JPH0475819A - Composite electrode for electric discharge machining - Google Patents

Composite electrode for electric discharge machining

Info

Publication number
JPH0475819A
JPH0475819A JP18916790A JP18916790A JPH0475819A JP H0475819 A JPH0475819 A JP H0475819A JP 18916790 A JP18916790 A JP 18916790A JP 18916790 A JP18916790 A JP 18916790A JP H0475819 A JPH0475819 A JP H0475819A
Authority
JP
Japan
Prior art keywords
carbon
fibers
inorganic
discharge machining
uncarbonized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18916790A
Other languages
Japanese (ja)
Inventor
Hirohisa Miura
三浦 宏久
Shoichi Tsuchiya
詔一 土屋
Yoshiteru Nakagawa
喜照 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Toyota Motor Corp
Original Assignee
Osaka Gas Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Toyota Motor Corp filed Critical Osaka Gas Co Ltd
Priority to JP18916790A priority Critical patent/JPH0475819A/en
Publication of JPH0475819A publication Critical patent/JPH0475819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To improve a machining speed and coarseness of a machined surface by using a carbon fiber-reinforced carbon sintered substance, utilizing conductivity provided by carbon fibers and having specified density or more, for a composite electrode for electric discharge machining used for a resin molding tool. CONSTITUTION:A composite electrode for electric discharge machining has a texture wherein carbon fibers and inorganic microsubstance are integrally embedded in a carbon matrix. The carbon matrix has mosaic structure wherein optical anisotropic particles are uniformly crowded, as seen by using a polarizing microscope. The composite electrode is formed of a carbon fiber-reinforced carbon sintered substance wherein a ratio of an interface peeled at an interface between the carbon fibers and the carbon matrix is 10% or less of that of a total interface and density is 1.65% or more. A sintered substance produced by sintering a composite substance formed of carbonic powder, having self- sintering property, where uncarbonized carbonic fibers or uncarbonized carbon fibers and an inorganic microsubstance are embedded can be employed as the carbon fiber-reinforced carbon sintered substance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、樹脂成形金型などの金属類の放電加工に用い
られる放電加工用複合電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite electrode for electric discharge machining used for electric discharge machining of metals such as resin molding molds.

[従来の技術] 従来、放電加工用電極の材質としては、銅、銀およびそ
れらのタングステン合金などの金属系、もしくはコーク
ス粉とピッチを混練し、成形、焼結した黒鉛系のものが
使用されている。
[Prior art] Conventionally, the materials used for electrical discharge machining electrodes are metals such as copper, silver, and their tungsten alloys, or graphite-based materials made by kneading coke powder and pitch, forming, and sintering. ing.

これらの従来放電加工用の電極では、金属製の場合もま
た黒鉛系の場合においても放電加工の速度を高めると加
工面の粗さが悪くなり、平滑度が得られない。そこで加
工面の平滑度を高める条件で放電加工をおこなうと加工
速度を遅くしな番ブればならず、互いに相反する結果と
なることが知られてありこの点の解消はまだ充分なされ
ていない。
With these conventional electrodes for electric discharge machining, whether the electrode is made of metal or graphite, when the speed of electric discharge machining is increased, the roughness of the machined surface deteriorates and smoothness cannot be obtained. Therefore, it is known that if electrical discharge machining is performed under conditions that increase the smoothness of the machined surface, the machining speed must be slowed down, resulting in contradictory results, and this problem has not yet been fully resolved. .

これらの問題点を解決するために、例えば、特開昭64
−5731号公報には半成コークス微粉末に、セラミッ
クス微粉末を全量の5〜70重量%混合し加圧成形した
後、2000℃以上で焼結させる放電加工電極材料が開
示されている。また特開平1−97523号公報には特
定のメソカ−ポンマイクロビーズを原料とし加圧成形し
て焼結した黒鉛系のの放電加工用電極が開示されている
In order to solve these problems, for example,
Publication No. 5731 discloses an electrical discharge machining electrode material in which 5 to 70% by weight of ceramic fine powder is mixed with semi-formed coke fine powder, pressure molded, and then sintered at 2000° C. or higher. Further, JP-A-1-97523 discloses a graphite-based electrical discharge machining electrode made of specific mesocarbon microbeads as a raw material, pressure-molded and sintered.

[発明が解決しようと1−る課題1 しかし上記の電極では加工速度を上げる電気比抵抗が比
較n8く、形成され、る加工面の粗さの向上もまだは充
分m足できるものではない。
[Problem to be Solved by the Invention 1] However, the above-mentioned electrode has a comparatively low electrical resistivity for increasing the machining speed, and the roughness of the formed machined surface has not yet been sufficiently improved.

本発明は上記の事情([鑑み−Cなされたもので、緻密
に密れして配合されτいる炭素繊維などによる導電性を
利用L7た炭素繊維強化炭素焼結体により耐久性および
安定性に優れた放電加工用投合電極を捷供づることを目
的とする、。
The present invention has been made in view of the above-mentioned circumstances ([C] The purpose is to provide excellent composite electrodes for electrical discharge machining.

[課題を解決1−るための手段1 本発明の放電加工用投合電極は、炭素マ[−リックス中
(ζ炭素繊維あるいは炭素繊維と無機微小体が一体的に
埋設された組織を有し、該炭素71−リツクスは優先顕
微鏡で見て光学的安り性の微粒子が均一に密集(〜だモ
ザイク構造をもち、該炭素繊維と諜炭素7トリツクスと
の間の界面で剥離している界面の割合か全界面〔J対し
て10%ノス下であり、かつ密度か1.65Lストであ
る#木繊維強化炭素焼結体で構成したことを特徴とする
[Means for Solving the Problems 1-1] The joint electrode for electrical discharge machining of the present invention has a structure in which (ζ carbon fibers or carbon fibers and inorganic microscopic bodies are integrally embedded in a carbon matrix, The carbon 71-trix has a mosaic structure in which optically stable fine particles are uniformly densely packed (~) when seen under a priority microscope, and the interface between the carbon fiber and the carbon 71-trix is separated at the interface. It is characterized by being constructed of a wood fiber reinforced carbon sintered body having a ratio of 10% to the total interface [J] and a density of 1.65L.

本発明の放電加工用複合電極は、炭素繊維強化炭素焼結
体で構成されでいる、。
The composite electrode for electrical discharge machining of the present invention is made of a carbon fiber-reinforced carbon sintered body.

この炭素繊維強化炭素焼結体は、電極材と1−)て電気
比抵抗をさげ加工速度を向上ざ1才、被加工面を凹凸の
少ない而とすることができる。さらに無機微小体のけラ
ミックスを添加舊ることで電気比抵抗がより低下()加
工面の粗さをより少なくすることができる。
This carbon fiber-reinforced carbon sintered body can be used as an electrode material to lower the electrical resistivity, improve the machining speed, and make the surface to be machined less uneven. Furthermore, by adding KERAMIX, which is made up of inorganic microscopic particles, the electrical resistivity is further reduced (and the roughness of the machined surface can be further reduced).

この炭素繊維強化炭素焼結体を構成する炭素繊維は、焼
結体の強度を確保4るもの−C゛、偏光顕微鏡で兄て、
異方性を示すものでも等方性を示すものでもよい。#素
N紺は、切断された短繊維でも、長繊維でもよい。また
、炭素繊維はマ[−リツクス中に一定り向に配向してい
るものでも逆にランダムに配向しているものでもよい。
The carbon fibers that make up this carbon fiber-reinforced carbon sintered body ensure the strength of the sintered body.
It may be one that exhibits anisotropy or one that exhibits isotropy. #N navy blue may be cut short fibers or long fibers. Further, the carbon fibers may be oriented in a fixed direction in the matrix or may be oriented randomly.

炭素繊維強化炭素焼結体中の炭素繊維の配合割合は2〜
50重吊91′3、より好ましくは10=40重量%が
よい。
The blending ratio of carbon fiber in the carbon fiber-reinforced carbon sintered body is 2~
50 weight 91'3, more preferably 10=40% by weight.

炭素繊維強化炭素焼結体の構成部分となりうる無機微小
体としては、微小な金属、セラミックスで構成できる。
The inorganic microscopic bodies that can be a component of the carbon fiber-reinforced carbon sintered body can be composed of microscopic metals and ceramics.

これら無機微小体の形状は、粉末状、ウィスカ等の繊維
状、熱片等でもよい。無機微小体の炭素繊維強くヒ炭素
焼結体の配合割合は3〜30重量%、にり好ま1)くは
5・〜10重給3がよい。
The shape of these inorganic microscopic bodies may be a powder, a fiber such as a whisker, a hot flake, or the like. The blending ratio of the inorganic fine carbon fibers and carbon sintered bodies is preferably 3 to 30% by weight, preferably 1) or 5 to 10% by weight.

炭素繊維強化炭素焼結体の構成部分τ゛ある炭素71−
リックスは、偏光顕微鏡で見て光学的異方性の微粒子が
均一に密集したモザイク構造をもつ。
Component part τ゛ of carbon fiber reinforced carbon sintered body 71-
Rix has a mosaic structure in which optically anisotropic fine particles are uniformly densely packed when viewed under a polarizing microscope.

偏光顕微鏡で見て光学的異方性をもつとは、炭素が一定
方向に規則的に配列した組繊をもつものと考えられる。
Having optical anisotropy when viewed with a polarizing microscope is considered to have fibers in which carbon is regularly arranged in a certain direction.

ずなわら、この炭素マトリックスは、光学的異方性をも
つ炭素粒子が密集した状態で押し固められた状態にある
。均一に密集したとは、炭素粒子が流動していす、流れ
線等の模様が黙いことを意味する。偏光顕微鏡下でモザ
イク状〔こ観察される炭素粒子の人きざは30μm程度
が好ましい。
Naturally, this carbon matrix is in a state in which carbon particles with optical anisotropy are tightly packed together. Uniformly densely packed means that the carbon particles flow and patterns such as chairs and flow lines are silent. It is preferable that the carbon particles have a mosaic pattern (grains of about 30 .mu.m) observed under a polarizing microscope.

本発明の炭素繊維強化炭素焼結体を構成する炭素繊維と
炭素マトリックスとの間の界面の剥離面積は、全界面面
積に対づ−る剥離している界面面積を10%以下(する
必要がある。炭素ン1==リツクスと炭素繊維とが剥離
(2ているど炭素繊維の補強効宋が充分に発揮されない
。このため界面の剥離面積は全界面の10%以下より好
ましくは3%にするのがよい。
The peeled area of the interface between the carbon fibers and the carbon matrix constituting the carbon fiber-reinforced carbon sintered body of the present invention is determined by setting the peeled interface area to 10% or less (necessarily) to the total interface area. Carbon fibers are separated from carbon fibers (2), but the reinforcing effect of carbon fibers is not fully exerted.For this reason, the area of delamination at the interface is preferably 3% or less than 10% of the total interface. It is better to do so.

この炭素繊維と炭素7トリツクスとの剥離は走査型電子
顕微鏡(以下、SEXという)で観察測定できる。
This separation between the carbon fiber and the carbon 7 trix can be observed and measured using a scanning electron microscope (hereinafter referred to as SEX).

また、この炭素繊維強化炭素焼結体の気孔率は10%以
下であるのが好ましい。この焼結体の気孔は偏光顕微鏡
で観察すると黒い点としで観察される。従って気孔は観
察している面積に占める黒い点の面積(より気孔率が計
緯できる。
Further, the porosity of this carbon fiber-reinforced carbon sintered body is preferably 10% or less. The pores in this sintered body appear as black dots when observed with a polarizing microscope. Therefore, the porosity can be calculated from the area of the black dots that occupies the observed area.

本発明にかかる炭素繊強化炭素焼結体の密度か1.65
以上とは、炭素71−リツクスの緻密性、気孔が少なく
かつ炭素繊維と炭素マトリックスとの界面が剥離してい
ないなどが総合された特性である・I)たがって、これ
らマトリックスの緻密性が欠けたり気孔率が高ずぎたり
、繊維とマトリックスとの間の剥離が多いと、比重は1
.65以下となる。
The density of the carbon fiber reinforced carbon sintered body according to the present invention is 1.65
The above characteristics are a combination of the denseness of carbon 71-ricks, few pores, and no peeling at the interface between carbon fibers and carbon matrix.I) Therefore, the denseness of these matrices is If the porosity is too high or there is a lot of separation between the fiber and matrix, the specific gravity will be 1.
.. It will be 65 or less.

この炭素繊維強化炭素焼結体は、構成する炭素繊維の配
合割合、無機微小体の材質および配合割合、炭素繊維と
炭素マトリックスとの間の剥離面積の割合、気孔率が直
接機械的強度に影響する。
The mechanical strength of this carbon fiber-reinforced carbon sintered body is directly influenced by the blending ratio of the constituent carbon fibers, the material and blending ratio of the inorganic particles, the peeling area ratio between the carbon fibers and the carbon matrix, and the porosity. do.

この炭素繊維強化炭素焼結体の機械的特性を曲げ強度で
規定すると、この焼結体の曲げ強度は600Ky/〜以
上であるのが好ましい。
When the mechanical properties of this carbon fiber-reinforced carbon sintered body are defined by bending strength, the bending strength of this sintered body is preferably 600 Ky/~ or more.

本発明の炭素繊維強化炭素焼結体としては、未炭化炭素
質繊維をあるいは未炭化炭素質繊維と無機微小体とを埋
設した自己焼結性を有する炭素質粉末からなる複合体を
焼結して得られる焼結体が採用できる。
The carbon fiber-reinforced carbon sintered body of the present invention is a sintered composite consisting of a self-sintering carbonaceous powder in which uncarbonized carbonaceous fibers or uncarbonized carbonaceous fibers and inorganic microscopic bodies are embedded. A sintered body obtained by

ここで、未炭化炭素質繊維とは、通常の炭化処理の施さ
れていない状態の炭素質繊維をいう。換言すれば、ざら
に熱処理をすることにより、炭化する余地を有する炭素
質繊維をいう。具体的には、原料にピッチを使用した場
合には、紡糸したままの繊維または紡糸した繊維を55
0℃を超えない温度で不融化した繊維をいう。PAN(
ポリアクリロニトリル)系、レーヨン系などの高分子系
の繊維では分解工程を終え、黒鉛化処理前の繊維をいう
。この種の炭素質繊維としては、例えば、石炭系または
石油系の原料ピッチを紡糸して得たピッチ繊維またはこ
れを不融化して得た不融化繊維なとがある。
Here, the uncarbonized carbonaceous fiber refers to a carbonaceous fiber that has not been subjected to normal carbonization treatment. In other words, it refers to carbonaceous fibers that can be carbonized by rough heat treatment. Specifically, when pitch is used as a raw material, the as-spun fiber or the spun fiber is
Refers to fibers that are infusible at temperatures not exceeding 0°C. PAN(
For polymeric fibers such as polyacrylonitrile and rayon, it refers to fibers that have undergone the decomposition process and have not yet been graphitized. Examples of this type of carbonaceous fiber include pitch fibers obtained by spinning coal-based or petroleum-based raw material pitch, and infusible fibers obtained by infusibleizing the same.

この原料ピッチの紡糸および不融化は常法に従っておこ
なえばよく、条件などは特に限定されない。通常、ピッ
チ繊維は、原料ピッチを紡糸機に供給し、300〜40
0℃程度に加熱した状態で不活性ガスによる加圧下にノ
ズルから押出して得ることができる。また、このような
ピッチ繊維をざらに酸化性雰囲気中150〜500℃程
度で0゜5〜5時間時間像持して不融化11fflとす
ることができる。なお、この原料ピッチは、光学的等方
性のものでも、光学的異方性のものでもよい。
The spinning and infusibility of this raw material pitch may be carried out according to conventional methods, and the conditions are not particularly limited. Normally, pitch fibers are produced by supplying raw material pitch to a spinning machine and producing 300 to 400
It can be obtained by heating it to about 0° C. and extruding it from a nozzle under pressure with an inert gas. Further, such pitch fibers can be image-held at about 150 to 500 DEG C. for 0 DEG to 5 hours in a roughly oxidizing atmosphere to make them infusible to 11ffl. Note that this raw material pitch may be optically isotropic or optically anisotropic.

未炭化炭素質繊維の繊維長さは、短繊維、長繊維に特に
限定されるものではない。しかし、短繊維の場合には0
.01〜50mのものを使用することができる。特に、
0.03〜10m+のちのが混合のしやすさ、アスペク
ト比の関係から好ましい。長すぎては繊維同士が絡みあ
い分散性が低下し、ひいては製品特性の等方性に劣り、
また0゜01m+より短くては製品の強度が急激に低下
して好ましくない。また、繊維径としては、5〜25μ
m程度のものが好ましい。ざらに、これらの繊維からな
る不織布またはコーティング布として使用することもで
きる。
The fiber length of the uncarbonized carbonaceous fibers is not particularly limited to short fibers or long fibers. However, in the case of short fibers, 0
.. 01 to 50 m can be used. especially,
A length of 0.03 to 10 m+ is preferable in terms of ease of mixing and aspect ratio. If the length is too long, the fibers will become entangled with each other, resulting in poor dispersibility, which in turn will result in poor isotropy of product properties.
Moreover, if it is shorter than 0°01 m+, the strength of the product will drop rapidly, which is not preferable. In addition, the fiber diameter is 5 to 25μ
It is preferable to have a diameter of about m. In addition, these fibers can also be used as nonwoven fabrics or coated fabrics.

未炭化炭素質繊維は、さらにタール、ピッチ、有機高分
子などの粘結成分を含有する材料で表面処理し、結合材
とのなじみ性を向上させることが好ましい。この表面処
理は、炭素質繊$1100重量部に100〜1000重
量部程度の粘結成分含有材料を加えて攪拌し、有機溶媒
により洗浄後、乾燥して行うことができる。
It is preferable that the uncarbonized carbonaceous fibers be further surface-treated with a material containing a caking component such as tar, pitch, or organic polymer to improve compatibility with the binder. This surface treatment can be carried out by adding about 100 to 1000 parts by weight of a material containing a viscous component to $1100 parts by weight of carbon fibers, stirring the mixture, washing with an organic solvent, and drying.

この表面処理に使用するタール、ピッチは、石炭系およ
び石油系のいずれであってもよい。ピッチを使用する場
合には、攪拌時に140〜170°C程度の加熱か必要
となるので、処理材としては、タールの方がより好まし
く、また後続の炭化および黒鉛化工程での炭化歩留りの
点からは、石炭系のものがより好ましい。
The tar and pitch used for this surface treatment may be either coal-based or petroleum-based. When pitch is used, heating to about 140 to 170°C is required during stirring, so tar is more preferable as a treatment material, and also because of the carbonization yield in the subsequent carbonization and graphitization steps. Among them, coal-based ones are more preferable.

この表面処理に使用する有機高分子として、フェノール
樹脂、ポリ塩化ビニル、ポリビニルアルコールなどを挙
げることができる。
Examples of organic polymers used for this surface treatment include phenol resin, polyvinyl chloride, and polyvinyl alcohol.

上記の表面処理の洗浄で使用する有機溶媒としては、ト
ルエン、キシレンなどの芳香族系溶媒を使用することが
できる。有機溶媒は未炭化炭素質繊維と粘結成分含有材
料との混合物100重量部に対して100〜1000重
量部程度を加え、攪拌洗浄する。この洗浄により、揮発
成分が多く含まれる軽質油分が除去される。洗浄を終え
た未炭化炭素質繊維は、たとえば、窒素、アルゴンなど
の非酸化性雰囲気中で、加熱および/または減圧などの
条件下に乾燥処理される。乾燥処理は、これらの方法に
限定されるものではない。
As the organic solvent used for cleaning in the above-mentioned surface treatment, aromatic solvents such as toluene and xylene can be used. Approximately 100 to 1000 parts by weight of the organic solvent is added to 100 parts by weight of the mixture of uncarbonized carbon fibers and the material containing the adhesive component, and the mixture is stirred and washed. This washing removes light oils containing many volatile components. The uncarbonized carbonaceous fibers that have been washed are dried under conditions such as heating and/or reduced pressure in a non-oxidizing atmosphere such as nitrogen or argon. The drying process is not limited to these methods.

ざらに、乾燥を終え表面処理された未炭化炭素質繊維は
、必要に応じて分散処理される。すなわち、乾燥させた
繊維が、塊状化または凝集していることがあるので、こ
のような場合には、通常の粉体ミル、アi・マイザー、
バルバライザーなとの任意の手段により分散をおこなう
13 無機微小体は未炭化炭素質繊維とともに、本発明の炭素
繊維強化炭素焼結体の原料となる。この無a微小体は、
放電加工用複合電極の電気比抵抗をより低下させ、加工
速度の向、トと共に平滑度のhい加工面を得るために添
加される。そして緻密な焼結体を形成しるものである1
、この無R微小体は、融点1000℃以上で炭素と反応
しないもの、より好ましくはさら1.:H\/1000
以トのものがよい。
Generally, the uncarbonized carbonaceous fibers that have been dried and surface-treated are subjected to a dispersion treatment, if necessary. That is, the dried fibers may be lumped or agglomerated, so in such cases, it is necessary to use a regular powder mill, i-mizer,
The inorganic microparticles, which are dispersed by any means such as a bulbarizer, serve as raw materials for the carbon fiber-reinforced carbon sintered body of the present invention, together with the uncarbonized carbonaceous fibers. This aa microscopic body is
It is added to further reduce the electrical resistivity of the composite electrode for electric discharge machining, and to obtain a machined surface with high smoothness as well as machining speed. And it forms a dense sintered body1
, this R-free microscopic body is one that does not react with carbon at a melting point of 1000° C. or higher, more preferably 1. :H\/1000
The following are good.

かかる無機物として、無機ホウ化物、無機炭化物、無機
窒化物などの導電性をもつものが挙げられる。無機ホウ
化物として、たとえばTiB5、TaB2 、ZrB2
 、B4 C,N i B、CoB、BNなどを挙げる
ことかできる。無機炭化物として、たとえばTiC,T
aC1ZrCなどを挙げることができる。無機窒化物と
して、たとえばBN、丁I N、 Cr2 N、 Ta
N、 AJ) N、7[Nなどを挙げることかできる3
、さらに、Fe、 Mn、Mo、Ni、Nb、Si、V
、Ti、Wなどの無機物も使用することができる。なお
、これらの無機物は、金属の状態で添加遵−ることも可
能である、。
Examples of such inorganic substances include those having electrical conductivity such as inorganic borides, inorganic carbides, and inorganic nitrides. Examples of inorganic borides include TiB5, TaB2, ZrB2
, B4 C, N i B, CoB, BN, etc. Examples of inorganic carbides include TiC, T
Examples include aC1ZrC. Examples of inorganic nitrides include BN, dinitride, Cr2N, Ta
N, AJ) N, 7 [3 who can name N, etc.
, furthermore, Fe, Mn, Mo, Ni, Nb, Si, V
, Ti, W, and other inorganic materials can also be used. Note that these inorganic substances can also be added in the form of metals.

また、無機微小体としては、微粒子状のものの他ウィス
カ、セラミックス繊維が含まれる。
Furthermore, inorganic microscopic bodies include whiskers and ceramic fibers in addition to fine particles.

前記L)だよう〔こ無@微小体のうちから、適切なもの
を選択することによって、放電加工用複合電極の特性を
好適な状態に管理することができる、1無機微小体とし
て無機粉末を使用し、た場合は、マトリックス材とのな
じみ性、分散性およびできあかった焼結体の強度と耐摩
耗性を考慮して、粒径0.1〜5μmのものが好ましく
、より好ましくは0.2〜4μmである。
By selecting an appropriate one from among the above L) microscopic particles, the characteristics of the composite electrode for electrical discharge machining can be controlled in a suitable state. When used, particles with a particle size of 0.1 to 5 μm are preferable, more preferably 0.1 to 5 μm, considering compatibility with the matrix material, dispersibility, and strength and wear resistance of the finished sintered body. It is 0.2 to 4 μm.

また、無機微小体として無m繊維を使用した場合は、マ
トリックス材とのなじみ性、分散性、できあがった焼結
体の強度と耐摩耗性および繊維の1i1tlJRを考慮
して、直径Q、7〜40/、!m、長さO501へ一8
mmのものか好ましく、より好ましくは直径1〜15μ
m、長さ0.05〜3mmである。
In addition, when non-m fibers are used as the inorganic microscopic bodies, the diameter Q, 7~ 40/,! m, length O501 to -8
Preferably, the diameter is 1 to 15 μm.
m, and the length is 0.05 to 3 mm.

炭素質粉末は、本発明の炭素繊維強化炭素焼結体の結合
材を構成するものである。この炭素質粉末は自己焼結性
を有し、未炭化、または完全に炭化されていないもので
ある。この自己焼結性炭素質粉末と(〕ては、石油系お
よび石炭系のいずれであってもJ:り、具体的には、メ
ンカー7ボンマイクロビーズ、バルクメソフェーズ粉砕
品、低温が焼」−クス粉砕品などを挙げることができる
。これらの中では、粒径おにび組成の均一性、安定性な
どの観点から、石油系および石炭系のメンカーボンマイ
クロビーズが好ま()く、炭化歩留りの観点から′:E
J炭系のものがより好ましい1.自己焼結性炭素質粉末
と()ては、粒径30 um以下、β−,レジン量3−
50%程度のものが好ましい。なお、このβ−レジン量
は、より好ましくは6 =−30%、さらに好ましくは
8〜25%である。
The carbonaceous powder constitutes the binding material of the carbon fiber-reinforced carbon sintered body of the present invention. This carbonaceous powder has self-sintering properties and is uncarbonized or not completely carbonized. This self-sintering carbonaceous powder can be made of either petroleum-based or coal-based powders, specifically Menker 7 Bonn microbeads, bulk mesophase pulverized products, and low-temperature sintering. Among these, petroleum-based and coal-based carbon microbeads are preferred from the viewpoint of uniformity of particle size and composition, and stability. From the point of view of ′:E
J charcoal type is more preferable 1. Self-sintering carbonaceous powder () has a particle size of 30 um or less, β-, resin amount 3-
About 50% is preferable. The amount of β-resin is more preferably 6 = -30%, and still more preferably 8 to 25%.

本発明の焼結体は、たとえば未炭化炭素質繊維と、無機
粉末または無機繊維と、自己焼結性炭素質粉末とを乾式
で混合1ノ、次1こ混合物を加圧成形および焼成という
簡単な工程で製造できる。そし−C必要[応じて機械加
工し・τ完成品とされる。
The sintered body of the present invention can be produced by simply mixing, for example, uncarbonized carbon fibers, inorganic powder or inorganic fibers, and self-sintering carbonaceous powder in a dry process, and then press-molding and firing the mixture. It can be manufactured using a simple process. Then-C is required [machining is performed as required, and it is made into a finished product.

未炭化炭素質繊維と、無機粉末または無機繊維と、自己
焼結性炭素質粉末とは、u合、成形されて複合体を構成
する。このときの混合手段は特に限定されないが、等方
向にするためには、前記した原料を均一に混合すること
が好ましい。また、自己焼結性炭素質粉末と未炭化炭素
質繊維との配合割合は、前者100重量部に対して、後
者2〜70重量部程度であり、より好ましくは前者1゜
O3醋部1.:′対して後者10〜50重量部程度であ
る。また、無機微小体の添加かは、全体を100重炬3
とじたどき3−30重量%が好ましく、より好ましくは
5〜10重1%である、。
The uncarbonized carbonaceous fiber, the inorganic powder or the inorganic fiber, and the self-sintering carbonaceous powder are combined and molded to form a composite. Although the mixing means at this time is not particularly limited, it is preferable to mix the above-mentioned raw materials uniformly in order to achieve uniformity. The blending ratio of the self-sintering carbonaceous powder and the uncarbonized carbonaceous fiber is about 2 to 70 parts by weight to 100 parts by weight of the former, and more preferably 1 part by weight to 1 part by weight of the former. :', the latter is about 10 to 50 parts by weight. Also, regarding the addition of inorganic particles, the total
The binding content is preferably 3-30% by weight, more preferably 5-10% by weight.

本発明にかかる焼結体の成形は、常法によって行うこと
ができ、通常1 ヘ−101on /c雇程度の7JO
圧下で所定の形状に成形刃−ればよい。または、CIP
法、HIP法、ボットプレス法などによって成形を行っ
てもよい。成形は、常温でまたは不活性雰囲気下500
℃程度までの加熱下に行うことができる。
Molding of the sintered body according to the present invention can be carried out by a conventional method, and usually takes about 7JO of 1 H-101 on/c.
It is sufficient to form the blade into a predetermined shape under pressure. Or C.I.P.
Molding may be performed by a method such as a method, a HIP method, a bot press method, or the like. Molding is carried out at room temperature or under an inert atmosphere.
It can be carried out under heating to about ℃.

成形体は、焼結されて本発明【こかがる焼結体となる。The molded body is sintered to become a sintered body according to the present invention.

なお、ここで焼結とは、常圧で700〜2000℃程度
の温度で焼成して未炭化炭素質繊維および自己焼結性炭
素質粉末を炭化固結させることをいう。なお、必要に応
じてこの炭化された複合体を黒鉛化炉で焼結温度以上に
加熱して黒鉛化させてもよい。炭化の条件は、特に限定
されないが、通常非酸化性雰囲気中0.1〜b 間程度の昇温速度で常温から1500℃程度の温度まで
昇温し、0.5〜10時間程時間待すればよい。なあ、
焼結時においてもより高温で焼結することにより複合体
の一部は炭化の後、黒鉛化する。
Note that sintering here refers to carbonizing and solidifying the uncarbonized carbonaceous fibers and the self-sintering carbonaceous powder by firing at a temperature of about 700 to 2000° C. under normal pressure. Note that, if necessary, this carbonized composite may be heated to a temperature higher than the sintering temperature in a graphitization furnace to graphitize it. The carbonization conditions are not particularly limited, but usually the temperature is raised from room temperature to about 1,500°C at a heating rate of about 0.1 to b in a non-oxidizing atmosphere, and then waited for about 0.5 to 10 hours. Bye. Hey,
During sintering, by sintering at a higher temperature, a part of the composite is carbonized and then graphitized.

また、黒鉛化の条件も、特に限定されず、非酸化性雰囲
気中で焼結時の温度から0.1〜b以上の温度で添加し
た無機微小体が溶解しない温度まで昇温し、0.5〜1
0時間程時間待すればよい。黒鉛化を行った場合には、
黒鉛結晶が製品の密度をさらに向上させる。
Further, the conditions for graphitization are not particularly limited, and the temperature is raised from the temperature during sintering in a non-oxidizing atmosphere to a temperature of 0.1-b or higher to a temperature at which the added inorganic fine particles do not dissolve. 5-1
All you have to do is wait for about 0 hours. When graphitized,
Graphite crystals further improve the density of the product.

この特殊な炭素繊維強化炭素焼結体は、焼結前の複合体
を未決化炭素質li雑および無機粉末または無機繊維と
を埋設した自己焼結性を有する未炭化炭素質粉末で構成
したものである。したがって、複合体を焼結する場合、
強化材としての炭素質繊維が未炭化、または完全に炭化
されていないものであるため、この未炭化炭素質繊維と
自己焼結性を有する未炭化炭素質繊維とは、炭化される
際に同程度の物理的性質(強度、収縮率など)をもつ。
This special carbon fiber-reinforced carbon sintered body consists of a composite before sintering of uncarbonized carbonaceous powder with self-sintering properties in which unsettled carbonaceous lithium and inorganic powder or inorganic fibers are embedded. It is. Therefore, when sintering the composite,
Since the carbonaceous fibers used as reinforcing materials are uncarbonized or not completely carbonized, the uncarbonized carbonaceous fibers and the uncarbonized carbonaceous fibers that have self-sintering properties are the same when carbonized. It has certain physical properties (strength, shrinkage rate, etc.).

このため、これら炭素質繊維と炭素質粉末との界面密着
性が向上し、高強度および優れた耐摩耗性を得ることが
できる。要するに、複合体を焼結する場合、未炭化同士
の炭素質繊維と炭素質粉末とが同程度に収縮して結合す
るので、これらの界面密着性が高まり、放電加工用複合
電極の強度が向上する。
Therefore, the interfacial adhesion between these carbonaceous fibers and the carbonaceous powder is improved, and high strength and excellent wear resistance can be obtained. In short, when a composite is sintered, the uncarbonized carbon fibers and carbon powder shrink to the same degree and bond together, which increases their interfacial adhesion and improves the strength of the composite electrode for electrical discharge machining. do.

また、無機粉末または無機l1i1を添加した炭素繊維
強化炭素焼結体で作られた部品は、導電性が高まり比抵
抗が下がり、緻密であり、加工速度を上昇させ、また被
加工面の平滑醜を高めた電極とすることができる。
In addition, parts made of carbon fiber-reinforced carbon sintered bodies containing inorganic powder or inorganic l1i1 have increased conductivity, lower specific resistance, are denser, increase machining speed, and have smoother and less ugly surfaces to be machined. It is possible to create an electrode with increased .

また、前記したように結合材としての自己焼結性炭素質
粉末は、液状炭素質材料からなる従来の結合材の使用を
不要とする。したがって、液状結合材の使用により発生
する気孔を充填するために、含浸、焼成を繰返す必要が
ない。本発明にかかる特殊炭素繊維強化炭素焼結体は、
前記したように乾式混合、加圧成形、焼成という簡単な
工程などで、安価に製造することができる。
Furthermore, as described above, the self-sintering carbonaceous powder as a binder eliminates the need for conventional binders made of liquid carbonaceous materials. Therefore, there is no need to repeat impregnation and firing in order to fill the pores caused by the use of a liquid binder. The special carbon fiber reinforced carbon sintered body according to the present invention is
As described above, it can be manufactured at low cost through the simple steps of dry mixing, pressure molding, and firing.

ざらに、未炭化炭素質繊維をタール、ピッチ、有機高分
子などの粘結成分を含有する材料により表面処理した場
合には、炭素質繊維の界面の濡れ性が高まり、これによ
り結合材としての炭素質粉末とのなじみ性が高まるので
、これら炭素質繊維と炭素質粉末との界面密着性がさら
に向上する。
In general, when uncarbonized carbon fibers are surface-treated with a material containing a caking component such as tar, pitch, or organic polymer, the wettability of the carbon fiber interface increases, which makes it difficult to use as a binder. Since the compatibility with the carbonaceous powder is improved, the interfacial adhesion between these carbonaceous fibers and the carbonaceous powder is further improved.

[実施例] 以下、実施例により具体的にを説明する。[Example] Hereinafter, this will be explained in detail with reference to Examples.

(実施例1) 石炭系の光学的等方性ピッチから常法により紡糸して得
られた、糸径15μm、糸長さが0.3Mの不融化繊維
からなる未炭化炭素質繊維を用意する。この未炭化炭素
質繊、130重量%と、中心粒径7μmのコールタール
系メソカーボンミクロビーズかうなる自己焼結性炭素粉
末70重量%とを配合した後均−に混合し、得られた混
合物を2ton/cmのの成形圧力で成形して直径4O
N+高さ50mの柱状の複合体とした。
(Example 1) Uncarbonized carbonaceous fibers made of infusible fibers with a diameter of 15 μm and a length of 0.3M obtained by spinning coal-based optically isotropic pitch using a conventional method are prepared. . 130% by weight of this uncarbonized carbonaceous fiber and 70% by weight of self-sintering carbon powder consisting of coal tar-based mesocarbon microbeads with a center particle size of 7 μm were blended and then uniformly mixed to obtain a mixture. molded at a molding pressure of 2 tons/cm to a diameter of 40
N + A columnar composite with a height of 50 m.

次に、この複合体を非酸化性雰囲気中、150℃/時間
の昇温速度で1000℃まで昇温し、同温度で1時間保
持して焼結し、未炭化炭素質繊維および自己焼結性炭素
質粉末を炭化固結させた。
Next, this composite was heated to 1000°C at a heating rate of 150°C/hour in a non-oxidizing atmosphere, and held at the same temperature for 1 hour to sinter, forming uncarbonized carbon fibers and self-sintering. The carbonaceous powder was carbonized and consolidated.

そして、さらに非酸化性雰囲気中、500℃/時間の昇
温速度で2000℃まで昇温させて20分間保持して黒
鉛化し、かさ密度1.80!iF/CIt3曲げ強度9
50Kg/CI!t2の炭素V&維強化炭素焼結複合体
を得た。
Then, in a non-oxidizing atmosphere, the temperature was raised to 2000°C at a heating rate of 500°C/hour and held for 20 minutes to graphitize, resulting in a bulk density of 1.80! iF/CIt3 bending strength 9
50Kg/CI! A carbon V & fiber reinforced carbon sintered composite of t2 was obtained.

なお、この炭素繊維強化炭素焼結体の一部を用いて偏光
顕微鏡による表面観察、SEMによるマトリックスと界
面状態の観察した。偏光顕微鏡による観察では、マトリ
ックスが焼結した炭素粒子が互いに密着し個々の粒子が
異なる色模様に輝くtザイク状に観察され、繊維はこの
71−リツクス中に点在した一様の色をもつ島状に観察
された。
A portion of this carbon fiber-reinforced carbon sintered body was used for surface observation using a polarizing microscope and observation of the matrix and interface state using SEM. When observed using a polarizing microscope, the carbon particles formed by the sintered matrix adhere to each other in a t-saic pattern, with each particle shining in a different color pattern, and the fibers have a uniform color scattered throughout this 71-rix. It was observed as an island.

これら黒い点の面積は、全体の面積を100面積%どし
たとき約3而積%であった。SFMT:観察した71〜
リツクスと強化繊維の界面状態は両者が一体的に結合さ
れた状態が観察され、71−リツクスと強化繊維とが剥
離している状態は観察されなかった。
The area of these black dots was approximately 3% by area when the total area was 100% by area. SFMT: Observed 71~
The interfacial state between the 71-Rix and the reinforcing fibers was such that they were integrally bonded, and no separation of the 71-Rix and the reinforcing fibers was observed.

(実施例2) 実施例1と同様の不融化未決化炭素繊維30重量%ど、
自己焼結性炭素質粉末としての中心粒径7I1mのコー
ルタール系メンカーボンマイクロ1ご170重1%とを
混合した一t))の95%〔対し、粒径1.0μmのボ
ウ化チタニウム@5重欝%加え、実施例1と同様の方法
−C直径40m、高さ50#11の柱状の複合体に成形
[−2だ。
(Example 2) 30% by weight of the same infusible unsettled carbon fiber as in Example 1, etc.
95% of 1 ton of coal tar-based Men Carbon Micro 1 with a center particle size of 7I1m as a self-sintering carbonaceous powder mixed with 1% by weight of titanium boride with a particle size of 1.0μm 5% by weight was added and molded into a columnar composite with a diameter of 40 m and a height of 50 #11 in the same manner as in Example 1 [-2].

次に、この複合体を非酸化性雰囲気中、150℃/時間
の速度で’1000’cまで奔温し、同湿度で1時間保
持して焼結して未炭化炭素質繊維および自己焼結性炭素
質粉末を炭化固結さセた。そして、さらに非酸化性雰囲
気中、500 ’C2’時間の胃瀧速度で2000℃ま
て昇温させて20分間保持して焼結した。
Next, this composite is heated to '1000'C in a non-oxidizing atmosphere at a rate of 150C/hour and sintered by keeping it at the same humidity for 1 hour to form uncarbonized carbon fibers and self-sintering. The carbonaceous powder was carbonized and consolidated. Then, in a non-oxidizing atmosphere, the temperature was raised to 2000°C at a gas flow rate of 500'C2' hours and held for 20 minutes for sintering.

なあ、この炭素繊維強化炭素焼結体の一部を用いて実施
例No、1と同様〔こ、偏光顕微鏡#Jよる表面観察、
SEMによりマトリックスと強化mMの界面状態の観察
、密度および曲げ強度を測定した。偏光顕微鏡による観
察では、71へリツクスが焼結した炭素粒子か互いに密
着して個々の粒子か胃なる色模様t〔輝くLザイク状に
観察され、NMはこの71−1ソツクス中に点在した一
様の色もつ島状に観察され、またホウ化ブータニウム粒
子は白い点状に観察された、また、気孔を示す黒い点の
面積は、全体の面積を100面積%とl、たとき約3而
積%であった。SEXで観察した71−リツクスと強イ
ヒ繊維の界面状態は両者か一体的に結合された状態が観
察され、7トリツクスと強化繊維とか剥離している状態
は観察されなかった。また、この炭素繊維強化炭素焼結
体のかき密度は1.83g/an”、曲げ強度は115
0に!J/an2であった。
By the way, using a part of this carbon fiber-reinforced carbon sintered body, the surface observation using a polarizing microscope #J was carried out in the same manner as in Example No. 1.
The interfacial state between the matrix and the reinforced mM was observed using SEM, and the density and bending strength were measured. When observed using a polarizing microscope, 71 helices were observed to be sintered carbon particles or individual particles in close contact with each other in a colored pattern (shining L-saic pattern), and NM was dotted within this 71-1 sock. The butanium boride particles were observed as islands with a uniform color, and the butanium boride particles were observed as white dots.The area of the black dots indicating pores was approximately 3 It was %. The state of the interface between the 71-trix and the reinforcing fibers observed by SEX was such that they were both integrally bonded, and no separation of the 71-trix and the reinforcing fibers was observed. In addition, the carbon fiber-reinforced carbon sintered body has a density of 1.83 g/an'' and a bending strength of 115
To 0! It was J/an2.

比較例としてはかさ密度1 、99./cat” 、曲
げ強度は100 ONS’/ cm2の市販の精密仕上
用黒鉛製放電加工用電極を用いた。評価用電極としては
直径20早、高さ35Mff1に加工し、さらに中心に
直径5Mの穴を開けて用いた。
As a comparative example, the bulk density is 1 and 99. A commercially available graphite electrical discharge machining electrode for precision finishing with a bending strength of 100 ONS'/cm2 and a bending strength of 100 ONS'/cm2 was used.The electrode for evaluation was machined to a diameter of 20mm, a height of 35Mff1, and a 5M diameter electrode in the center. I made a hole and used it.

上記の実施例および比較例の電極について放電加工機に
セット(〕、以下の条件で加工面の粗さ、加工速団につ
いての評価をおこなった。条件は、電流値=1OA、2
5A、如■時間5分、オンタイム=10μs、30μS
1加工液:白灯油(噴流 0035Ny/CIA)、被
加工物:熱間工具鋼である。
The electrodes of the above examples and comparative examples were set in an electric discharge machine (), and the roughness of the machined surface and machining speed were evaluated under the following conditions.The conditions were: current value = 1OA,
5A, time 5 minutes, on time = 10μs, 30μS
1 Working fluid: white kerosene (jet flow 0035Ny/CIA), workpiece: hot work tool steel.

結果を第1表に示す。The results are shown in Table 1.

実施例1.2とも比較例の従来材に比べて加工粗さが小
ざく平滑度に優れ、かつ、加工速度か速い。また実施例
では無機微小体が添加されている実施例2の方かややよ
かった。したかつて、この放電加工用複合電極は従来の
黒鉛系に比べて性能が向上()ている。
In both Examples 1 and 2, compared to the conventional material of the comparative example, the machining roughness was small and the smoothness was excellent, and the machining speed was fast. Furthermore, in the examples, Example 2, in which inorganic microparticles were added, was slightly better. This composite electrode for electrical discharge machining has improved performance compared to conventional graphite-based electrodes.

[発町の効果] 第1表 (私T采白) 本発明の放電加工用複合電極は、特殊な炭素繊維強化炭
素焼結体で作られている。この炭素繊維強化炭素焼結体
は、密度が高く高強度である。通常の放電加工では相反
する結果となり両者を向上させるのが困難である加工速
度と加工面粗さの両者共に向上させることができる。
[Effects of Hatsumachi] Table 1 (Private T Kamishiro) The composite electrode for electric discharge machining of the present invention is made of a special carbon fiber-reinforced carbon sintered body. This carbon fiber reinforced carbon sintered body has high density and high strength. It is possible to improve both machining speed and machined surface roughness, which are difficult to improve because of conflicting results in normal electric discharge machining.

特許出願人  トヨタ自動車株式会社 特許出願人  大阪瓦斯株式会社Patent applicant: Toyota Motor Corporation Patent applicant: Osaka Gas Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素マトリックス中に炭素繊維があるいは炭素繊
維と無機微小体とが一体的に埋設された組織を有し、該
炭素マトリックスは偏光顕微鏡で見て光学異方性の微粒
子が均一に密集したモザイク構造をもち、該炭素繊維と
該炭素マトリックスとの間の界面で剥離している界面の
割合が全界面に対して10%以下であり、かつ密度が1
.65以上である炭素繊維強化炭素焼結体で構成されて
いることを特徴とする放電加工用複合電極。
(1) It has a structure in which carbon fibers or carbon fibers and inorganic microparticles are embedded integrally in a carbon matrix, and the carbon matrix has a uniform density of optically anisotropic fine particles when seen with a polarizing microscope. It has a mosaic structure, the ratio of peeled interfaces between the carbon fibers and the carbon matrix is 10% or less of the total interfaces, and the density is 1.
.. A composite electrode for electrical discharge machining, characterized in that it is made of a carbon fiber-reinforced carbon sintered body having a carbon fiber strength of 65 or more.
(2)未炭化炭素質繊維を、あるいは未炭化炭素質繊維
と無機微小体とを埋設した自己焼結体を有する炭素質粉
末からなる複合体を焼結して得られる炭素繊維強化炭素
焼結体で構成されていることを特徴とする放電加工用複
合電極。
(2) Carbon fiber-reinforced carbon sinter obtained by sintering a composite consisting of carbonaceous powder having a self-sintered body in which uncarbonized carbonaceous fibers or uncarbonized carbonaceous fibers and inorganic microscopic bodies are embedded. A composite electrode for electric discharge machining characterized by being composed of a body.
JP18916790A 1990-07-17 1990-07-17 Composite electrode for electric discharge machining Pending JPH0475819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18916790A JPH0475819A (en) 1990-07-17 1990-07-17 Composite electrode for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18916790A JPH0475819A (en) 1990-07-17 1990-07-17 Composite electrode for electric discharge machining

Publications (1)

Publication Number Publication Date
JPH0475819A true JPH0475819A (en) 1992-03-10

Family

ID=16236592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18916790A Pending JPH0475819A (en) 1990-07-17 1990-07-17 Composite electrode for electric discharge machining

Country Status (1)

Country Link
JP (1) JPH0475819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837957A (en) * 1996-02-27 1998-11-17 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining apparatus
DE102004028658A1 (en) * 2004-06-15 2006-01-05 Albert-Ludwigs-Universität Freiburg, vertreten durch den Rektor Composite electrochemical machining electrode has electrode ends exposed on surface of cast non-electrically conducting block

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837957A (en) * 1996-02-27 1998-11-17 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining apparatus
DE102004028658A1 (en) * 2004-06-15 2006-01-05 Albert-Ludwigs-Universität Freiburg, vertreten durch den Rektor Composite electrochemical machining electrode has electrode ends exposed on surface of cast non-electrically conducting block

Similar Documents

Publication Publication Date Title
CN102557015B (en) A kind of Carbon material with isotropic fine structure and preparation method thereof
US20070132126A1 (en) Method for debundling and dispersing carbon fiber filaments uniformly throughout carbon composite compacts before densification
US5202293A (en) Carbon fiber reinforced carbon
EP0404571B1 (en) Sliding member
EP0507564A2 (en) Carbon composite material
US5169718A (en) Sliding member
JPH0475819A (en) Composite electrode for electric discharge machining
EP0379328B1 (en) Carbon fiber reinforced carbon
JP3404498B2 (en) Method for producing short fiber reinforced C / C composite
JPH0478374A (en) Shift fork for transmission
JPH0476085A (en) Differential limiting device
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JPH068217B2 (en) Carbon fiber reinforced carbon sintered body
JPH0478332A (en) Brake device
JPH07115958B2 (en) Carbon fiber reinforced carbon composite material with high friction coefficient
JPH05306166A (en) Carbon composite material
JPH0478333A (en) Clutch facing
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPH068213B2 (en) Sliding member
JPH0476298A (en) Vane pump
JPH0476097A (en) Bush
JPH0476256A (en) Piston for internal combustion engine
JPH0478320A (en) Bush
JPH0476251A (en) Cylinder block
JPH0476086A (en) Wet friction material