を算出した。20点測定した嵩密度の平均値を其のサンプルの代表値として採
用した。
Hereinafter, the present invention will be described in more detail in Examples.
<Calculation of bulk density>
Twenty 3 x 3 cm square test pieces were randomly taken out from the manufactured porous electrode base material, and the thickness of each was measured at 5 points for each sample with a micrometer (manufactured by Mitutoyo) to obtain the average thickness. It was calculated and weighed with an electronic balance. The bulk density of the porous carbon electrode was calculated according to the following formula. The average value of the bulk density measured at 20 points was adopted as the representative value of the sample.

(嵩密度)=試験片重量(g)/試験片厚み(cm)/試験片面積(cm
<貫通抵抗の測定>
多孔質電極基材の厚み方向の電気抵抗(貫通抵抗)は、金メッキした銅板に多孔質電極基材を挟み、銅板の上下から1.0MPaで加圧し、10mA/cmの電流密度で電流を流したときの抵抗値を測定し、次式より求めた。なお多孔質電極基材の試料サイズは直径=25mmである。
(Bulk density) = Test piece weight (g) / Test piece thickness (cm) / Test piece area (cm 2 )
<Measurement of penetration resistance>
The electrical resistance (penetration resistance) in the thickness direction of the porous electrode base material is such that the porous electrode base material is sandwiched between gold-plated copper plates and pressurized at 1.0 MPa from above and below the copper plate, and a current is applied at a current density of 10 mA / cm 2 . The resistance value at the time of flowing was measured and obtained from the following equation. The sample size of the porous electrode base material is 25 mm in diameter.

貫通抵抗(mΩ・cm)=測定抵抗値(mΩ)×試料面積(cm
<厚み方向透気度の測定>
JIS規格P-8117に準拠し、ガーレーデンソメーターを使用して200mLの空気が透過するのにかかった時間を測定し、10点の平均値より透気度(L/(m・Pa・s))を算出した。
<炭素繊維結着部分に付着したバインダーの最大厚みの測定方法>
多孔質電極基材表面の炭素繊維結着部分に付着したバインダーの最大厚みは、走査形電子顕微鏡(SEM)により決定される。任意に切り出した多孔質電極基材の断面における表面近傍を倍率1000倍にて観察し、炭素繊維同士が結着した点を50点抽出する。上記結着点において炭素繊維上に存在するバインダーの厚みをイメージプロプラス(日本ローパー社製)にて計測し、20点中の最大高さにより、バインダー厚みを決定した。
Penetration resistance (mΩ · cm 2 ) = measured resistance value (mΩ) x sample area (cm 2 )
<Measurement of air permeability in the thickness direction>
In accordance with JIS standard P-8117, the time required for 200 mL of air to permeate is measured using a Garley densometer, and the air permeability (L / (m 2 · Pa · s) is measured from the average value of 10 points. )) Was calculated.
<Measuring method of the maximum thickness of the binder attached to the carbon fiber binding part>
The maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the porous electrode substrate is determined by a scanning electron microscope (SEM). The vicinity of the surface in the cross section of the porous electrode base material cut out arbitrarily is observed at a magnification of 1000 times, and 50 points where the carbon fibers are bonded are extracted. The thickness of the binder existing on the carbon fiber at the binding point was measured by Image Proplus (manufactured by Nippon Roper Co., Ltd.), and the binder thickness was determined by the maximum height among the 20 points.

(実施例1)
<多孔質電極基材の作製>
炭素繊維として、長さ3mmにカットした平均直径7μmのPAN系炭素繊維100質量部と、長さ3mmのポリビニルアルコール(PVA)繊維(商品名:VBP105-1、クラレ株式会社製)を20量部、ポリエチレンパルプ(三井化学株式会社製SWP 濾水度450ml、JIS P8121のパルプ濾水度試験法(1)カナダ標準型で測定)20質量部を水中で分散し、連続的に金網上に抄造した後、乾燥して炭素繊維紙を得た。
(Example 1)
<Preparation of porous electrode base material>
As carbon fibers, 100 parts by mass of PAN-based carbon fiber with an average diameter of 7 μm cut to a length of 3 mm and 20 parts by weight of polyvinyl alcohol (PVA) fiber (trade name: VBP105-1, manufactured by Kuraray Co., Ltd.) having a length of 3 mm. , Polyethylene pulp (SWP drainage degree 450 ml manufactured by Mitsui Kagaku Co., Ltd., pulp drainage degree test method of JIS P8121 (1) measured by Canadian standard type) 20 parts by mass was dispersed in water and continuously made on a wire net. After that, it was dried to obtain carbon fiber paper.

この炭素繊維紙100質量部に、フェノール樹脂(商品名:フェノライトJ-325、DIC株式会社製)のメタノール溶液を含浸させ、加熱炉でメタノールを十分に乾燥させ、フェノール樹脂の不揮発分を100質量部付着させたフェノール樹脂含浸炭素繊維紙を得た。 100 parts by mass of this carbon fiber paper is impregnated with a methanol solution of phenol resin (trade name: Phenolite J-325, manufactured by DIC Co., Ltd.), and the methanol is sufficiently dried in a heating furnace to reduce the non-volatile content of the phenol resin to 100. A phenol resin impregnated carbon fiber paper adhered by mass was obtained.

このフェノール樹脂含浸炭素繊維紙を、250℃の温度で8×10N/mの線力のロールプレスを行い、フェノール樹脂を硬化させた。その後、不活性ガス(窒素)雰囲気中、1900℃で連続的に炭素化して、厚みが190μm、嵩密度が、0.29g/cm、貫通抵抗が、4.0mΩ・cm、厚み方向の透気度が、3.4L/(m・Pa・s)である多孔質電極基材を得た。 This phenol resin-impregnated carbon fiber paper was roll-pressed with a linear force of 8 × 10 4 N / m at a temperature of 250 ° C. to cure the phenol resin. After that, it was continuously carbonized at 1900 ° C. in an inert gas (nitrogen) atmosphere, with a thickness of 190 μm, a bulk density of 0.29 g / cm 3 , a penetration resistance of 4.0 mΩ · cm 2 , and a thickness direction. A porous electrode base material having an air permeability of 3.4 L / (m 2 · Pa · s) was obtained.

この多孔質電極基材を直径40mmのローラーに対し、5°の抱き角となるように直径200mmのガイドロールの位置を調整し、上記抱き角にて10m/分の速度で走行せし
め、巻き取った。多孔質電極基材の両面が処理されるよう、ローラーに抱かせる面を変更し、再度直径40mmのローラーを通過する処理を行い巻き取った。抱き角調整要に用いたロールの直径は200mmである。次いで多孔質電極基材を巻出し、両面から回転ブラシ(線径0.3mm、回転数200rpm、正逆転方向処理となるよう両面に2ロールずつ配置)による処理を実施後、多孔質電極基材を巻き取った。得られた多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚みを測定したところ、表1の通り良好な結果となった。
This porous electrode base material is adjusted to the position of a guide roll having a diameter of 200 mm so as to have a holding angle of 5 ° with respect to a roller having a diameter of 40 mm. rice field. The surface to be held by the roller was changed so that both sides of the porous electrode base material were processed, and the process of passing through the roller having a diameter of 40 mm was performed again to wind up. The diameter of the roll used for adjusting the holding angle is 200 mm. Next, the porous electrode base material is unwound and treated with a rotating brush (wire diameter 0.3 mm, rotation speed 200 rpm, 2 rolls on each side so as to be processed in the forward / reverse direction) from both sides, and then the porous electrode base material is applied. Was rolled up. When the maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the obtained porous electrode base material was measured, good results were obtained as shown in Table 1.

<多孔質電極基材の撥水処理>
多孔質電極基材用の撥水処理液の作成には、PTFEディスパージョン(31-JR、三井デュポンフロロケミカル製)と界面活性剤(ポリオキシエチレン(10)オクチルフェニルエーテル)および蒸留水を用いた。撥水処理液における固形分濃度が、PTFEは1wt%、界面活性剤は2wt%となるように調整した後、蒸留水を添加して、ディスパーを用いて1000rpm、10分間撹拌することによって撥水処理液を作成した。
多孔質電極基材を上記の撥水処理液に浸漬することによって含浸させた。含浸後の多孔質電極基材を2対のニップロールを通過させることで余分な撥水処理液を取り除いたのち、乾燥炉にて乾燥処理することで撥水処理が施された多孔質電極基材を得た。
<Water repellent treatment of porous electrode base material>
To prepare a water-repellent treatment liquid for a porous electrode substrate, PTFE dispersion (31-JR, manufactured by Mitsui DuPont Fluorochemical), a surfactant (polyoxyethylene (10) octylphenyl ether) and distilled water are used. board. After adjusting the solid content concentration in the water-repellent treatment liquid to 1 wt% for PTFE and 2 wt% for the surfactant, distilled water is added and the mixture is stirred at 1000 rpm for 10 minutes using a disper to repel water. A treatment liquid was prepared.
The porous electrode base material was impregnated by immersing it in the above water-repellent treatment liquid. After the excess water-repellent treatment liquid is removed by passing the impregnated porous electrode base material through two pairs of nip rolls, the porous electrode base material is subjected to the water-repellent treatment by drying in a drying furnace. Got

<ガス拡散層の作製>
デンカブラック(電気化学工業株式会社製)、イオン交換水、界面活性剤をそれぞれ8:100:0.8の割合で混合し、ホモミクサーMARK-II(プライミクス株式会社製)を用いて、冷却しながら15000rpmで30分間撹拌を行って、コーティング液1を得た。
<Preparation of gas diffusion layer>
Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd.), ion-exchanged water, and surfactant are mixed at a ratio of 8: 100: 0.8, respectively, and while cooling using Homomixer MARK-II (manufactured by Primix Co., Ltd.). Stirring was performed at 15,000 rpm for 30 minutes to obtain a coating liquid 1.

コーティング液1に、ポリテトラフルオロエチレン(PTFE)ディスパージョンをカーボンブラック1に対し、0.3の割合で添加しディスパーによって5000rpmで15分間の撹拌を行い、コーティング液2を得た。 Polytetrafluoroethylene (PTFE) dispersion was added to the coating liquid 1 at a ratio of 0.3 to carbon black 1, and the mixture was stirred with the dispersion at 5000 rpm for 15 minutes to obtain the coating liquid 2.

コーティング液2をスロットダイによって吐出し、シート搬送速度1m/minにて塗工し、すぐさま100℃に設定した熱風乾燥炉を用いて20分間乾燥させた。さらに、乾燥後焼結炉にて360℃10間焼結処理をおこなってコーティング層を形成したガス拡散層を得た。 The coating liquid 2 was discharged by a slot die, coated at a sheet transport speed of 1 m / min, and immediately dried in a hot air drying oven set at 100 ° C. for 20 minutes. Further, after drying, a gas diffusion layer having a coating layer formed was obtained by performing a sintering treatment at 360 ° C. for 10 minutes in a sintering furnace.

<ガス拡散電極の作製と発電試験>
触媒担持カーボン(触媒:Pt、触媒担持量:50質量%)及び撥水剤、アイオノマーからなる触媒インクをガス拡散層のコーティング層が形成された面上に塗布、乾燥することで触媒層を形成したガス拡散電極を得た。得られたガス拡散電極で高分子電解質膜ナフィオンNR211を挟み込みホットプレスを実施し、膜電極接合体を作製後、発電試験を実施したところいずれの試験条件でも良好な結果が得られた。結果を表1にまとめた。
<Manufacturing of gas diffusion electrode and power generation test>
A catalyst layer is formed by applying a catalyst ink composed of catalyst-supported carbon (catalyst: Pt, catalyst-supported amount: 50% by mass), a water repellent, and an ionomer on the surface on which the coating layer of the gas diffusion layer is formed and drying. A gas diffusion electrode was obtained. When the polymer electrolyte membrane Nafion NR211 was sandwiched between the obtained gas diffusion electrodes and hot pressed was performed to prepare a membrane electrode assembly, and then a power generation test was conducted, good results were obtained under all test conditions. The results are summarized in Table 1.

(実施例2)
抱き角を30度に変更したこと以外は実施例1と同様にして、多孔質電極基材およびガス拡散層、ガス拡散電極を得た。多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚み、ガス拡散電極の発電試験の結果は表1の通り良好な結果が得られた。
(Example 2)
A porous electrode base material, a gas diffusion layer, and a gas diffusion electrode were obtained in the same manner as in Example 1 except that the holding angle was changed to 30 degrees. As shown in Table 1, good results were obtained for the maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the porous electrode base material and the result of the power generation test of the gas diffusion electrode.

(実施例3)
抱き角を180度に変更したこと以外は実施例1と同様にして、多孔質電極基材およびガス拡散層、ガス拡散電極を得た。多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚み、ガス拡散電極の発電試験の結果は表1の通り良好な結果が得られた。
(Example 3)
A porous electrode base material, a gas diffusion layer, and a gas diffusion electrode were obtained in the same manner as in Example 1 except that the holding angle was changed to 180 degrees. As shown in Table 1, good results were obtained for the maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the porous electrode base material and the result of the power generation test of the gas diffusion electrode.

(実施例4)
抱かせるローラーの直径を150mmに変更したこと以外は実施例1と同様にして、多孔質電極基材およびガス拡散層、ガス拡散電極を得た。多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚み、ガス拡散電極の発電試験の結果は表1の通り良好な結果が得られた。
(Example 4)
A porous electrode base material, a gas diffusion layer, and a gas diffusion electrode were obtained in the same manner as in Example 1 except that the diameter of the roller to be held was changed to 150 mm. As shown in Table 1, good results were obtained for the maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the porous electrode base material and the result of the power generation test of the gas diffusion electrode.

(実施例5)
抱かせるローラーの直径を150mmに変更したこと以外は実施例2と同様にして多孔質電極基材およびガス拡散層、ガス拡散電極を得た。多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚み、ガス拡散電極の発電試験の結果は表1の通り良好な結果が得られた。
(Example 5)
A porous electrode base material, a gas diffusion layer, and a gas diffusion electrode were obtained in the same manner as in Example 2 except that the diameter of the roller to be held was changed to 150 mm. As shown in Table 1, good results were obtained for the maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the porous electrode base material and the result of the power generation test of the gas diffusion electrode.

(実施例6)
抱かせるローラーの直径を150mmに変更したこと以外は実施例3と同様にして多孔質電極基材およびガス拡散層、ガス拡散電極を得た。多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚み、ガス拡散電極の発電試験の結果は表1の通り良好な結果が得られた。
(Example 6)
A porous electrode base material, a gas diffusion layer, and a gas diffusion electrode were obtained in the same manner as in Example 3 except that the diameter of the roller to be held was changed to 150 mm. As shown in Table 1, good results were obtained for the maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the porous electrode base material and the result of the power generation test of the gas diffusion electrode.

(実施例7)
多孔質電極基材に炭素化を経ない基材を用いたこと以外は実施例1と同様にして多孔質電極基材およびガス拡散層、ガス拡散電極を得た。多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚み、ガス拡散電極の発電試験の結果は表1の通り良好な結果が得られた。
(Example 7)
A porous electrode base material, a gas diffusion layer, and a gas diffusion electrode were obtained in the same manner as in Example 1 except that a base material that did not undergo carbonization was used as the porous electrode base material. As shown in Table 1, good results were obtained for the maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the porous electrode base material and the result of the power generation test of the gas diffusion electrode.

(実施例8)
炭素繊維紙の目付およびフェノール樹脂の目付を半分とし、厚みが95μm、嵩密度が、0.22g/cm、貫通抵抗が、3.8mΩ・cm、厚み方向の透気度が、3.4L/(m・Pa・s)である多孔質電極基材としたこと以外は実施例1と同様にして多孔質電極基材およびガス拡散層、ガス拡散電極を得た。多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚み、ガス拡散電極の発電試験の結果は表1の通り良好な結果が得られた。
(Example 8)
The grain of carbon fiber paper and the grain of phenol resin are halved, the thickness is 95 μm, the bulk density is 0.22 g / cm 3 , the penetration resistance is 3.8 mΩ · cm 2 , and the air permeability in the thickness direction is 3. A porous electrode base material, a gas diffusion layer, and a gas diffusion electrode were obtained in the same manner as in Example 1 except that the porous electrode base material was 4 L / (m 2 · Pa · s). As shown in Table 1, good results were obtained for the maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the porous electrode base material and the result of the power generation test of the gas diffusion electrode.

(実施例9)
炭素繊維紙の目付およびフェノール樹脂の目付を1.5倍とし、多孔質電極基材の厚みを270μm、嵩密度を、0.36g/cm、貫通抵抗が、4.9mΩ・cm、厚み方向の透気度が、0.57L/(m・Pa・s)である多孔質電極基材としたこと以外は実施例1と同様にして多孔質電極基材およびガス拡散層、ガス拡散電極を得た。多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚み、ガス拡散電極の発電試験の結果は表1の通り良好な結果が得られた。
(Example 9)
The grain of carbon fiber paper and the grain of phenol resin are increased by 1.5 times, the thickness of the porous electrode base material is 270 μm, the bulk density is 0.36 g / cm 3 , the penetration resistance is 4.9 mΩ · cm 2 , and the thickness. The porous electrode base material, the gas diffusion layer, and the gas diffusion are the same as in Example 1 except that the porous electrode base material having an air permeability of 0.57 L / (m 2 · Pa · s) is used. An electrode was obtained. As shown in Table 1, good results were obtained for the maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the porous electrode base material and the result of the power generation test of the gas diffusion electrode.

(実施例10)
ローラーに抱かせる処理の代わりに、硬度A60のゴムロールとハードクロムメッキされた金属ロールにて荷重2kNで処理を行ったこと以外は実施例1と同様にして多孔質電極基材およびガス拡散層、ガス拡散電極を得た。多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚み、ガス拡散電極の発電試験の結果は表1の通り良好な結果が得られた。
(Example 10)
The porous electrode base material and the gas diffusion layer were treated in the same manner as in Example 1 except that the treatment was performed with a rubber roll having a hardness of A60 and a metal roll plated with hard chrome at a load of 2 kN instead of the treatment of being held by the rollers. A gas diffusion electrode was obtained. As shown in Table 1, good results were obtained for the maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the porous electrode base material and the result of the power generation test of the gas diffusion electrode.

(実施例11)
ローラーに抱かせる処理の代わりに、硬度A90のゴムロールとハードクロムメッキされた金属ロールにて荷重2kNで処理を行ったこと以外は実施例2と同様にして多孔質電極基材およびガス拡散層、ガス拡散電極を得た。多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚み、ガス拡散電極の発電試験の結果は表1の通り良好な結果が得られた。
(Example 11)
The porous electrode base material and the gas diffusion layer were treated in the same manner as in Example 2 except that the treatment was performed with a rubber roll having a hardness of A90 and a metal roll plated with hard chrome at a load of 2 kN instead of the treatment of being held by the rollers. A gas diffusion electrode was obtained. As shown in Table 1, good results were obtained for the maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the porous electrode base material and the result of the power generation test of the gas diffusion electrode.

(比較例1)
ローラーに抱かせる処理およびクリーニング処理を施さなかったこと以外は実施例1と
同様にして多孔質電極基材およびガス拡散層、ガス拡散電極を得た。得られた多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚みは大きく、それに伴い、発電試験における初期電圧の低下が確認された。
(Comparative Example 1)
A porous electrode base material, a gas diffusion layer, and a gas diffusion electrode were obtained in the same manner as in Example 1 except that the treatment of holding them on the rollers and the cleaning treatment were not performed. The maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the obtained porous electrode base material was large, and it was confirmed that the initial voltage decreased in the power generation test accordingly.

(比較例2)
ローラーに抱かせる処理およびクリーニング処理を施さなかったこと以外は実施例8と同様にして多孔質電極基材およびガス拡散層、ガス拡散電極を得た。得られた多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚みは大きく、それに伴い、発電試験における初期電圧の低下が確認された。
(Comparative Example 2)
A porous electrode base material, a gas diffusion layer, and a gas diffusion electrode were obtained in the same manner as in Example 8 except that the treatment of holding them on the rollers and the cleaning treatment were not performed. The maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the obtained porous electrode base material was large, and it was confirmed that the initial voltage decreased in the power generation test accordingly.

(比較例3)
ローラーに抱かせる処理およびクリーニング処理を施さなかったこと以外は実施例9と同様にして多孔質電極基材およびガス拡散層、ガス拡散電極を得た。得られた多孔質電極基材の表面における炭素繊維結着部分に付着したバインダーの最大厚みは大きく、それに伴い、発電試験における初期電圧の低下が確認された。
(Comparative Example 3)
A porous electrode base material, a gas diffusion layer, and a gas diffusion electrode were obtained in the same manner as in Example 9 except that the treatment of holding them on the rollers and the cleaning treatment were not performed. The maximum thickness of the binder attached to the carbon fiber binding portion on the surface of the obtained porous electrode base material was large, and it was confirmed that the initial voltage decreased in the power generation test accordingly.

Figure 2022082646000001

Figure 2022082646000002
Figure 2022082646000001

Figure 2022082646000002

Claims (9)

炭素繊維が炭素により結着された炭素繊維シートであって、シート表面の炭素繊維結着部分に付着したバインダーの最大厚みが5μm以内である多孔質電極基材。 A carbon fiber sheet in which carbon fibers are bound by carbon, and a porous electrode base material having a maximum thickness of a binder attached to a carbon fiber bound portion on the sheet surface of 5 μm or less. 請求項1に記載の多孔質電極基材の厚みが80~300μm、嵩密度が、0.18~0.42g/cm、貫通抵抗が、3.0~7.0mΩ・cm、厚み方向の透気度が、0.2~7.1L/(m・Pa・s)であり、少なくとも一方の面にカーボン粉と撥水剤からなるコーティング層を有する固体高分子形燃料電池用ガス拡散層。 The thickness of the porous electrode base material according to claim 1 is 80 to 300 μm, the bulk density is 0.18 to 0.42 g / cm 3 , the penetration resistance is 3.0 to 7.0 mΩ · cm 2 , and the thickness direction. Gas for a polymer electrolyte fuel cell having an air permeability of 0.2 to 7.1 L / (m 2 · Pa · s) and having a coating layer composed of carbon powder and a water repellent on at least one surface. Diffusion layer. 請求項2に記載の固体高分子形燃焼電池用ガス拡散層のコーティング層上に電極触媒層を有する固体高分子形燃料電池用ガス拡散電極。 The gas diffusion electrode for a polymer electrolyte fuel cell having an electrode catalyst layer on the coating layer of the gas diffusion layer for a polymer electrolyte fuel cell according to claim 2. 請求項1に記載の多孔質電極基材、請求項2に記載の固体高分子形燃料電池用ガス拡散層、あるいは請求項3に記載の固体高分子形燃料電池用ガス拡散電極を用いた固体高分子形燃料電池用膜電極接合体。 A solid using the porous electrode base material according to claim 1, the gas diffusion layer for a polymer electrolyte fuel cell according to claim 2, or the gas diffusion electrode for a polymer electrolyte fuel cell according to claim 3. Membrane electrode assembly for polymer electrolyte fuel cells. 以下の工程[1]~[6]を含む、請求項2に記載の固体高分子形燃料電池用ガス拡散層の製造方法。
工程[1]:多孔質電極基材をシート流れ方向に沿って直径40~150mmのロールに2~180°の角度で抱かせ、10~100N/mのシート張力にて走行せしめること
で多孔質電極基材中に含まれる結合の弱い炭素粉を脱離させる工程。
工程[2]:上記工程[1]で得られた多孔質電極基材上の炭素粉および炭素繊維結着部分の余剰バインダーを線径0.05mm~0.3mmの回転ブラシによって連続的に除去せしめる工程。
工程[3]:上記工程[2]で得られた多孔質電極基材上の炭素粉を除去せしめる工程。
工程[4]:上記工程[3]で得られた多孔質電極基材上に導電剤と撥水剤と界面活性剤および水からなるコーティング液を塗布することでコーティング層を形成する工程。
工程[5]:上記工程[4]にて多孔質電極基材上に形成したコーティング層を50~150℃に加熱し、乾燥する工程。
工程[6]:上記工程[5]にてコーティング層を形成した多孔質電極基材を200~400℃に加熱して撥水剤を焼結し、ガス拡散層を得る工程。
The method for producing a gas diffusion layer for a polymer electrolyte fuel cell according to claim 2, which comprises the following steps [1] to [6].
Step [1]: The porous electrode base material is held by a roll having a diameter of 40 to 150 mm at an angle of 2 to 180 ° along the sheet flow direction, and is run at a sheet tension of 10 to 100 N / m to be porous. A process of desorbing weakly bonded carbon powder contained in the electrode base material.
Step [2]: The carbon powder on the porous electrode base material obtained in the above step [1] and the excess binder of the carbon fiber binding portion are continuously removed by a rotary brush having a wire diameter of 0.05 mm to 0.3 mm. The process of squeezing.
Step [3]: A step of removing the carbon powder on the porous electrode base material obtained in the above step [2].
Step [4]: A step of forming a coating layer by applying a coating liquid consisting of a conductive agent, a water repellent agent, a surfactant, and water on the porous electrode base material obtained in the above step [3].
Step [5]: A step of heating the coating layer formed on the porous electrode substrate in the above step [4] to 50 to 150 ° C. and drying the coating layer.
Step [6]: A step of heating the porous electrode base material on which the coating layer is formed in the above step [5] to 200 to 400 ° C. and sintering the water repellent to obtain a gas diffusion layer.
前記工程[1]に代えて下記工程[1’]を含む、請求項5に記載の固体高分子形燃料電池用ガス拡散層の製造方法。
工程[1’]:多孔質電極基材を、JIS‐Aゴム硬度A60~A100のゴムロール
とハードクロムメッキの施された金属ロールとで1~10kNの荷重にてプレスすることで、多孔質電極基材中に含まれる結合の弱い炭素粉を脱離させる工程。
The method for producing a gas diffusion layer for a polymer electrolyte fuel cell according to claim 5, which comprises the following step [1'] instead of the step [1].
Step [1']: The porous electrode base material is pressed with a rubber roll having a JIS-A rubber hardness of A60 to A100 and a metal roll plated with hard chrome with a load of 1 to 10 kN to obtain the porous electrode. A process of removing weakly bonded carbon powder contained in a base material.
前記請求項5および6の工程[6]の後に、以下の工程[7]を含む、請求項3に記載の固体高分子形ガス拡散電極の製造方法。
工程[7]:コーティング層を形成したガス拡散層に電極触媒層を形成させる工程。
The method for producing a polymer electrolyte gas diffusion electrode according to claim 3, further comprising the following step [7] after the steps 5 and 6 [6].
Step [7]: A step of forming an electrode catalyst layer on the gas diffusion layer on which the coating layer is formed.
前記工程[1]の代わりに、多孔質電極基材を、JIS‐Aゴム硬度A60~A100
のゴムロールとハードクロムメッキの施された金属ロールとで1~10kNの荷重にてプレスすることで、多孔質電極基材中に含まれる結合の弱い炭素粉を脱離させる工程を含む、請求項5に記載の固体高分子形燃料電池用ガス拡散層の製造方法。
Instead of the step [1], a porous electrode base material is used as a JIS-A rubber hardness A60 to A100.
The present invention comprises a step of desorbing weakly bonded carbon powder contained in the porous electrode base material by pressing the rubber roll and the hard chrome-plated metal roll with a load of 1 to 10 kN. 5. The method for manufacturing a gas diffusion layer for a solid polymer fuel cell according to 5.
前記工程[1]の代わりに、多孔質電極基材を、JIS‐Aゴム硬度A60~A100
のゴムロールとハードクロムメッキの施された金属ロールとで1~10kNの荷重にてプレスすることで、多孔質電極基材中に含まれる結合の弱い炭素粉を脱離させる工程を含む、請求項6に記載の固体高分子形ガス拡散電極の製造方法。
Instead of the step [1], a porous electrode base material is used as a JIS-A rubber hardness A60 to A100.
The present invention comprises a step of desorbing weakly bonded carbon powder contained in the porous electrode base material by pressing the rubber roll and the hard chrome-plated metal roll with a load of 1 to 10 kN. 6. The method for manufacturing a solid polymer gas diffusion electrode according to 6.
JP2022051008A 2016-11-11 2022-03-28 Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof Active JP7355143B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016220309 2016-11-11
JP2016220309 2016-11-11
JP2017215292A JP7052301B2 (en) 2016-11-11 2017-11-08 Porous electrode base material, gas diffusion layer, gas diffusion electrode and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017215292A Division JP7052301B2 (en) 2016-11-11 2017-11-08 Porous electrode base material, gas diffusion layer, gas diffusion electrode and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022082646A true JP2022082646A (en) 2022-06-02
JP7355143B2 JP7355143B2 (en) 2023-10-03

Family

ID=62236631

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017215292A Active JP7052301B2 (en) 2016-11-11 2017-11-08 Porous electrode base material, gas diffusion layer, gas diffusion electrode and its manufacturing method
JP2022051008A Active JP7355143B2 (en) 2016-11-11 2022-03-28 Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017215292A Active JP7052301B2 (en) 2016-11-11 2017-11-08 Porous electrode base material, gas diffusion layer, gas diffusion electrode and its manufacturing method

Country Status (1)

Country Link
JP (2) JP7052301B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085332A (en) * 2016-11-11 2018-05-31 三菱ケミカル株式会社 Porous electrode substrate, gas diffusion layer, gas diffusion electrode, and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190951A (en) * 2008-02-18 2009-08-27 Mitsubishi Rayon Co Ltd Method for manufacturing porous carbon electrode base material
JP2012204142A (en) * 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and method for manufacturing the same
JP2016143468A (en) * 2015-01-30 2016-08-08 本田技研工業株式会社 Electrolyte membrane for fuel cell, method of manufacturing electrode structure
WO2016152851A1 (en) * 2015-03-25 2016-09-29 東レ株式会社 Porous carbon electrode base material, method for manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130472A (en) * 1987-11-13 1989-05-23 Fuji Electric Co Ltd Manufacture of complex electrode for phosphoric acid type fuel battery
US8343452B2 (en) * 2006-03-20 2013-01-01 GM Global Technology Operations LLC Acrylic fiber bonded carbon fiber paper as gas diffusion media for fuel cell
JP5106808B2 (en) * 2006-07-31 2012-12-26 三菱レイヨン株式会社 Porous carbon electrode substrate and polymer electrolyte fuel cell using the same
JP5531389B2 (en) * 2008-09-22 2014-06-25 東レ株式会社 Method for producing porous carbon sheet
JP2010102909A (en) * 2008-10-23 2010-05-06 Nissan Motor Co Ltd Fuel cell
WO2011065327A1 (en) * 2009-11-24 2011-06-03 三菱レイヨン株式会社 Porous electrode base material, process for production thereof, precursor sheet, film-electrode assembly, and solid polymer fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190951A (en) * 2008-02-18 2009-08-27 Mitsubishi Rayon Co Ltd Method for manufacturing porous carbon electrode base material
JP2012204142A (en) * 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and method for manufacturing the same
JP2016143468A (en) * 2015-01-30 2016-08-08 本田技研工業株式会社 Electrolyte membrane for fuel cell, method of manufacturing electrode structure
WO2016152851A1 (en) * 2015-03-25 2016-09-29 東レ株式会社 Porous carbon electrode base material, method for manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell

Also Published As

Publication number Publication date
JP2018085333A (en) 2018-05-31
JP7355143B2 (en) 2023-10-03
JP7052301B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
EP3396753B1 (en) Gas diffusion electrode and method for manufacturing same
JP7078027B2 (en) Porous electrode base material and its manufacturing method
EP3276718B1 (en) Porous carbon electrode base material, method for manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell
TWI648162B (en) Gas diffusion electrode substrate, membrane electrode assembly having the same, and fuel cell
EP3113264B1 (en) Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell equipped with the same
JP6962319B2 (en) Gas diffusion electrode substrate, laminate and fuel cell
JP5988009B1 (en) Porous carbon sheet and precursor fiber sheet thereof
CN108292757B (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP5106808B2 (en) Porous carbon electrode substrate and polymer electrolyte fuel cell using the same
JP7355143B2 (en) Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof
JP5311538B2 (en) Method for producing porous carbon electrode substrate
JPWO2019107241A1 (en) Microporous layer and its manufacturing method, gas diffusion electrode base material, fuel cell
WO2017069014A1 (en) Carbon sheet, gas-diffusion-electrode substrate, roll body, and fuel cell
KR20180053680A (en) Gas diffusion electrode and manufacturing method thereof
JP2009181738A (en) Manufacturing method of porous carbon electrode base material, and membrane-electrode assembly
JP2017139219A (en) Carbon sheet, gas diffusion electrode base material, and fuel cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R151 Written notification of patent or utility model registration

Ref document number: 7355143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151