JPH01320279A - Production of porous carbonaceous material - Google Patents

Production of porous carbonaceous material

Info

Publication number
JPH01320279A
JPH01320279A JP15516288A JP15516288A JPH01320279A JP H01320279 A JPH01320279 A JP H01320279A JP 15516288 A JP15516288 A JP 15516288A JP 15516288 A JP15516288 A JP 15516288A JP H01320279 A JPH01320279 A JP H01320279A
Authority
JP
Japan
Prior art keywords
paper
thermosetting resin
soln
porosity
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15516288A
Other languages
Japanese (ja)
Other versions
JPH0633196B2 (en
Inventor
Hiroaki Fukaya
深谷 宏晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP63155162A priority Critical patent/JPH0633196B2/en
Publication of JPH01320279A publication Critical patent/JPH01320279A/en
Publication of JPH0633196B2 publication Critical patent/JPH0633196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain porous carbonaceous material having high performance at low cost by a simple method wherein an inexpensive raw material such as paper is utilized by laminating specified paper and impregnating this paper with a thermosetting resin soln., heating and curing it and thereafter calcining the paper to perform carbonization treatment. CONSTITUTION:Firstly paper having properties of 50-150mum mean pore diameter and >=50% porosity is laminated at prescribed thickness. Then this laminated paper is impregnated with a thermosetting resin soln. having >=40% actual carbon ratio, heated and cured and thereafter calcined at >=1,000 deg.C in the nonoxidative atmosphere to perform carbonization treatment and thereby the aimed porous carbonaceous material is obtained. As the used paper, paper having properties of 50-150mum mean pore diameter and >=50% porosity is selected and utilized from paper or paper board produced by paper making pulp such as general domestic tissue paper on the market, various kinds of paper and base paper for corrugated board. The soln. of thermosetting resin is obtained by dissolving resin in an organic solvent such as alcohol and acetone in normal service and the concn. of the soln. is preferably set to 10-40wt.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高度の気孔構造と強度特性を兼備する多孔質
炭素材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a porous carbon material having both a high pore structure and strength characteristics.

〔従来の技術] 多孔質炭素材の製造技術としては、粒度を揃えたコーク
ス粉をタールピッチのようなバインダーと共に捏合した
のち粉砕、成形および焼成処理する手段が典型的方法と
されているが、この方法は均質かつ安定な多孔質構造を
得るための条件設定が難しいため量産性に乏しい欠点が
ある。
[Prior Art] A typical method for manufacturing porous carbon materials is to knead coke powder with uniform particle size with a binder such as tar pitch, then crush, mold, and sinter. This method has the disadvantage of poor mass productivity because it is difficult to set conditions for obtaining a homogeneous and stable porous structure.

また、炭素繊維の骨格形体を利用した多孔質炭素板の製
造方法も開発されている。この方法は炭素繊維製造用有
機繊維とバルブ、またはこれに炭素質粉末を配合した原
料を抄紙してシート化し、これに有機質高分子物質ある
いは炭素質粉末を懸濁した有機質高分子物質の溶液を含
浸したのち焼成するもので、二次電池に用いる電極材な
どに好適とされている(特開昭61−236664号公
報、同61−236665号公報)。
Additionally, a method for manufacturing porous carbon plates using carbon fiber skeletons has also been developed. In this method, organic fibers for manufacturing carbon fibers and valves, or raw materials made by blending these with carbonaceous powder, are made into a sheet, and then an organic polymeric substance or a solution of an organic polymeric substance in which carbonaceous powder is suspended is added to the sheet. It is impregnated and then fired, and is said to be suitable for electrode materials used in secondary batteries (Japanese Unexamined Patent Publications No. 61-236664 and No. 61-236665).

r発明が解決しようとする課題] しかしながら、上記の方法においては原料に用いる炭素
繊維製造用有機繊維が高価であるうえに煩雑な抄紙工程
を必要とするため、製品コストが高騰化する難点がある
[Problems to be Solved by the Invention] However, in the above method, the organic fiber used as a raw material for manufacturing carbon fiber is expensive and requires a complicated paper-making process, so the product cost rises. .

本発明は、安価な紙類原料を用い簡易なプロセスにより
高性能の多孔質炭素材を低コストで製造する方法を提供
するものである。
The present invention provides a method for producing a high-performance porous carbon material at low cost through a simple process using inexpensive paper raw materials.

〔課題を解決するための手段] すなわち、本発明による多孔質炭素材の製造方法は、平
均気孔径50〜150μm、気孔率50%以上の性状を
有する紙の所定の厚さに積層し、これに残炭率40%以
上の熱硬化性樹脂溶液を含浸して加熱硬化したのち、非
酸化性雰囲気下 1000°C以上の温度域で焼成炭化
処理することを構成上の特徴とする。
[Means for Solving the Problems] That is, the method for producing a porous carbon material according to the present invention involves laminating papers to a predetermined thickness, each having an average pore diameter of 50 to 150 μm and a porosity of 50% or more. The structural feature is that the material is impregnated with a thermosetting resin solution having a residual carbon content of 40% or more and cured by heating, and then subjected to firing carbonization treatment in a temperature range of 1000° C. or more in a non-oxidizing atmosphere.

本発明の原料は、一般に市販されている家庭用簿葉祇、
雑種紙、段ボール原紙など製紙バルブから製造される祇
あるいは板紙のうち、平均気孔径50〜150μm、気
孔率50%以上の性状を有するものを選定使用する。原
料紙の平均気孔径および気孔率がそれぞれ50μm15
0%を下廻る場合には、熱硬化性樹脂溶液の含浸から焼
成炭化処理に至る後工程において気孔の閉塞化を誘発し
、他方、平均気孔径が150μmを越えると強度特性の
低下が著しくなる。
The raw materials of the present invention are generally commercially available home-use bookworms,
Among paperboards or paperboards manufactured from paper valves such as mixed paper and cardboard base paper, those having properties of an average pore diameter of 50 to 150 μm and a porosity of 50% or more are selected and used. The average pore diameter and porosity of the raw paper are each 50 μm15
If it is less than 0%, pore clogging will be induced in the post-process from impregnation with thermosetting resin solution to calcination carbonization treatment, and on the other hand, if the average pore diameter exceeds 150 μm, the strength properties will deteriorate significantly. .

原料紙は所定の厚さになるように積層し、必要により圧
縮したのち熱硬化性樹脂溶液を浸漬、塗布、スプレーな
どの手段を用いて含浸する。
The raw paper is laminated to a predetermined thickness, compressed if necessary, and then impregnated with a thermosetting resin solution by dipping, coating, spraying, or other means.

この際、原料紙は積層前に予め50〜200°C程度の
温度域で加熱処理を施し、水分の除去と表面の改質をお
こなっておくと樹脂溶液との濡れが効果的に改善される
At this time, wetting of the raw paper with the resin solution can be effectively improved by heat-treating the raw paper at a temperature range of approximately 50 to 200°C before lamination to remove moisture and modify the surface. .

含浸に使用する熱硬化性樹脂には、残炭率が40%以上
のものを選択する必要がある。残炭率とは、樹脂を非酸
化雰囲気中1000°Cで焼成したときに残留する炭素
分の重量%を指し、これが40%未満の場合には得られ
る多孔質炭素材の強度を実用水準まで向上させることが
掻めて困難となる。この種残炭率40%以上の熱硬化性
樹脂の例としてはフェノールホルムアルデヒド、フルフ
リ′ルアルコール、ジビニルベンゼン等が挙げられ、い
ずれも本目的に有効使用される。
The thermosetting resin used for impregnation must have a residual carbon content of 40% or more. The residual carbon content refers to the weight percent of carbon remaining when the resin is fired at 1000°C in a non-oxidizing atmosphere, and if this is less than 40%, the strength of the resulting porous carbon material will be reduced to a practical level. It becomes extremely difficult to improve. Examples of such thermosetting resins having a residual carbon content of 40% or more include phenol formaldehyde, furfuryl alcohol, and divinylbenzene, all of which can be effectively used for this purpose.

熱硬化性樹脂の溶液化は樹脂をアルコール、ア七トンな
ど常用の有機溶媒に溶解することによっておこなわれる
が、溶液の濃度は10〜40重景%に重量することが望
ましい。この理由は、溶液濃度が10重量%を下廻ると
強度特性の減退を招き、また、40重重量を越えると円
滑な含浸が阻害されるうえに気孔の閉塞を伴うからであ
る。
The thermosetting resin is converted into a solution by dissolving the resin in a commonly used organic solvent such as alcohol or amethane, and the concentration of the solution is preferably 10 to 40% by weight. The reason for this is that if the solution concentration is less than 10% by weight, the strength properties will deteriorate, and if it exceeds 40% by weight, smooth impregnation will be inhibited and pores will be blocked.

含浸物は、次いで加熱硬化する。加熱硬化処理の好まし
い条件は、80°C程度の温度で約10時間に亘り予備
硬化したのち、温度を180〜300°Cに昇温して完
全硬化させることである。
The impregnation is then heat cured. The preferred conditions for the heat curing treatment are to perform preliminary curing at a temperature of about 80° C. for about 10 hours, and then to raise the temperature to 180 to 300° C. for complete curing.

予備硬化の段階で、再度、熱硬化性樹脂溶液の含浸をお
こない、あるいはこの操作を反復することにより多孔質
炭素材の密度および気孔率等の構造特性を調整すること
も可能である。
It is also possible to adjust the structural properties of the porous carbon material, such as its density and porosity, by impregnating it with a thermosetting resin solution again at the preliminary curing stage or by repeating this operation.

加熱硬化後の材料は焼成炉に移し、窒素、アルゴン、二
酸化炭素などの非酸化性雰囲気下で1000°C以上の
温度に焼成炭化処理して多孔質炭素材を得る。
The material after heating and hardening is transferred to a firing furnace and subjected to firing carbonization treatment at a temperature of 1000° C. or more in a non-oxidizing atmosphere such as nitrogen, argon, carbon dioxide, etc. to obtain a porous carbon material.

〔作 用〕[For production]

本発明によれば、平均気孔径50〜150μm5気孔率
50%以上の性状を有する紙を原料基材とし、これに残
炭率40%以上の熱硬化性樹脂溶液を含浸する構成によ
り、前記原料基材が具備する特有の気孔構造と熱硬化性
樹脂溶液から生成する炭素分のバインダー的な機能が相
乗的に作用して、微細な通気性気孔が均質に分布した強
度の高い多孔質炭素構造の構成を実現する。
According to the present invention, paper having an average pore diameter of 50 to 150 μm5 and a porosity of 50% or more is used as a raw material base material, and the raw material is impregnated with a thermosetting resin solution having a residual carbon content of 40% or more. The unique pore structure of the base material and the binder-like function of the carbon produced from the thermosetting resin solution work synergistically to create a highly strong porous carbon structure with evenly distributed fine air-permeable pores. Realize the configuration of

また、熱硬化性樹脂溶液の濃度を10〜40重量%に設
定すると上記の作用はより助長され、−層、高性能の多
孔質炭素材を得ることができる。
Moreover, when the concentration of the thermosetting resin solution is set to 10 to 40% by weight, the above-mentioned effect is further promoted, and a high-performance porous carbon material can be obtained.

〔実施例〕〔Example〕

以下、本発明を実施例および比較例を対比しながら説明
する。
Hereinafter, the present invention will be explained while comparing Examples and Comparative Examples.

実施例1〜3、比較例1〜3、 平均気孔径および気孔率の異なる雑種紙(書道用紙)を
電気乾燥機に入れ、100°Cの温度で12時間加熱処
理した。処理後の原料紙を40枚密着状に積層(厚さ約
4M)したのち、残炭率45%のフェノールホルムアル
デヒド樹脂〔住友デュレズ■製、゛スミライトレジンP
R940°′〕の20重量%濃度工タノール溶液に浸漬
して原料紙組織内に樹脂溶液を十分に含浸した。
Examples 1 to 3, Comparative Examples 1 to 3 Hybrid papers (calligraphy papers) having different average pore diameters and porosity were placed in an electric dryer and heat-treated at a temperature of 100°C for 12 hours. After 40 sheets of treated raw paper were laminated in close contact (thickness approximately 4M), phenol formaldehyde resin with a residual carbon content of 45% [manufactured by Sumitomo Durez ■, ゛Sumilite Resin P] was applied.
The raw paper was immersed in a 20% by weight ethanol solution of R940°' to sufficiently impregnate the resin solution into the raw paper structure.

含浸は80°Cの温度に10時間保持して予備硬化し、
再度、前記熱硬化性樹脂溶液を浸漬含浸して同様に予備
硬化した。引続き温度を180°Cに上昇し、1時間加
熱処理して含浸樹脂を完全に硬化した。
The impregnation was pre-cured by holding at a temperature of 80°C for 10 hours.
Again, the thermosetting resin solution was immersed and precured in the same manner. Subsequently, the temperature was increased to 180° C., and heat treatment was performed for 1 hour to completely cure the impregnated resin.

次いで、硬化後の材料を焼成炉に移し、窒素雰囲気下、
1400°Cの温度により焼成炭化処理して厚さ約2.
5−の多孔質炭素板を得た。
Next, the hardened material is transferred to a firing furnace and heated under a nitrogen atmosphere.
It is fired and carbonized at a temperature of 1400°C to a thickness of about 2.
A porous carbon plate No. 5- was obtained.

このようにして得られた各多孔質炭素板の各種物理特性
を測定し、用いた原料紙の平均気孔径および気孔率と対
比させて表1に示した。
Various physical properties of each porous carbon plate thus obtained were measured and shown in Table 1 in comparison with the average pore diameter and porosity of the raw material paper used.

なお、各特性の測定は、平均気孔径および気孔率は水銀
圧入法、曲げ強度および曲げ弾性率はJIS K691
1.見掛比重および固有抵抗はJIS R7202の方
法に従っておこなった。
In addition, the measurements of each characteristic were as follows: Average pore diameter and porosity were measured using mercury intrusion method, and bending strength and bending modulus were measured using JIS K691.
1. The apparent specific gravity and specific resistance were determined according to the method of JIS R7202.

なお、原料に炭素繊維用有機繊維を用いた従来の多孔質
炭素材の特性についても表1に併載した(従来例)。
Note that the characteristics of a conventional porous carbon material using organic fiber for carbon fiber as a raw material are also listed in Table 1 (Conventional example).

本発明の実施例はいずれも強度、気孔構造および固有抵
抗ともに従来例と同等以上の特性を示したが、本発明で
特定した原料紙の平均気孔径または/および気孔率を外
れる比較例は各性能が著しく劣るものであった。
All of the examples of the present invention exhibited properties equivalent to or better than those of the conventional examples in terms of strength, pore structure, and specific resistance. The performance was significantly inferior.

実施例4〜6、比較例4〜6、 平均気孔径60μm、気孔率60%の雑種紙(書道用紙
)を原料紙とし、実施例1〜3と同様に加熱処理および
Mi層したのち残炭率ならびに濃度の異なるフェノール
ホルムアルデヒド樹脂のエタノール溶液に浸漬して原料
紙組織内に樹脂溶液を十分に含浸した。
Examples 4 to 6, Comparative Examples 4 to 6, mixed paper (calligraphy paper) with an average pore diameter of 60 μm and a porosity of 60% was used as the raw material paper, and after heat treatment and Mi layering in the same manner as in Examples 1 to 3, residual carbon was removed. The paper was immersed in ethanol solutions of phenol formaldehyde resin with different ratios and concentrations to sufficiently impregnate the resin solution into the raw paper tissue.

次いで、含浸物を実施例1〜3と同一条件により予備硬
化、再含浸、加熱硬化および焼成炭化処理して多孔質炭
素材を製造した。
Next, the impregnated material was pre-cured, re-impregnated, heated and carbonized under the same conditions as in Examples 1 to 3 to produce a porous carbon material.

このようにして得られた各多孔質炭素材の物理特性を測
定し、用いた樹脂溶液の残炭率および溶111i4度と
対比させて表2に示した。
The physical properties of each porous carbon material thus obtained were measured and shown in Table 2 in comparison with the residual carbon percentage and melt 111i4 degree of the resin solution used.

表2の結果から、熱硬化性樹脂の残炭率が40%未満の
比較例4は本発明の実施例に比べ特に強度特性が低い。
From the results in Table 2, Comparative Example 4 in which the residual carbon percentage of the thermosetting resin was less than 40% had particularly low strength characteristics compared to the Examples of the present invention.

また、残炭率が40%以上の場合においても樹脂溶液の
濃度が10〜40重量%を外れる比較例5および6では
強度あるいは気孔構造が若干減退する。二とが認められ
た。
Further, even when the residual carbon percentage is 40% or more, in Comparative Examples 5 and 6 in which the resin solution concentration is outside of 10 to 40% by weight, the strength or pore structure is slightly reduced. Two were recognized.

(発明の効果] 以上のように、本発明に従えば安価な原料基材を用い簡
易な製造プロセスにより高度の気孔構造と強度特性を兼
備する多孔質炭素材を製造することができる。したがっ
て、高温断熱構造材、二次電池用の電極材などの部材と
して低コストで提供することが可能となる。
(Effects of the Invention) As described above, according to the present invention, a porous carbon material having both a high pore structure and strength characteristics can be manufactured using an inexpensive raw material base material and a simple manufacturing process. It becomes possible to provide materials such as high-temperature insulation structural materials and electrode materials for secondary batteries at low cost.

特許出願人  東海カーボン株式会社Patent applicant: Tokai Carbon Co., Ltd.

Claims (1)

【特許請求の範囲】 1、平均気孔径50〜150μm、気孔率50%以上の
性状を有する紙を所定の厚さに積層し、これに残炭率4
0%以上の熱硬化性樹脂溶液を含浸して加熱硬化したの
ち、非酸化性雰囲気下1000℃以上の温度域で焼成炭
化処理することを特徴とする多孔質炭素材の製造方法。 2、残炭率40%以上の熱硬化性樹脂溶液の濃度を10
〜40重量%に設定する請求項1記載の多孔質炭素材の
製造方法。
[Claims] 1. Paper having average pore diameter of 50 to 150 μm and porosity of 50% or more is laminated to a predetermined thickness.
A method for producing a porous carbon material, which comprises impregnating the porous carbon material with a thermosetting resin solution of 0% or more, heat-curing it, and then subjecting it to firing carbonization treatment in a temperature range of 1000° C. or more in a non-oxidizing atmosphere. 2. The concentration of the thermosetting resin solution with a residual carbon content of 40% or more is 10
The method for producing a porous carbon material according to claim 1, wherein the content is set to 40% by weight.
JP63155162A 1988-06-23 1988-06-23 Method for producing porous carbon material Expired - Fee Related JPH0633196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63155162A JPH0633196B2 (en) 1988-06-23 1988-06-23 Method for producing porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63155162A JPH0633196B2 (en) 1988-06-23 1988-06-23 Method for producing porous carbon material

Publications (2)

Publication Number Publication Date
JPH01320279A true JPH01320279A (en) 1989-12-26
JPH0633196B2 JPH0633196B2 (en) 1994-05-02

Family

ID=15599874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63155162A Expired - Fee Related JPH0633196B2 (en) 1988-06-23 1988-06-23 Method for producing porous carbon material

Country Status (1)

Country Link
JP (1) JPH0633196B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209773A (en) * 1990-12-06 1992-07-31 Tokai Carbon Co Ltd Production of porous glass-like carbon material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236665A (en) * 1985-04-11 1986-10-21 新王子製紙株式会社 Manufacture of porous carbon sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236665A (en) * 1985-04-11 1986-10-21 新王子製紙株式会社 Manufacture of porous carbon sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209773A (en) * 1990-12-06 1992-07-31 Tokai Carbon Co Ltd Production of porous glass-like carbon material

Also Published As

Publication number Publication date
JPH0633196B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US4064207A (en) Fibrillar carbon fuel cell electrode substrates and method of manufacture
JPS60122711A (en) Manufacture of porous carbon board
JPS61236665A (en) Manufacture of porous carbon sheet
JPH01320279A (en) Production of porous carbonaceous material
JPH0258369B2 (en)
JPS59187623A (en) Preparation of carbon fiber molded sheet
JP3739819B2 (en) Method for producing porous carbon material
JPH0360478A (en) Production of porous carbon sheet
JPS59174510A (en) Manufacture of carbon molded body
JPH05194056A (en) Production of porous carbon plate having high compression resistance
JP3131911B2 (en) Method for producing thick porous carbon material
JPS61236664A (en) Manufacture of porous carbon sheet
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPH01266223A (en) Production of anisotropic porous carbon formed product
JPS6119820A (en) Production of porous carbon plate
JPH06206780A (en) Production of active porous carbonaceous structure
JPH052625B2 (en)
JPS62270331A (en) Carbon fiber sheet-shaped article
JPH05155672A (en) Porous carbon plate and its production
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JP3166983B2 (en) Method for producing tubular porous glassy carbon body
JP2607397B2 (en) Method for producing porous glassy carbon material
JPH03183672A (en) Production of porous carbon material
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JPH10167855A (en) Porous carbon material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees