JPH11139871A - Porous carbon material and its production - Google Patents

Porous carbon material and its production

Info

Publication number
JPH11139871A
JPH11139871A JP9317632A JP31763297A JPH11139871A JP H11139871 A JPH11139871 A JP H11139871A JP 9317632 A JP9317632 A JP 9317632A JP 31763297 A JP31763297 A JP 31763297A JP H11139871 A JPH11139871 A JP H11139871A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon material
porous
strength
material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9317632A
Other languages
Japanese (ja)
Inventor
Mitsuo Enomoto
Jiyousei Nagamatsu
三男 榎本
丈青 永松
Original Assignee
Tokai Carbon Co Ltd
東海カーボン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, 東海カーボン株式会社 filed Critical Tokai Carbon Co Ltd
Priority to JP9317632A priority Critical patent/JPH11139871A/en
Publication of JPH11139871A publication Critical patent/JPH11139871A/en
Application status is Pending legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors

Abstract

PROBLEM TO BE SOLVED: To produce a porous carbon material suitable for use as various industrial filters, an electrode material for a cell, an adsorbent, a heat insulator, etc., and excellent in pore properties and strength characteristics.
SOLUTION: A thermosetting resin soln. having 5-50 wt.% concn. of the resin is impregnated into a porous carbon substrate consisting of coke granules and carbide of pitch as a binder, drying and hardening are carried out and the resin is carbonized by firing in a nonoxidizing atmosphere. The skeleton surface of the porous carbon substrate is coated with the resultant glassy carbon and the objective porous carbon material is obtd.
COPYRIGHT: (C)1999,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、大きな気孔径を有するとともに圧縮強度や曲げ強度が高く、優れた気孔性状と強度特性を備えた多孔質炭素材とその製造方法に関する。 The present invention relates to the high compressive strength and flexural strength and has a large pore size, excellent with a pore properties and strength characteristics to the porous carbon material manufacturing method thereof.

【0002】 [0002]

【従来の技術】多孔質炭素材は、軽量な上に耐熱性、耐蝕性、導電性などに優れ、工業用のフィルター、電池用電極、吸着材および断熱材等の用途分野で有用されている。 BACKGROUND ART Porous carbon material is heat-resistant on lightweight, corrosion resistance, superior to a conductive, industrial filters, battery electrode, and is useful in application fields such as adsorbent and heat insulating material . この多孔質炭素材として炭素繊維を骨格に利用するものが知られており、例えば特開昭50−25808号公報には炭素繊維をパルプおよびバインダー成分とともに抄紙して得られる炭素繊維混合シートに熱硬化性樹脂液を含浸させたのち焼成炭化する多孔質炭素材の製造技術が開示されている。 Thermal carbon fiber as the porous carbon material is known which utilizes the backbone, for example carbon fiber mixed sheet in JP 50-25808 discloses obtained by papermaking with a pulp and a binder component of carbon fiber manufacturing technology of the porous carbon material is disclosed to be fired carbonized after impregnated with a curable resin solution.

【0003】また、高価な炭素繊維に代えてその原料となる有機繊維を使用し、これにパルプ、炭素質粉末などを配合して抄紙したシートに有機高分子物質あるいは炭素質粉末を懸濁させた有機高分子物質を含浸したのち焼成する方法(特開昭61−236664号公報、同61−236665号公報)が提案されている。 [0003] Further, by using the organic fiber as a raw material thereof in place of the expensive carbon fiber, this pulp was suspended organic polymeric material or a carbonaceous powder such as sheets paper by blending carbonaceous powder and calcining after impregnated with an organic polymer material (JP 61-236664, JP same 61-236665 JP) has been proposed a. しかし、この方法は組織内に局部的に閉塞された空隙部分が多く形成されるため、均質で制御された気孔構造を得ることが難しく、また炭素繊維を使用する場合には炭素繊維の剛性が大きいので形成される気孔径が大きくなる難点がある。 However, since this method is to be formed many locally occluded gap portion into the tissue, it is difficult to obtain a controlled pore structure with uniform, also the rigidity of the carbon fibers when using carbon fiber It has a drawback that the pore diameter to be formed is greater increases. 更に、これらの多孔質炭素材の気孔性状は炭素繊維や炭素繊維製造用有機繊維が絡み合った構造からなるため複雑であり、例えばフィルターなどの用途に用いると圧損が大きくなり、場合によっては気孔を閉塞する事態も生じる欠点がある。 Furthermore, these pores properties of the porous carbon material is complex to become a structure in which entangled carbon fiber or carbon fiber production for organic fibers, for example, used in applications such as filter pressure loss becomes large, the pores sometimes situation in which the blockage also occurs drawbacks.

【0004】また、本出願人は炭素繊維や炭素繊維製造用有機繊維に代えて に安価な紙類原料を用い低コストで多孔質炭素材を製造する技術として、平均気孔径50〜 [0004] The present applicant as a technique for producing a porous carbon material at low cost using inexpensive paper material in place of the carbon fiber or carbon fiber production for organic fibers, an average pore diameter of 50
150μm 、気孔率50%以上の性状を有する紙を所定の厚さに積層し、これに残炭率40%以上の熱硬化性樹脂溶液を含浸して加熱硬化したのち、非酸化性雰囲気下に1000 150 [mu] m, a paper with a porosity of 50% or more of the properties are laminated to a predetermined thickness, this After heat curing by impregnating the residual carbon rate of 40% or more of the thermosetting resin solution, under a non-oxidizing atmosphere 1000
℃以上の温度で焼成炭化処理する製造方法を開発、提案(特開平1−320279号公報)した。 Development ℃ manufacturing method of baking carbonized at temperatures above proposed (JP-A-1-320279).

【0005】しかしながら、これらの方法は骨格を形成する炭素繊維、有機繊維あるいは紙類が抄紙面に配向して主に2次元方向に配列しているために、積層体の層間における強度が充分でないという欠点がある。 However, carbon fibers these methods of forming a skeleton, to organic fibers or paper is arranged with mainly in two-dimensional directions oriented papermaking surface, is not sufficient strength in the layers of the laminate there is a drawback. 特に、高気孔率で大きな気孔径を有する多孔質炭素材を製造する場合には成形圧を低く設定する必要があるために、層間強度や強度特性の低下が著しくなる。 In particular, since in the case of producing a porous carbon material having a large pore diameter high porosity that is necessary to set the molding pressure lower, lowering of interlaminar strength and strength characteristics become remarkably. また、積層面に対して垂直方向の物性、例えばガス透過率や熱伝導率などが不均一化する問題点もある。 Further, there is the physical properties in the direction perpendicular to the lamination plane, for example a problem that such gas permeability and thermal conductivity uneven.

【0006】一方、多孔質炭素材の製造技術としては、 On the other hand, as a manufacturing technology of the porous carbon material,
コークス粒を石炭系や石油系ピッチのような炭化収率の高いバインダーとともに混練したのち、成形及び焼成炭化する方法が古くから知られている。 After the coke particles were kneaded with a high carbonization yield a binder such as coal-based or petroleum-based pitch, a method of molding and sintering carbide has long been known. この多孔質炭素材はコークス粒子をピッチの炭化物で結合したものであり、粒子結合型の組織構造を呈している。 The porous carbon material is obtained by combining the coke particles in the carbide pitch, and has a tissue structure of the particles bound.

【0007】 [0007]

【発明が解決しようとする課題】この粒子結合型多孔質炭素材は、その組織構造から連通した開気孔を多くもつ材料が得られやすいが材質強度が充分でないという欠点がある。 THE INVENTION Problems to be Solved] The particle-bound porous carbon material is easily obtained material with many open pores communicating from the tissue structure but has the disadvantage that not enough is made strength. また、骨材となるコークス粒子の粒度調整により気孔径ならびに気孔量の調節を行うことができるが、 Further, it is possible to perform the adjustment of the pore diameter and pore volume by the particle size adjustment of the coke particles as the aggregate,
均質かつ充分な気孔性状と機械的特性を満足するための条件設定が難しい難点がある。 Condition setting for satisfying the homogeneous and sufficient porosity characteristics and mechanical characteristics are difficult drawbacks. 更に、気孔径の大きな多孔質炭素材を得るために粒子径の大きなコークス粒子を用いると、単位体積当たりの結合点数が減少するために多孔質炭素材の強度が低くなり、使用中に例えば角部の骨材粒子が脱落する問題もある。 Furthermore, the use of large coke particles with a particle size in order to obtain a large porous carbon material of pore size, binding scores the strength of the porous carbon material is low in order to reduce the per unit volume, for example, corners during use part aggregate particles there is also a problem to fall off of.

【0008】このように、粒子結合型の多孔質炭素材では気孔性状と材質強度との調整が難しく、気孔径が大きく、気孔率の高い多孔質炭素材では強度特性が低下し、 [0008] Thus, it is difficult to adjust the pore characteristics and the material strength of a porous carbon material of the particle-bound, the pore diameter is large, reduces the strength characteristics at high porous carbon material porosity,
また圧縮強度や曲げ強度などの強度特性の優れた多孔質炭素材では気孔率が低く、気孔径も小さいという問題点がある。 The low porosity excellent porous carbon material strength characteristics such as compression strength and bending strength, there is a problem that the pore diameter is small.

【0009】本発明者らは、上記の問題点を解消するために鋭意研究を進めた結果、多孔質炭素材の骨材粒子の表面にガラス状カーボンの被覆層を形成した複合組織とすると、大きな気孔径を備えるとともに材質強度に優れた多孔質炭素材が得られることを見出した。 [0009] The present invention have conducted intensive studies in order to solve the above problems, when the composite structure to form a coating layer of glassy carbon on the surface of the aggregate particles of the porous carbon material, porous carbon material having excellent material strength provided with a large pore size it is obtained.

【0010】本発明はこの知見に基づいて開発されたものであり、その目的とする解決課題は粒子結合型多孔質炭素材を対象にして、工業用の各種フィルターをはじめとして、燃料電池や二次電池用の電極材、吸着材、断熱材、触媒担体等の広い用途分野で好適に使用することのできる、気孔径が大きく、気孔率の高い気孔性状を備え、圧縮強度や曲げ強度などの強度特性の優れた多孔質炭素材とその製造方法を提供することにある。 [0010] The present invention has been developed based on this finding, it solves problems and its object is directed to the particle-bound porous carbon material, including the various filters industrial, fuel cells and two electrode materials for next battery, adsorbent, insulation, can be suitably used in a wide field of application of the catalyst carrier or the like, pore diameter is large, with a high pore properties of porosity, such as compression strength and flexural strength and to provide a good and a manufacturing method thereof porous carbon material strength characteristics.

【0011】 [0011]

【課題を解決するための手段】上記の課題を解決するための本発明による多孔質炭素材は、コークス粒とピッチの炭化物を結合材とする多孔質炭素基材の骨格表面に、 Porous carbon material according to the present invention for solving the above problems BRIEF SUMMARY OF THE INVENTION may, skeletal surface of the porous carbon substrate to the carbide of coke particles and pitch binder,
ガラス状カーボンが被覆されてなることを構成上の特徴とする。 Glassy carbon is characterized on the structure to become coated.

【0012】また、本発明の多孔質炭素材の製造方法は、コークス粒とピッチの炭化物を結合材とする多孔質炭素基材に、樹脂濃度が5〜50重量%の熱硬化性樹脂溶液を浸透させて乾燥硬化したのち、非酸化性雰囲気中で焼成炭化することを構成上の特徴とする。 [0012] In the method of manufacturing the porous carbon material of the present invention, the porous carbon substrate to the coke particles and pitch carbide and a binder, a thermosetting resin solution of a resin concentration of 5 to 50 wt% After drying and curing by osmosis, characterized in construction to baking carbonized in a non-oxidizing atmosphere.

【0013】 [0013]

【発明の実施の形態】本発明の多孔質炭素材は、粒子結合型の多孔質炭素材の気孔を形成する炭素基材の骨格表面に、緻密で硬質なガラス状カーボンが被覆された複合組織構造からなる点に特徴がある。 Porous carbon material of the embodiment of the present invention is the skeleton surface of the carbon substrate to form pores of the porous carbon material of the particle-bound, dense and hard glassy carbon is coated composite structure it is characterized in comprising a structure. この複合組織により多孔質炭素材の強度特性は大幅に改善され、多孔質炭素基材の気孔性状を損なうことなく、圧縮強度や曲げ強度を向上することが可能となる。 Strength of the porous carbon material by the composite structure is greatly improved, without impairing the pores properties of the porous carbon substrate, it is possible to improve the compressive strength and bending strength. なお、ガラス状カーボンの被覆量は多孔質炭素基材に対して1〜10重量%程度であることが好ましい。 It is preferable coating amount of glassy carbon is about 1 to 10% by weight relative to the porous carbon substrate.

【0014】この多孔質炭素材の製造は、まず原料となるコークス粒とピッチとを所定の割合で混合して充分に混練する。 [0014] Production of the porous carbon material is sufficiently kneaded by mixing the coke particles and pitch to first as a raw material at a predetermined ratio. 混合比は目的とする気孔性状や強度特性により適宜に設定されるが、通常コークス粒100重量部当たりピッチを20〜40重量部の割合で混合し、ニーダーなどの混練機により充分に混練する。 The mixing ratio is set as appropriate by the pore properties and strength properties for the purpose, but the usual coke particles per 100 parts by weight of pitch were mixed in a proportion of 20 to 40 parts by weight, sufficiently kneaded by a kneading machine such as a kneader. コークス粒には石炭系あるいは石油系のコークスやピッチコークスが、 The coke grains coke and pitch coke of coal-based or petroleum-based,
またバインダーには石炭系や石油系のピッチが用いられる。 Further the binder pitch of coal or petroleum is used. なお、気孔径分布をシャープ化し、気孔径を調整するためには、粒度分布が狭いコークス粒を原料として使用する。 Note that sharpening the pore diameter distribution, in order to adjust the pore diameter, to use a narrow particle size distribution coke particles as a raw material.

【0015】コークス粒とピッチとの混練物は、ピッチの軟化点以上の温度においては成形型を用いてモールド成形または押し出し成形を行って成形体とし、またピッチの軟化点以下の温度では解砕機により解砕し所望の粒度の解砕粒に篩分けした後、成形型に均等に注入充填する。 The kneaded product of the coke particles and pitch at a temperature above the softening point of the pitch was molded body subjected to molding or extrusion molding using a mold, also solution at a temperature below the softening point of the pitch mill after sieving the disintegrated desired particle size of the solution 砕粒 by, uniformly injected filling the mold. 解砕機には例えばヘンシェル型ミキサーなどが用いられる。 Etc. The disintegrator e.g. Henschel mixer is used. ピッチの添加割合は、コークス粒100重量部当たり20重量部を下回る場合には得られる多孔質炭素材の強度が著しく低下し、40重量部を超える場合には気孔量が低下する。 Addition ratio of pitch, strength of the porous carbon material is obtained when less than 20 parts by weight per the coke particle 100 parts by weight significantly reduced, pore volume is lowered when exceeding 40 parts by weight.

【0016】上記した成形体または解砕粒を充填した成形型を焼成炭化することによりコークス粒とピッチの炭化物を結合材とする多孔質炭素基材が得られる。 The porous carbon substrate to the carbide of coke particles and pitch as binder by sintering carbide molds filled with compact or solutions 砕粒 described above can be obtained. 焼成炭化は非酸化性雰囲気中で800℃以上の温度に熱処理することにより行われる。 Firing carbonization is performed by heat treatment at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere. このように所定の粒度範囲に調整されたコークス粒により形成された所望の大きさの空隙をもつ均一な気孔性状を有する多孔質炭素基材を得ることができる。 Thus it is possible to obtain a porous carbon substrate having uniform pore characteristics with the desired size of the gap formed by the adjustment coke particles to a predetermined particle size range.

【0017】次いで、この多孔質炭素基材に熱硬化性樹脂溶液を浸透させ、加熱して乾燥、硬化後、非酸化性雰囲気中800℃以上の温度で焼成炭化することにより、 [0017] Then, the porous infiltrated carbon substrate in a thermosetting resin solution, dried by heating, after curing, by baking to carbonize in a non-oxidizing temperatures above 800 ° C. in an atmosphere,
多孔質炭素基材の骨格表面がガラス状カーボンで被覆された多孔質炭素材を製造することができる。 It can skeleton surface of the porous carbon substrate to produce a coated porous carbon material with glassy carbon.

【0018】熱硬化性樹脂としては炭化率40%以上のフェノール系樹脂、フラン系樹脂、ポリイミド系樹脂などが好ましく用いられ、メタノール、エタノール、アセトン、メチルエチルケトンのような低粘度で浸透性が高く、容易に熱揮散する性質の有機溶媒に溶解して熱硬化性樹脂溶液が調製される。 The thermosetting resin as the phenolic resin of the above carbonization ratio of 40%, the furan resins, and polyimide resins are preferably used, methanol, ethanol, acetone, high permeability at low viscosity, such as methyl ethyl ketone, thermosetting resin solution is prepared by readily dissolved in an organic solvent property of heat volatilization. 溶液中の樹脂濃度は5〜50 Resin concentration in solution 5-50
重量%の範囲が好ましく、5重量%未満であると強度特性が減退し、50重量%を越すと粘度が増大して含浸性を損ねるうえ、気孔の閉塞を生じて気孔率、気孔径の調節が困難となる。 Is preferably in the range of weight%, declining the strength characteristics is less than 5 wt%, after degrading the impregnation increases the viscosity it exceeds 50 wt%, the porosity caused blockage of the pores, the regulation of pore diameter It becomes difficult.

【0019】この熱硬化性樹脂溶液中に多孔質炭素基材を浸漬し、引上げたのち余剰の樹脂溶液を除去し、乾燥して水分などの未反応物や反応生成物を有機溶媒とともに揮散除去した後、加熱硬化する。 [0019] The thermosetting resin solution and immersing the porous carbon substrate, excess resin solution was removed after pulled up, dried and stripped removed together with the organic solvent and unreacted materials and reaction products such as moisture after, heat cured. 次いで、アルゴンガスや窒素ガス等の非酸化性雰囲気中で800℃以上の温度に加熱して、基材骨格部に被着した熱硬化性樹脂成分を焼成炭化することによりガラス状カーボンに転化させる。 Then heated to a temperature above 800 ° C. in a non-oxidizing atmosphere such as argon gas or nitrogen gas, is converted to a glassy carbon by firing carbonizing a thermosetting resin component which is applied to a substrate skeleton . このようにして、多孔質炭素基材の骨格表面にガラス状カーボンが被覆した組織構造を備えた本発明の多孔質炭素材を製造することができる。 In this way, it is possible to glassy carbon skeleton surface of the porous carbon substrate to produce a porous carbon material of the present invention having a tissue structure coated. なお、焼成炭化温度を高くすることにより多孔質炭素材の耐蝕性を向上させることができ、例えばフィルター等の高耐蝕性が要求される場合には2000℃以上の温度に設定する。 The firing porous it is possible to improve the corrosion resistance of the carbon material by increasing the carbonization temperature, is set to a temperature above 2000 ° C. If for example a high corrosion resistance such as a filter is required. また、 Also,
ガラス状カーボンの被覆量は多孔質炭素基材に対して1 The coverage of the glassy carbon is a porous carbon substrate 1
〜10重量%であることが好ましい。 It is preferably 10% by weight. 被覆量が1重量% The coating amount is 1 wt%
未満では強度特性の向上が充分でなく、10重量%を越えると気孔の閉塞が生じて気孔性状の劣化を招くためである。 Less than the insufficient improvement in strength characteristics, in order to lead to exceeding the deterioration of pore characteristics occlusion of pores caused a 10% by weight.

【0020】 [0020]

【実施例】以下、本発明の実施例を比較例と対比して具体的に説明する。 EXAMPLES The following specifically described in comparison with comparative examples of the present invention.

【0021】実施例1〜6 目開き35、60、100、150メッシュの篩を用いて粒度調整したコークス粒子100重量部に石炭ピッチ30重量部を加えて130℃の温度で充分に混練した。 [0021] was thoroughly kneaded at a temperature of addition of coal pitch 30 parts by weight to 100 parts by weight of coke particles having particle size adjustment 130 ° C. using a sieve of Examples 1 to 6 mesh 35,60,100,150 mesh.
混練物を常温に冷却して固化したのち、ヘンシェル型ミキサーで解砕した。 After solidification by cooling the kneaded product to ambient temperature, it was pulverized in a Henschel mixer. 解砕粒を直径300mm、高さ500 The solution 砕粒 diameter 300 mm, 500 height
mmの円筒状の成形型(SUS製)に均一に充填し、窒素ガス雰囲気中800℃の温度で焼成炭化した。 Uniformly filled in mm cylindrical mold (manufactured by SUS), and burning carbonization at a temperature of the nitrogen gas atmosphere 800 ° C.. 得られた炭素材を直径200mm、厚さ10mmの円板状に加工して多孔質炭素基材を作製した。 The resulting carbon material of diameter 200 mm, to prepare a porous carbon substrate is processed into a disk shape having a thickness of 10 mm.

【0022】炭化率45%のフェノール樹脂〔住友デュレズ(株)製“スミライトレジンPR940 ”〕をアセトンに溶解して濃度の異なるフェノール樹脂溶液を調製し、 [0022] The carbonization of 45% phenolic resin [Sumitomo Durez Co. "SUMILITERESIN PR940"] to prepare a different phenolic resin solution concentrations were dissolved in acetone,
この溶液中に上記の多孔質炭素基材を10分間浸漬して引上げ、余剰のフェノール樹脂溶液を濾紙で吸い取り、 The solution pulled up to the porous carbon substrate was immersed for 10 minutes in, blotting excess phenolic resin solution with filter paper,
風乾したのち180℃の温度で加熱硬化した。 Was cured by heating at a temperature of 180 ° C. After air-dried. このようにして異なる量比でフェノール樹脂を被着し、アルゴンガス雰囲気中で2000℃の温度で焼成炭化してフェノール樹脂をガラス状カーボンに転化した。 Thus a phenolic resin is laminated in different proportions, the phenol resin was converted to a glassy carbon by baking carbonized at a temperature of 2000 ° C. in an argon gas atmosphere. なお実施例6 It should be noted that Example 6
は、アルゴンガス雰囲気中の焼成炭化温度を2500℃ Is, 2500 ° C. The firing carbonization temperature in an argon gas atmosphere
としたほかは実施例2と同一の条件で多孔質炭素材を作製した。 Except that was to prepare a porous carbon material under the same conditions as in Example 2. このようにして、多孔質炭素基材の骨格表面にガラス状カーボンが被覆された多孔質炭素材を製造し、 Thus, a glassy carbon to prepare a coated porous carbon material in the skeleton surface of the porous carbon substrate,
その製造条件を対比して表1に示した。 It is shown in Table 1 by comparing the manufacturing conditions.

【0023】比較例1〜3 実施例1〜6と同様に粒度調整したコークス粒子を用いて、実施例1〜6と同一の方法及び条件により多孔質炭素基材を作製した。 [0023] Using the coke particles size adjusted in the same manner as in Comparative Example 1-3 Example 1-6, to prepare a porous carbon substrate by the same method and conditions as in Example 1-6. この多孔質炭素基材にフェノール樹脂等の熱硬化性樹脂溶液を浸透することなく、そのままアルゴンガス雰囲気中で2000℃の温度で焼成炭化して多孔質炭素材を製造し、製造条件を対比して表1に併載した。 The porous without penetrating the thermosetting resin solution such as phenol resin to the carbon substrate, as in an argon gas atmosphere and then fired carbonization at a temperature of 2000 ° C. to produce a porous carbon material, and comparing the manufacturing conditions It was 併載 in Table 1 Te.

【0024】また、図1に比較例1で作製した多孔質炭素基材の組織の粒子構造を示したSEM写真(拡大倍率200倍)を、図2にこの多孔質炭素基材の骨格表面にガラス状カーボンを被覆した実施例3の多孔質炭素材の組織の粒子構造のSEM写真(拡大倍率200倍)を示した。 Further, the SEM photograph (magnification 200 times) showing the porous particle structure of tissue carbon substrate produced in Comparative Example 1 in FIG. 1, the backbone surface of the porous carbon substrate in FIG. 2 It showed porous SEM photograph of the grain structure of the tissue of the carbon material of example 3 coated with glassy carbon (magnification 200 times).

【0025】 [0025]

【表1】 [Table 1]

【0026】比較例4 10デニール×5mmのレーヨンパルプを針葉樹パルプ、 [0026] Comparative Example 4 10 denier × 5 mm rayon pulp softwood pulp,
抄紙バインダーとともに抄紙して坪量70g/m 2のシートを作製し、このシートに40重量%のフェノール樹脂溶液を不揮発分が60g/m 2となるように塗布含浸して乾燥した。 Papermaking with paper binder to prepare a sheet having a basis weight of 70 g / m 2, nonvolatile content 40% by weight of the phenolic resin solution to this sheet was applied and dried impregnated such that the 60 g / m 2. 樹脂含浸シート110枚を積層して後、圧縮して25mmの厚さに熱圧成形したのち、この成形体をアルゴンガス中で加熱して温度2000℃で焼成炭化して多孔質炭素材を作製した。 After the 110 sheets resin impregnated sheets are stacked, after hot press molded to a thickness of 25mm and compressed to prepare a porous carbon material of the molded body was fired carbonized by heating at a temperature 2000 ° C. in an argon gas did.

【0027】得られた各多孔質炭素材について、気孔特性、強度特性、固有抵抗等を測定してその結果を表2に示した。 [0027] For each of the obtained porous carbon material, and the results are shown in Table 2 with pore characteristics, strength properties, the specific resistance and the like were measured. また、温度18℃の水を15リットル/分の流速で流下させた時の圧力損失ならびに多孔質炭素材の表面および角の粒子脱落状態を観察し、得られた結果を表3に示した。 Also, to observe the particle shedding state of the surface and corners of the pressure loss as well as the porous carbon material when the water temperature 18 ° C. was caused to flow down at a flow rate 15 liters / minute, the results obtained are shown in Table 3.

【0028】 [0028]

【表2】 [Table 2]

【0029】 [0029]

【表3】 [Table 3]

【0030】表1〜3の結果から、コークス粒子にピッチを加えて混練し、混練物を解砕した解砕粒を成形型に自然充填して成形し、焼成炭化した多孔質炭素基材の骨格表面にガラス状カーボンを被覆した実施例の多孔質炭素材は、比較例の多孔質炭素材に比べて、優れた気孔性状を維持しつつ曲げ強度や圧縮強度等の強度特性が高いことが判る。 [0030] From the results of Tables 1 to 3, and kneading the resulting mixture together with a pitch coke particles, kneaded product crushing the solution 砕粒 molded naturally filled into a mold, baked backbone carbonized porous carbon substrate porous carbon material of example coated with glassy carbon on the surface, compared to the porous carbon material of Comparative example, it is seen that high strength properties such as bending strength and compressive strength while maintaining excellent pore properties . したがって、通水試験においても圧力損失が少なく、また粒子の欠落も認められない。 Accordingly, less pressure loss in water flow test, nor even observed lack of particles.

【0031】 [0031]

【発明の効果】以上のとおり、本発明によれば、粒子結合型多孔質炭素基材の骨格表面に緻密で硬質なガラス状カーボンが被覆された複合組織構造により、気孔径が大きく、圧縮強度や曲げ強度などの強度特性の優れた多孔質炭素材とその製造方法が提供される。 [Effect of the Invention] As described above, according to the present invention, the composite structure structure is dense and hard glassy carbon skeleton surface of the particle-bound porous carbon substrate coated, pore diameter increases, the compressive strength excellent porous carbon material and a manufacturing method thereof strength properties such as and bending strength is provided. したがって、本発明は工業用の各種フィルターをはじめとして、燃料電池や二次電池用の電極材、吸着材、断熱材、触媒担体等の広い用途分野で好適に使用することのできる多孔質炭素材とその製造方法として極めて有用である。 Accordingly, the present invention including the various filters for industrial, fuel cells and electrode materials for secondary batteries, adsorbents, insulation, porous carbon material which can be suitably used in a wide field of application of the catalyst carrier or the like it is extremely useful as a manufacturing method thereof.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】比較例1の多孔質炭素基材組織の粒子構造を示したSEM写真(拡大倍率200倍)である。 1 is a porous SEM photograph showing the particle structure of the carbon substrate tissue of Comparative Example 1 (magnification 200 times).

【図2】図1に示した多孔質炭素基材の骨格表面にガラス状カーボンを被覆した実施例3の多孔質炭素材組織の粒子構造を示したSEM写真(拡大倍率200倍)である。 2 is a porous SEM photograph showing the particle structure of the carbon material structure of Example 3 coated with glassy carbon on a porous skeleton surface of the carbon base material shown in FIG. 1 (magnification 200 times).

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 コークス粒とピッチの炭化物を結合材とする多孔質炭素基材の骨格表面に、ガラス状カーボンが被覆されてなることを特徴とする多孔質炭素材。 1. A skeleton surface of the coke particles and porous carbon substrate to the carbide of pitch binder, the porous carbon material, wherein the glassy carbon is coated.
  2. 【請求項2】 コークス粒とピッチの炭化物を結合材とする多孔質炭素基材に、樹脂濃度が5〜50重量%の熱硬化性樹脂溶液を浸透させて乾燥硬化したのち、非酸化性雰囲気中で焼成炭化することを特徴とする多孔質炭素材の製造方法。 To 2. A porous carbon substrate to the carbide of coke particles and pitch binder, after which the resin concentration was dried cured impregnated with 5-50 wt% of the thermosetting resin solution, a non-oxidizing atmosphere method for producing a porous carbon material characterized by baking to carbonize at medium.
JP9317632A 1997-11-04 1997-11-04 Porous carbon material and its production Pending JPH11139871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9317632A JPH11139871A (en) 1997-11-04 1997-11-04 Porous carbon material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9317632A JPH11139871A (en) 1997-11-04 1997-11-04 Porous carbon material and its production

Publications (1)

Publication Number Publication Date
JPH11139871A true JPH11139871A (en) 1999-05-25

Family

ID=18090334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9317632A Pending JPH11139871A (en) 1997-11-04 1997-11-04 Porous carbon material and its production

Country Status (1)

Country Link
JP (1) JPH11139871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512719B2 (en) 2000-07-05 2003-01-28 Hitachi, Ltd. Semiconductor memory device capable of outputting and inputting data at high speed
KR101291018B1 (en) * 2012-02-14 2013-07-30 이창호 Method for making carbon fiber heat insulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512719B2 (en) 2000-07-05 2003-01-28 Hitachi, Ltd. Semiconductor memory device capable of outputting and inputting data at high speed
KR101291018B1 (en) * 2012-02-14 2013-07-30 이창호 Method for making carbon fiber heat insulator

Similar Documents

Publication Publication Date Title
DE3516587C2 (en)
US7144476B2 (en) Carbon fiber electrode substrate for electrochemical cells
EP1195828B1 (en) Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
CN1744974B (en) Carbon/carbon composites by hot pressing
EP1926845B1 (en) Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
US6555031B2 (en) Process for producing silicon carbide bodies
CA1179808A (en) Shaped articles of porous carbon
CN1138701C (en) Method of making mesoporous carbon using pore formers
JP3309225B2 (en) Melt infiltrated fiber-reinforced composite ceramic
US7410719B2 (en) Porous carbon base material, method for preparation thereof, gas-diffusing material film-electrode jointed article, and fuel cell
US4506028A (en) Process for preparing a fuel cell electrode substrate comprising carbon fibers
US4297307A (en) Process for producing carbon-carbon fiber composites suitable for use as aircraft brake discs
JP3096716B1 (en) Method for producing a fiber-reinforced silicon carbide composite
US20090072448A1 (en) Continious production of exfoliated graphite composite compositions and flow field plates
US6187713B1 (en) Method of making activated carbon bodies having improved adsorption properties
EP0162976B1 (en) Process for preparation of porous carbon plates
US20030161781A1 (en) Novel carbon materials and carbon/carbon composites based on modified poly (phenylene ether) for energy production and storage devices, and methods of making them
JPH06315630A (en) Composite obtained by coating inorganic substrate with carbon
CA2405351C (en) Conductive sheet material
JP2001089255A (en) Fiber-strand-reinforced composite material
US20040131533A1 (en) Extrusion of graphite bodies
JP3463806B2 (en) Separator and a method of manufacturing a fuel cell
EP1323199B1 (en) Fluid diffusion layers for fuel cells
US4064207A (en) Fibrillar carbon fuel cell electrode substrates and method of manufacture
CN1681748A (en) Foam formed by carbon and having high inner face acreage and preparing method thereof