JP2008248424A - Method of multistage electrolytic treatment of carbon fiber - Google Patents

Method of multistage electrolytic treatment of carbon fiber Download PDF

Info

Publication number
JP2008248424A
JP2008248424A JP2007090428A JP2007090428A JP2008248424A JP 2008248424 A JP2008248424 A JP 2008248424A JP 2007090428 A JP2007090428 A JP 2007090428A JP 2007090428 A JP2007090428 A JP 2007090428A JP 2008248424 A JP2008248424 A JP 2008248424A
Authority
JP
Japan
Prior art keywords
carbon fiber
treatment
electricity
electrolytic
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007090428A
Other languages
Japanese (ja)
Inventor
Hiroshi Kimura
洋 木村
Taro Oyama
太郎 尾山
Rie Kawahito
理恵 川人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2007090428A priority Critical patent/JP2008248424A/en
Publication of JP2008248424A publication Critical patent/JP2008248424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently carrying out electrolytic treatment in a method for surface electrolytic treatment for improving the surface state of a carbon fiber. <P>SOLUTION: In the method for continuously carrying out the surface electrolysis of carbon fiber by using multistage treatment baths, preferably treatment baths composed of 3-20 units, the method for surface electrolytic treatment of carbon fiber comprises varying electric quantities of the continuous treatment baths. A method for increasing electric quantities of continuous treatment baths in turn is preferable in terms of electric quantities. The coefficient of variation of electric quantities of the continuous treatment baths is preferably set at ≥10%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、マトリックス樹脂との界面接着性に優れた炭素繊維を製造するための多段表面電解処理方法に関する。 The present invention relates to a multistage surface electrolytic treatment method for producing a carbon fiber excellent in interfacial adhesion with a matrix resin.

近年、炭素繊維を強化繊維として用いた複合材料は、軽く、高強度等の優れた機械的特性を有するので、航空機、自動車等の部材として多く用いられるようになってきている。これらの複合材料は、例えば、強化繊維にマトリックス樹脂が含浸された中間製品であるプリプレグから、加熱・加圧といった成形・加工工程を経て成形される。 In recent years, composite materials using carbon fibers as reinforcing fibers are light and have excellent mechanical properties such as high strength, and thus are increasingly used as members of aircraft, automobiles and the like. These composite materials are molded, for example, from a prepreg, which is an intermediate product in which a reinforcing fiber is impregnated with a matrix resin, through molding and processing steps such as heating and pressing.

炭素繊維とマトリックス樹脂との複合化において、高性能化を追求するためには、炭素繊維そのもの自体の強度や弾性率等の機械的物性の他、マトリックス樹脂との接着性に関与する炭素繊維の表面特性を向上させることが必要不可欠である。つまり、炭素繊維表面とマトリックス樹脂との接着性が高いもの同士を複合化し、マトリックス樹脂と炭素繊維をより均一に分散することで、より高性能のコンポジット特性(高強度、高弾性、高耐衝撃性等)を有する複合材料を得ることができると期待される。 In order to pursue high performance in the composite of carbon fiber and matrix resin, in addition to the mechanical properties such as strength and elastic modulus of the carbon fiber itself, the carbon fiber involved in the adhesion to the matrix resin It is essential to improve surface properties. In other words, by combining materials with high adhesion between the carbon fiber surface and the matrix resin, and dispersing the matrix resin and the carbon fiber more uniformly, higher performance composite properties (high strength, high elasticity, high impact resistance) It is expected that a composite material having properties such as properties) can be obtained.

一方、炭素繊維の表面状態と複合材料の強度との関係は、一般的に表面が平坦な炭素繊維ではマトリクス樹脂との接着性が低いため複合材料としての強度が十分に発現されず、また表面の凹凸が大きな炭素繊維ではマトリクス樹脂との接着性は高いが、大きすぎる表面の凹凸が繊維欠陥となり複合材料の強度低下につながるといわれている。従って、炭素繊維表面に、表面処理によって適度な凹凸を適当な量、形成させることが重要であると考えられる。 On the other hand, the relationship between the surface condition of carbon fiber and the strength of the composite material is that the carbon fiber with a flat surface generally has low adhesiveness with the matrix resin, so that the strength as a composite material is not fully expressed. Carbon fibers with large irregularities have high adhesion to the matrix resin, but it is said that irregularities on the surface that are too large become fiber defects leading to a decrease in strength of the composite material. Therefore, it is considered important to form an appropriate amount of appropriate irregularities on the carbon fiber surface by surface treatment.

前述のごとく複合材料のための強化繊維として用いられる炭素繊維は、通常、その前駆体繊維の耐炎化処理、炭素化処理、あるいは更に炭化・黒鉛化処理を経て得られた炭素繊維に、更に表面処理やサイジング処理が行われたものである。表面処理の方法・手段しては、薬液を用いる液相酸化、電解液溶液中で炭素繊維を陽極として処理する電解酸化、及び気相状態でのプラズマ処理などによる気相酸化等がある。表面処理方法としては、比較的取り扱い性が良く、コスト的に有利な電解酸化処理法が好適に採用される。そして、電解液としては、酸性水溶液またはアルカリ性水溶液のいずれも使用可能であるが、電気伝導度の高い溶液を用いると処理度合いが大きくなり、好ましい。 As described above, the carbon fiber used as the reinforcing fiber for the composite material is usually a carbon fiber obtained by subjecting the precursor fiber to flame resistance treatment, carbonization treatment, or further carbonization / graphitization treatment. Processing and sizing processing are performed. Examples of surface treatment methods and means include liquid phase oxidation using a chemical solution, electrolytic oxidation in which a carbon fiber is treated as an anode in an electrolytic solution, and vapor phase oxidation by a plasma treatment in a gas phase. As the surface treatment method, an electrolytic oxidation treatment method that is relatively easy to handle and is advantageous in terms of cost is preferably employed. As the electrolytic solution, either an acidic aqueous solution or an alkaline aqueous solution can be used. However, it is preferable to use a solution having high electrical conductivity because the degree of treatment increases.

電解酸化による表面処理によって、炭素繊維表面にカルボキシル基や水酸基等の官能基が生成され、これがマトリックス樹脂との接着性を高めるのに寄与すると考えられる。かかる点に着目して、炭素繊維の表面状態を改善させる方法が提案されている。例えば、パルス的に炭素繊維トウを印加して陽極酸化し、トウ内部への電解質の拡散効率を上げる方法が提案されている(例えば、特許文献1と2参照)。また、炭素繊維トウとマトリックス樹脂との接着力を向上させるために、炭素繊維トウに対して陽極酸化と陰極還元を周期的に繰り返して、その表面処理を行う方法も提案されている(特許文献3参照)。
特開平7−189113号公報 特開平7−207573号公報 特開平10−266066号公報
By surface treatment by electrolytic oxidation, functional groups such as carboxyl groups and hydroxyl groups are generated on the surface of the carbon fiber, which is considered to contribute to enhancing the adhesiveness with the matrix resin. Focusing on this point, a method for improving the surface state of the carbon fiber has been proposed. For example, a method has been proposed in which carbon fiber tow is pulsed and anodized to increase the efficiency of electrolyte diffusion into the tow (see, for example, Patent Documents 1 and 2). In addition, in order to improve the adhesion between the carbon fiber tow and the matrix resin, a method is also proposed in which anodization and cathodic reduction are periodically repeated on the carbon fiber tow to perform surface treatment (Patent Document). 3).
JP 7-189113 A JP-A-7-207573 Japanese Patent Laid-Open No. 10-266066

炭素繊維は、炭化あるいは黒鉛化処理温度が高くなるほどグラファイト結晶構造が発達し酸化されにくくなるので、表面電解処理によって官能基を付与する際に電解電気量を大きくする必要がある。しかし、電気量が大きくなると、過剰処理による強度の低下や、不均一な表面電解処理となりコンポジット特性が低下する傾向にある。これを改善する方法として、電解酸化処理を多段処理方式にし、一つの処理段(一対の陽極槽と陰極槽)での電気量を低減する方法が知られている。均一で平均した表面電解処理のためには、多段電解処理(陽極槽と陰極槽の繰り返しが2〜12回程度の多段電解処理が好ましいとされている(例えば、特許文献4参照)。しかしながら、処理段が増加するとそれだけ工程が長くなり、設備コストがかかるという問題も発生する。以上のような状況のもと、より高性能の複合材料を効率よく製造するために、炭素繊維の生産性、具体的には、表面処理である電解処理の効率的な方法の開発が望まれていた。
特開2003−64577号公報
Since the carbon fiber develops a graphite crystal structure and becomes difficult to be oxidized as the carbonization or graphitization temperature increases, it is necessary to increase the amount of electrolysis when a functional group is imparted by surface electrolytic treatment. However, when the amount of electricity increases, the composite characteristics tend to deteriorate due to a decrease in strength due to excessive treatment or uneven surface electrolytic treatment. As a method for improving this, there is known a method of reducing the amount of electricity in one processing stage (a pair of anode tank and cathode tank) by using electrolytic oxidation treatment in a multi-stage treatment system. For uniform and average surface electrolytic treatment, multi-stage electrolytic treatment (multi-stage electrolytic treatment in which the anode tank and the cathode tank are repeated about 2 to 12 times is preferred (for example, see Patent Document 4). If the number of processing stages increases, the process lengthens and the equipment cost increases.In such a situation, in order to efficiently produce a higher performance composite material, the productivity of carbon fiber, Specifically, it has been desired to develop an efficient method of electrolytic treatment that is a surface treatment.
JP 2003-64577 A

本発明の課題は、炭素繊維の表面状態を改善させるための表面電解処理法において、電解処理を効率的に行う方法を提供することにある。 The subject of this invention is providing the method of performing an electrolytic treatment efficiently in the surface electrolytic treatment method for improving the surface state of carbon fiber.

本発明者は、炭素繊維の表面状態の最適化、具体的には、マトリックス樹脂との接着性の向上、そして延いては、衝撃後圧縮強度(CAI)、曲げ強度等の高いコンポジット特性を有する複合材料を得るためには、炭素繊維の表面酸素濃度(O/C)と界面剪断強度(IPSS)を高い値にすることが必要であることに着目し、これらの値と表面電解処理法の条件を検討する過程で本発明に到達した。 The present inventor has optimized the surface condition of the carbon fiber, specifically, improved adhesion to the matrix resin, and eventually has high composite properties such as compressive strength after impact (CAI) and bending strength. In order to obtain a composite material, it is necessary to increase the surface oxygen concentration (O / C) and the interfacial shear strength (IPSS) of the carbon fiber. The present invention has been reached in the process of studying the conditions.

本発明のうち請求項1に記載された発明は、炭素繊維の表面電解処理を多段処理浴を用いて連続的に実施する方法において、連続する各処理浴の電気量を変動させることを特徴とする炭素繊維の多段表面電解処理方法である。 The invention described in claim 1 of the present invention is characterized in that, in the method of continuously performing the surface electrolytic treatment of carbon fibers using a multistage treatment bath, the electric quantity of each successive treatment bath is varied. The carbon fiber multistage surface electrolytic treatment method.

本発明において、処理浴とは、陽極と陰極が別々の槽に設置された陽極槽と陰極槽とからなる一対の処理槽を意味し、かかる処理浴が連続して設置されているものが多段処理浴と定義される。そしてまた、本発明においては、前記一対の処理槽からなる処理浴、即ち、電解酸化と電解還元が行われる一対の陽極槽と陰極槽を、1ユニットと称するものとする。 In the present invention, the treatment bath means a pair of treatment tanks composed of an anode tank and a cathode tank in which an anode and a cathode are installed in separate tanks, and a plurality of such treatment baths are continuously installed. Defined as treatment bath. In the present invention, a treatment bath comprising the pair of treatment tanks, that is, a pair of anode tank and cathode tank in which electrolytic oxidation and electrolytic reduction are performed is referred to as one unit.

請求項2に記載された発明は、多段処理浴の処理浴が、3〜20ユニットからなる請求項1記載の炭素繊維の多段表面電解処理方法である。
The invention described in claim 2 is the carbon fiber multi-stage surface electrolytic treatment method according to claim 1, wherein the treatment bath of the multi-stage treatment bath comprises 3 to 20 units.

請求項3に記載された発明は、連続する各処理浴の電気量が、順に増大している請求項1又は2記載の炭素繊維の多段表面電解処理方法である。 The invention described in claim 3 is the carbon fiber multi-stage surface electrolytic treatment method according to claim 1 or 2, wherein the amount of electricity in each successive treatment bath increases in order.

請求項4に記載された発明は、連続する各処理浴の電気量の変動率が、10%以上である請求項1〜3のいずれか1項記載の炭素繊維の多段表面電解処理方法である。 The invention described in claim 4 is the carbon fiber multi-stage surface electrolytic treatment method according to any one of claims 1 to 3, wherein the variation rate of the amount of electricity in each successive treatment bath is 10% or more. .

そして、請求項5に記載された発明は、請求項1〜4のいずれか1項記載の多段表面電解処理方法で得られた、表面酸素濃度(O/C)が20〜35%の範囲にある炭素繊維である。 The invention described in claim 5 has a surface oxygen concentration (O / C) obtained by the multistage surface electrolytic treatment method of any one of claims 1 to 4 in a range of 20 to 35%. It is a certain carbon fiber.

本発明によると、表面状態が改善された、具体的には、表面酸素濃度(O/C)とIPSSの値の高い炭素繊維を、表面電解処理法の簡単な条件設定で効率良く製造することができる。そして、得られた炭素繊維は、マトリックス樹脂との接着性が向上し、CAI等の高いコンポジット特性を有する複合材料を、生産性良く製造することができる。表面酸素濃度が高いということは、炭素繊維表面の官能基量が増加していることを示しており、IPSS値が高いことは、界面接着性が向上していることを示している。 According to the present invention, a carbon fiber having improved surface condition, specifically, a surface oxygen concentration (O / C) and a high IPSS value, can be efficiently produced by simple condition setting of a surface electrolytic treatment method. Can do. And the obtained carbon fiber can improve the adhesiveness with matrix resin, and can manufacture the composite material which has high composite characteristics, such as CAI, with high productivity. A high surface oxygen concentration indicates that the amount of functional groups on the carbon fiber surface is increasing, and a high IPSS value indicates that interfacial adhesion is improved.

また、本発明の多段処理浴による表面電解処理においては、必要エネルギー量を減少させることができ、更に、多段処理のため1段、即ち、各処理浴当たりのエネルギーを小さくできるので、工程あるいは装置の小型化や安全性の向上にもつながるという効果が得られる。 Further, in the surface electrolytic treatment using the multistage treatment bath of the present invention, the amount of energy required can be reduced, and furthermore, the energy for each treatment bath can be reduced by one stage for the multistage treatment. The effect that it leads to the miniaturization and improvement of safety is also obtained.

炭素繊維は、通常、その前駆体繊維の耐炎化処理、炭素化処理、あるいは更に炭化・黒鉛化処理を経て得られた炭素繊維に、更に表面処理やサイジング処理が行われる。本発明は、かかる工程のうち表面処理を電解処理法で行う際の特定の方法に関するものである。 The carbon fiber is usually subjected to further surface treatment and sizing treatment on the carbon fiber obtained by subjecting the precursor fiber to flame resistance treatment, carbonization treatment, or further carbonization / graphitization treatment. This invention relates to the specific method at the time of performing surface treatment by the electrolytic treatment method among these processes.

炭素繊維を、電解酸化と電解還元が行われる一対の陽極槽と陰極槽を用いて表面電解処理する場合、陽極槽では、電解酸化による炭素繊維表面のエッチングが行われ、カルボキシル基や水酸基等の官能基が生成されると考えられる。そして、陰極槽では、電解還元により、精製した官能基の一部は還元除去されると考えられる。電解酸化によるエッチングの程度は、使用する電気量に依存し、電気量が高いほど繊維表面が強くエッチングされるが、過度な処理を行うと、逆に、削れ過ぎた部分が新たな欠陥となるため好ましくない。クラックやボイドなどの物理的欠陥(結晶性が高く配向度が低い構造部分)は、炭素繊維の破断開始点となる。従って、最適な表面状態を形成させるためには、適度なエッチングが必要である。 When carbon fiber is subjected to surface electrolytic treatment using a pair of anode tank and cathode tank in which electrolytic oxidation and electrolytic reduction are performed, etching of the carbon fiber surface by electrolytic oxidation is performed in the anode tank, and carboxyl groups, hydroxyl groups, etc. It is thought that a functional group is generated. In the cathode chamber, it is considered that a part of the purified functional group is reduced and removed by electrolytic reduction. The degree of etching by electrolytic oxidation depends on the amount of electricity used, and the higher the amount of electricity, the more strongly the fiber surface is etched. However, if excessive treatment is performed, the excessively shaved part becomes a new defect. Therefore, it is not preferable. Physical defects such as cracks and voids (structural portions with high crystallinity and low orientation) serve as starting points for breaking carbon fibers. Accordingly, in order to form an optimum surface state, appropriate etching is necessary.

本発明においては、炭素繊維の表面電解処理を多段処理浴を用いて実施するに際し、連続する各処理浴の電気量を変動させる方法を採用したものである。驚くべきことに、かかる方法によって、炭素繊維の表面状態を効率的かつ安定的に改善することができるのである。 In the present invention, when the surface electrolytic treatment of the carbon fiber is carried out using a multistage treatment bath, a method of changing the amount of electricity of each successive treatment bath is adopted. Surprisingly, the surface state of the carbon fiber can be improved efficiently and stably by such a method.

本発明において多段処理浴とは、前述のごとく、陽極槽と陰極槽とからなる一対の処理槽(1ユニット)が連続して設置されている電解表面処理装置である。かかる装置を用いて、炭素繊維、例えば、炭素繊維のトウに対して、電解質溶液を介して間接給電して、陽極酸化による電解表面処理と陰極還元による電解表面処理が交互に連続して行われる。 In the present invention, the multistage treatment bath is an electrolytic surface treatment apparatus in which a pair of treatment tanks (one unit) composed of an anode tank and a cathode tank are continuously installed as described above. Using such an apparatus, carbon fiber, for example, carbon fiber tow, is indirectly fed through an electrolyte solution, and electrolytic surface treatment by anodization and electrolytic surface treatment by cathodic reduction are alternately performed continuously. .

本発明において、多段処理浴は、陽極槽と陰極槽とが別々に構成されており、電解液を介して印加する装置であればどのようなものでもかまわないが、電解液を、炭素繊維、例えば、トウの下方から噴出させることによって供給するのが好ましい。 In the present invention, the multi-stage treatment bath is composed of an anode tank and a cathode tank separately, and any apparatus can be used as long as it is applied via an electrolytic solution. For example, it is preferable to supply by ejecting from below the tow.

本発明は、炭素繊維表面の電解処理を多段処理浴で行うに際し、連続する各処理浴の電気量を順に増加させる方法である。連続する各処理浴の電気量を増加させるに際し、連続する各処理浴の電気量の変動率は、10%以上、好ましくは10〜500%、更に好ましくは20〜100%である。そして、各処理浴における電気量は、5〜500クーロン/g(炭素繊維1g当たりのクーロン数)、好ましくは5〜200クーロン/gである。 The present invention is a method for sequentially increasing the amount of electricity in each successive treatment bath when performing electrolytic treatment of the carbon fiber surface in a multistage treatment bath. When increasing the amount of electricity in each successive treatment bath, the variation rate of the amount of electricity in each successive treatment bath is 10% or more, preferably 10 to 500%, more preferably 20 to 100%. The amount of electricity in each treatment bath is 5 to 500 coulombs / g (the number of coulombs per gram of carbon fiber), preferably 5 to 200 coulombs / g.

なお、炭素繊維1g当たりのクーロン数とは、下記式で計算される値である。
炭素繊維1g当たりのクーロン数(クーロン/g)=0.36×A/((炭素繊維のストランド数)×S×Y×(フィラメント数))
ここで、A(電流値:A)、S(速度:m/hr)、Y(繊度:dtex)である。
In addition, the number of coulombs per 1 g of carbon fibers is a value calculated by the following formula.
Number of coulombs per gram of carbon fiber (coulomb / g) = 0.36 × A / ((number of carbon fiber strands) × S × Y × (number of filaments))
Here, A (current value: A), S (speed: m / hr), and Y (fineness: dtex).

本発明において、多段処理浴の処理浴の数は、3〜20ユニット、好ましくは3〜10ユニット、更に好ましくは3〜6ユニットである。使用する電気量としては、総電気量で10〜1000クーロン/g、好ましくは10〜500クーロン/gの範囲である。1000クーロン/gを超えると炭素繊維自体の強度が低下することがあるので好ましくない。電気量を大きくすると、エッチング量が増えるが、電気量が大きすぎると表面の凹凸が表面欠陥となり、繊維強度が低下するため好ましくない。また、電気量が小さすぎると、エッチングが十分でないため好ましくない。 In the present invention, the number of treatment baths in the multistage treatment bath is 3 to 20 units, preferably 3 to 10 units, and more preferably 3 to 6 units. The amount of electricity used is in the range of 10 to 1000 coulomb / g, preferably 10 to 500 coulomb / g in terms of total electricity. If it exceeds 1000 coulombs / g, the strength of the carbon fiber itself may decrease, which is not preferable. If the amount of electricity is increased, the amount of etching increases, but if the amount of electricity is too large, surface irregularities become surface defects and fiber strength decreases, which is not preferable. Also, if the amount of electricity is too small, etching is not sufficient, which is not preferable.

炭素繊維の表面を電解処理すると、電解酸化によるエッチングによって、炭素繊維の表面欠陥となる焼成工程で生じた脆弱部が、エッチングにより取り除かれ炭素繊維自体の強度が向上する。また、脆弱部の除去に伴い繊維表面に細かな凹凸が生じ、炭素繊維の表面積が広がり、炭素繊維とマトリックス樹脂間に十分な接触を得ることができるようになる。更に、マトリックス樹脂との親和性を向上させる効果を有する、カルボキシル基や水酸基等の官能基が導入される。それらの結果、アンカー効果により炭素繊維とマトリックス樹脂との接着性が向上し、得られた複合材料のコンポジット特性が向上すると推測される。 When the surface of the carbon fiber is subjected to electrolytic treatment, the weakened portion generated in the firing process, which becomes a surface defect of the carbon fiber, is removed by etching by etching by electrolytic oxidation, and the strength of the carbon fiber itself is improved. Further, with the removal of the fragile portion, fine irregularities are generated on the fiber surface, the surface area of the carbon fiber is increased, and sufficient contact can be obtained between the carbon fiber and the matrix resin. Furthermore, a functional group such as a carboxyl group or a hydroxyl group having an effect of improving the affinity with the matrix resin is introduced. As a result, it is estimated that the anchor effect improves the adhesion between the carbon fiber and the matrix resin and improves the composite properties of the obtained composite material.

本発明において表面酸素濃度とは、X線光電子分光器により測定される炭素繊維のO/C値を意味し、O/C値が20〜35%の範囲にあることが必要である。O/C値が20%未満の場合は、炭素繊維とマトリックス樹脂との接着性が劣り、得られる複合材料の物性低下の原因になる。一方、O/C値が35%を超える場合は、樹脂との接着性が高すぎ、
界面での柔軟性が失われるため、複合材料の物性が低下する傾向にあるので不適当である。
In the present invention, the surface oxygen concentration means an O / C value of carbon fiber measured by an X-ray photoelectron spectrometer, and the O / C value needs to be in a range of 20 to 35%. When the O / C value is less than 20%, the adhesion between the carbon fiber and the matrix resin is inferior, causing a decrease in physical properties of the resulting composite material. On the other hand, when the O / C value exceeds 35%, the adhesiveness with the resin is too high,
Since the flexibility at the interface is lost, the physical properties of the composite material tend to deteriorate, which is inappropriate.

表面処理に際しての炭素繊維の処理量は、特に制限はないが、例えば、トウの場合には、単位幅当たりのフィラメント数が5000フィラメント/mm以下、好ましくは2000フィラメント/mm以下が好ましい。5000フィラメント/mmを超えると、電解液の拡散が不十分になり、単繊維間の接着力のバラツキが大きくなることがあるので好ましくない。 The amount of carbon fiber treated during the surface treatment is not particularly limited. For example, in the case of tow, the number of filaments per unit width is 5000 filaments / mm or less, preferably 2000 filaments / mm or less. Exceeding 5000 filaments / mm is not preferable because the diffusion of the electrolyte solution becomes insufficient and the variation in the adhesive strength between the single fibers may increase.

表面処理で用いる電解液の電解質については、特に制限はないが、硫酸、硝酸、塩酸、リン酸、ホウ酸、炭酸等の無機酸、酢酸、酪酸、シュウ酸、アクリル酸、マレイン酸等の有機酸、硫酸アンモニウム、硫酸水素アンモニウム、硝酸アンモニウム、硝酸水素アンモニウム、リン酸2水素アンモニウム、リン酸水素2アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム等のアンモニウム塩又はアンモニア、水酸化ナトリウム、水酸化カリウム、水産かバリウム等のアルカリ水酸化物、炭酸ナトリウム、炭酸水素ナトリウム、リン酸ナトリウム、リン酸カリウム等の無機塩、マレイン酸ナトリウム、酢酸ナトリウム、酢酸カリウム、安息香酸ナトリウム等の有機塩を単独または2種類以上の混合物として用いることができる。 There are no particular restrictions on the electrolyte used in the surface treatment, but inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, and carbonic acid, organic acids such as acetic acid, butyric acid, oxalic acid, acrylic acid, and maleic acid Acid, ammonium sulfate, ammonium hydrogen sulfate, ammonium nitrate, ammonium hydrogen nitrate, ammonium dihydrogen phosphate, ammonium dihydrogen phosphate, ammonium carbonate, ammonium hydrogen carbonate ammonium salt or ammonia, sodium hydroxide, potassium hydroxide, marine or barium Inorganic salts such as alkali hydroxides such as sodium carbonate, sodium bicarbonate, sodium phosphate and potassium phosphate, and organic salts such as sodium maleate, sodium acetate, potassium acetate and sodium benzoate alone or in combination of two or more It can be used as a mixture.

以上のようにして表面処理が施された炭素繊維は、通常、サイジング剤が付与される。サイジング剤としては、複合材料に用いるマトリックス樹脂に合わせて選択することが好ましく、例えばエポキシ樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリイミド樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、ポリエーテルスルホン樹脂等を単独であるいは2種類以上を混合して用いることができる。サイジング剤を炭素繊維へ付与するに際しては、サイジング剤をその溶媒に溶解した溶液又はその溶液中に分散させた分散液(サイジング液)に、炭素繊維を浸漬し、次いで乾燥する方法によるのが一般的である。 The carbon fiber that has been surface-treated as described above is usually provided with a sizing agent. The sizing agent is preferably selected according to the matrix resin used for the composite material. For example, epoxy resin, epoxy-modified polyurethane resin, polyester resin, phenol resin, polyamide resin, polyurethane resin, polyimide resin, polyvinyl alcohol resin, polyvinyl pyrrolidone Resins, polyethersulfone resins and the like can be used alone or in admixture of two or more. When the sizing agent is applied to the carbon fiber, the carbon fiber is generally immersed in a solution obtained by dissolving the sizing agent in the solvent or a dispersion liquid (sizing solution) dispersed in the solvent, and then dried. Is.

本発明の炭素繊維を強化繊維として用い、これとマトリックス樹脂とから種々の公知の手段・方法により複合材料が得られる。 The carbon fiber of the present invention is used as a reinforcing fiber, and a composite material can be obtained from this and a matrix resin by various known means and methods.

炭素繊維は、通常、シート状の強化繊維材料として用いられる。シート状の材料とは、繊維材料を一方向にシート状に引き揃えたもの、これらを、例えば、直交に積層したもの、繊維材料を織編物や不織布等の布帛に成形したもの、ストランド状のもの、多軸織物等を全て含む。繊維の形態としては、長繊維状モノフィラメントあるいはこれらを束にしたものが好ましく使用される。 Carbon fiber is usually used as a sheet-like reinforcing fiber material. The sheet-like material is a material in which fiber materials are arranged in a sheet shape in one direction, these are laminated in an orthogonal manner, a fiber material is formed into a fabric such as a woven or knitted fabric or a non-woven fabric, or a strand-like material. All things, including multi-axis fabrics. As the fiber form, long fiber monofilaments or bundles of these are preferably used.

マトリックス樹脂としては、熱硬化性樹脂又は熱可塑性樹脂が用いられる。熱硬化性マトリックス樹脂の具体例として、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂、ビスマレイミド樹脂、アセチレン末端を有するポリイミド樹脂及びポリイソイミド樹脂、ナジック酸末端を有するポリイミド樹脂等を挙げることができる。これらは1種又は2種以上の混合物として用いることもできる。中でも、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂やビニルエステル樹脂が、特に好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤以外に、通常用いられる着色剤や各種添加剤等が含まれていてもよい。 As the matrix resin, a thermosetting resin or a thermoplastic resin is used. Specific examples of thermosetting matrix resins include epoxy resins, unsaturated polyester resins, phenol resins, vinyl ester resins, cyanate ester resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins and cyanate ester resins. And a prepolymerized resin, bismaleimide resin, polyimide resin and polyisoimide resin having acetylene terminal, and polyimide resin having nadic acid terminal. These can also be used as one type or a mixture of two or more types. Of these, epoxy resins and vinyl ester resins excellent in heat resistance, elastic modulus, and chemical resistance are particularly preferable. These thermosetting resins may contain commonly used colorants and various additives in addition to the curing agent and the curing accelerator.

熱可塑性樹脂としては、例えば、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミド、ポリアミドイミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリアクリロニトリル、ポリアラミド、ポリベンズイミダゾール等が挙げられる。複合材料中に占める樹脂組成物の含有率は、10〜90重量%、好ましくは20〜60重量%、更に好ましくは25〜45重量%である。 Examples of the thermoplastic resin include polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide, polyamide , Polyamideimide, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyacrylonitrile, polyaramid, polybenzimidazole and the like. The content of the resin composition in the composite material is 10 to 90% by weight, preferably 20 to 60% by weight, and more preferably 25 to 45% by weight.

以下、実施例により本発明を詳述するが、本発明はこれに限定されるものではない。実施例における各種物性値の測定方法は下記のとおりである。 Hereinafter, although an example explains the present invention in detail, the present invention is not limited to this. The measuring method of various physical property values in the examples is as follows.

炭素繊維の樹脂含浸ストランド強度は、JIS R
7601に規定された方法により測定した。
The resin impregnated strand strength of carbon fiber is JIS R
It was measured by the method defined in 7601.

界面剪断強度(IPSS)とは、炭素繊維と樹脂の接着力を測る指標で、次の手順に従って求めたものである。IPSSの測定方法は、ASTM法に準拠する。IPSSのサンプルには、サイジングを行った後の炭素繊維及び東邦テナックス社製エポキシ樹脂(No.133)樹脂を使用し、炭素繊維目付け270g/m、樹脂含有率33%の一方向性プリプレグを作製し、[+45°/−45°]4Sの擬似等法に積層した。積層した供試体(サンプル)を180℃、2時間で硬化させた後、25(幅)×250(長さ)×2.5(厚さ)mmの供試体(サンプル)を作製した。サンプルは各試験片の寸法測定後、試験機(島津製作所製オートグラフAG-10TD型)において、試験片が破断するまで引張試験を行った。 The interfacial shear strength (IPSS) is an index for measuring the adhesion between carbon fiber and resin, and is determined according to the following procedure. The IPSS measurement method conforms to the ASTM method. For the sample of IPSS, carbon fiber after sizing and epoxy resin (No. 133) resin manufactured by Toho Tenax Co., Ltd. are used, and a unidirectional prepreg with a carbon fiber basis weight of 270 g / m 2 and a resin content of 33% is used. It was fabricated and laminated in a [+ 45 ° / −45 °] 4S pseudo-iso method. After the laminated specimen (sample) was cured at 180 ° C. for 2 hours, a specimen (sample) of 25 (width) × 250 (length) × 2.5 (thickness) mm was produced. After measuring the dimensions of each test piece, the sample was subjected to a tensile test using a tester (Autograph AG-10TD, manufactured by Shimadzu Corporation) until the test piece was broken.

炭素繊維の表面酸素濃度(O/C)は、次の手順に従ってXPS(ESCA)によって求めることができる。炭素繊維をカットしてステンレス製の試料支持台上に拡げて並べた後、光電子脱出角度を90℃に設定し、X線源としてMgKαを用い、試料チャンバー内を1×10−6Paの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値B.E.を284.6eVに合わせる。O1sピーク面積は、528〜540eVの範囲で直線のベースラインを引くことにより求め、C1sピーク面積は、282〜292eVの範囲で直線のベースラインを引くことにより求める。炭素繊維表面の表面酸素濃度O/Cは、上記O1sピーク面積とC1sピーク面積の比で計算して求められる。 The surface oxygen concentration (O / C) of the carbon fiber can be determined by XPS (ESCA) according to the following procedure. After cutting the carbon fibers and arranging them on a stainless steel sample support table, the photoelectron escape angle was set to 90 ° C., MgKα was used as the X-ray source, and the inside of the sample chamber was vacuumed at 1 × 10 −6 Pa. Keep it up. As correction of the peak accompanying charging during measurement, first, the binding energy value B. of the main peak of C1s. E. Is adjusted to 284.6 eV. The O1s peak area is obtained by drawing a straight base line in the range of 528 to 540 eV, and the C1s peak area is obtained by drawing a straight base line in the range of 282 to 292 eV. The surface oxygen concentration O / C on the surface of the carbon fiber is determined by calculating the ratio of the O1s peak area to the C1s peak area.

[実施例1]
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を、常法により湿式紡糸し、水洗・乾燥後、トタール延伸倍率が14倍になるようにスチーム延伸を行い、0.65デニールの繊度を有するフィラメント数12,000の前駆体繊維を得た。
[Example 1]
A copolymer spinning stock consisting of 95% by mass of acrylonitrile / 4% by mass of methyl acrylate / 1% by mass of itaconic acid is wet-spun by a conventional method, washed with water and dried, and then steam-stretched so that the total stretching ratio is 14 times. And a precursor fiber having a filament number of 12,000 having a fineness of 0.65 denier was obtained.

得られた前駆体繊維を加熱空気中で延伸しながら、240〜250℃の温度範囲内で耐炎化処理を行い、次いで窒素雰囲気中、350〜2000℃の温度範囲内で第一及び第二炭素化処理を行い、未電解処理炭素繊維を得た。 While the obtained precursor fiber is stretched in heated air, flameproofing treatment is performed within a temperature range of 240 to 250 ° C., and then, in a nitrogen atmosphere, primary and second carbon are within a temperature range of 350 to 2000 ° C. An unelectrolyzed carbon fiber was obtained.

前記未電解処理炭素繊維を、3ユニットの多段処理浴を使用して非接触電解処理を行った。電解質溶液として6.3質量%の硝酸水溶液を用い、総電気量を250C/gとし、各ユニットにおける電気量比を1:2:3と増加させていった。連続する各処理浴の電気量の変動率は、100%、50%であった。その後、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、繊維直径5.1μmの炭素繊維を得た。得られた炭素繊維の表面酸素濃度O/CとIPSS及びストランド強度の測定値は表1に示したとおりであった。 The non-electrolytically treated carbon fiber was subjected to non-contact electrolytic treatment using a 3-unit multistage treatment bath. A 6.3% by mass nitric acid aqueous solution was used as the electrolyte solution, the total amount of electricity was 250 C / g, and the amount of electricity in each unit was increased to 1: 2: 3. The variation rate of the amount of electricity of each successive treatment bath was 100% and 50%. Thereafter, sizing treatment was performed by a conventional method and dried to obtain carbon fibers having a density of 1.77 g / cm 3 and a fiber diameter of 5.1 μm. The measured values of surface oxygen concentration O / C, IPSS and strand strength of the obtained carbon fiber were as shown in Table 1.

[比較例1]
実施例1と同じ 多段処理浴を用いて、総電気量250C/gで、各ユニットでの処理を均等な電気量で行った。得られた炭素繊維のO/CとIPSS及びストランド強度の測定値は、表1に示したとおりであった。
[Comparative Example 1]
Using the same multistage treatment bath as in Example 1, each unit was treated with an equal amount of electricity at a total electricity of 250 C / g. The measured values of O / C, IPSS, and strand strength of the obtained carbon fiber were as shown in Table 1.

多段電解処理では、陽極槽と陰極槽の繰り返し(ユニット)が3〜12回程度の多段処理浴が好ましいとされているが、処理浴が増加するとそれだけ設備コストがかかる。従って、同じ段数の処理浴を用いた場合に、より効率的に、O/CとIPSSの値の高い炭素繊維が得られる場合が好ましいことになる。実施例1と比較例1を比べると、ユニット数が共に3で総電気量も同じであるにもかかわらず、各処理浴の電気量を順に増大させた実施例1の方が、適当なO/Cとより高いIPSSの値を有する炭素繊維が得られていることが分かる。 In the multistage electrolytic treatment, a multistage treatment bath in which the repetition (unit) of the anode tank and the cathode tank is about 3 to 12 times is preferable. However, when the number of treatment baths increases, the equipment cost increases accordingly. Therefore, it is preferable that carbon fibers having high O / C and IPSS values can be obtained more efficiently when the same number of treatment baths are used. Comparing Example 1 and Comparative Example 1, the number of units is 3 and the total amount of electricity is the same. It can be seen that carbon fibers having a higher IPSS value of / C are obtained.

[実施例2]
実施例1で用いたのと同じ未電解処理炭素繊維を用い、電解液も実施例1のものと同じ硝酸水溶液を用い、6つのユニットを使用して非接触電解処理を行った。この時、総電気量250C/gとし、各ユニットにおける電気量比を1:2:3:4
:5 :6と増加させていった。連続する各処理浴の電気量の変動率は、100%、50%、33%、25%、20%であった。得られた炭素繊維のO/CとIPSS及びストランド強度の測定値は、表1に示したとおりであった。
[Example 2]
The same non-electrolytically treated carbon fiber as used in Example 1 was used, and the same electrolytic solution as that of Example 1 was used for the electrolytic solution, and non-contact electrolytic treatment was performed using six units. At this time, the total electric quantity is 250 C / g, and the electric quantity ratio in each unit is 1: 2: 3: 4.
: 5: 6. The variation rate of the amount of electricity of each successive treatment bath was 100%, 50%, 33%, 25%, and 20%. The measured values of O / C, IPSS, and strand strength of the obtained carbon fiber were as shown in Table 1.

[比較例2]
実施例2と同じ 6ユニットの多段処理浴を用いて、総電気量250C/gで、各ユニットでの処理を均等な電気量で行った。得られた炭素繊維のO/CとIPSS及びストランド強度の測定値は、表1に示したとおりであった。
[実施例3]
実施例2と同じ 6ユニットの多段処理浴を用いて、総電気量250C/gで、各ユニットにおける電気量比を2:2:2:3
:3 :3と、中間で一回変動させて電解処理を行った。連続する各処理浴の電気量の変動率は、0%、0%、50%、0%、0%であった。得られた炭素繊維のO/CとIPSS及びストランド強度の測定値は、表1に示したとおりであった。
[Comparative Example 2]
Using the same multi-stage treatment bath of 6 units as in Example 2, the treatment in each unit was performed with an equal amount of electricity at a total electricity amount of 250 C / g. The measured values of O / C, IPSS, and strand strength of the obtained carbon fiber were as shown in Table 1.
[Example 3]
Using the same 6 unit multi-stage treatment bath as in Example 2, the electric quantity ratio in each unit was 2: 2: 2: 3 with a total electric quantity of 250 C / g.
: 3: The electrolytic treatment was performed once in the middle, varying at 3: 3. The variation rate of the amount of electricity of each successive treatment bath was 0%, 0%, 50%, 0%, and 0%. The measured values of O / C, IPSS, and strand strength of the obtained carbon fiber were as shown in Table 1.

本発明の好ましい例である実施例2の場合には、得られた炭素繊維のO/Cは適当な範囲であり、IPSSの測定値は高い値であった。一方、好ましい例ではないが、本発明の範囲には含まれる実施例3の場合には、実施例2よりは低いものの、比較例2よりは高いIPSSの値のもが得られた。 In the case of Example 2, which is a preferred example of the present invention, the O / C of the obtained carbon fiber was in an appropriate range, and the measured value of IPSS was a high value. On the other hand, although not a preferred example, in the case of Example 3 included in the scope of the present invention, an IPSS value higher than that of Comparative Example 2 was obtained although it was lower than that of Example 2.

[実施例4]
実施例1で用いたのと同じ未電解処理炭素繊維を用い、電解液も実施例1のものと同じ硝酸水溶液を用い、9つのユニットを使用して非接触電解処理を行った。この時、総電気量250C/gとし、各ユニットにおける電気量比を1:2:3:4
:5 :6:7:8:9と増加させていった。連続する各処理浴の電気量の変動率は、100%、50%、33%、25%、20%、17%、14%、13%であった。得られた炭素繊維のO/CとIPSS及びストランド強度の測定値は、表1に示したとおりであった。
[Example 4]
The same non-electrolytically treated carbon fiber as used in Example 1 was used, and the same electrolytic solution as that of Example 1 was used for the electrolytic solution, and non-contact electrolytic treatment was performed using nine units. At this time, the total electric quantity is 250 C / g, and the electric quantity ratio in each unit is 1: 2: 3: 4.
: 5: 6: 7: 8: 9. The variation rate of the amount of electricity of each successive treatment bath was 100%, 50%, 33%, 25%, 20%, 17%, 14%, and 13%. The measured values of O / C, IPSS, and strand strength of the obtained carbon fiber were as shown in Table 1.

[比較例3]
実施例4と同じ9つのユニットの多段処理浴を用いて、総電気量250C/gで、各ユニットでの処理を均等な電気量で行った。得られた炭素繊維のO/CとIPSS及びストランド強度の測定値は、表1に示したとおりであった。
[Comparative Example 3]
Using the same multi-stage treatment bath of nine units as in Example 4, the treatment in each unit was carried out with an equal amount of electricity at a total electricity of 250 C / g. The measured values of O / C, IPSS, and strand strength of the obtained carbon fiber were as shown in Table 1.

[比較例4]
実施例1で用いたのと同じ未電解処理炭素繊維を用い、電解液も実施例1のものと同じ硝酸水溶液を用い、2つのユニットを使用して非接触電解処理を行った。この時、総電気量250C/gとし、各ユニットにおける電気量比を2:3と増加させた。連続する各処理浴の電気量の変動率は、50%であった。得られた炭素繊維のO/CとIPSS及びストランド強度の測定値は、表1に示したとおりであった。
[Comparative Example 4]
The same unelectrolyzed carbon fiber as used in Example 1 was used, and the same nitric acid aqueous solution as that used in Example 1 was used as the electrolytic solution. The non-contact electrolytic treatment was performed using two units. At this time, the total amount of electricity was 250 C / g, and the amount of electricity in each unit was increased to 2: 3. The variation rate of the amount of electricity in each successive treatment bath was 50%. The measured values of O / C, IPSS, and strand strength of the obtained carbon fiber were as shown in Table 1.

[比較例5]
比較例4と同じ2つのユニットの多段処理浴を用いて、総電気量250C/gで、各ユニットでの処理を均等な電気量で行った。得られた炭素繊維のO/CとIPSS及びストランド強度の測定値は、表1に示したとおりであった。
[Comparative Example 5]
Using the same multi-stage treatment bath of two units as in Comparative Example 4, the treatment in each unit was performed with an equal amount of electricity at a total electricity of 250 C / g. The measured values of O / C, IPSS, and strand strength of the obtained carbon fiber were as shown in Table 1.

[比較例6]
実施例1で用いたのと同じ未電解処理炭素繊維を用い、電解液も実施例1のものと同じ硝酸水溶液を用い、6つのユニットを使用して非接触電解処理を行った。この時、総電気量350C/gとし、各ユニットにおける電気量比を1:2:3:4:5:6と増加させた。連続する各処理浴の電気量の変動率は、100%、50%、33%、25%、20%であった。得られた炭素繊維のO/CとIPSS及びストランド強度の測定値は、表1に示したとおりであった。
[Comparative Example 6]
The same non-electrolytically treated carbon fiber as used in Example 1 was used, and the same electrolytic solution as that of Example 1 was used for the electrolytic solution, and non-contact electrolytic treatment was performed using six units. At this time, the total amount of electricity was 350 C / g, and the amount of electricity in each unit was increased to 1: 2: 3: 4: 5: 6. The variation rate of the amount of electricity of each successive treatment bath was 100%, 50%, 33%, 25%, and 20%. The measured values of O / C, IPSS, and strand strength of the obtained carbon fiber were as shown in Table 1.

Figure 2008248424
Figure 2008248424

Claims (5)

炭素繊維の表面電解処理を多段処理浴を用いて連続的に実施する方法において、連続する各処理浴の電気量を変動させることを特徴とする炭素繊維の多段表面電解処理方法。 A method for continuously performing surface electrolysis of carbon fibers using a multistage treatment bath, wherein the quantity of electricity in each successive treatment bath is varied. 多段処理浴の処理浴が、3〜20ユニットからなる請求項1記載の炭素繊維の多段表面電解処理方法。 2. The carbon fiber multi-stage surface electrolytic treatment method according to claim 1, wherein the treatment bath of the multi-stage treatment bath comprises 3 to 20 units. 連続する各処理浴の電気量が、順に増大している請求項1又は2記載の炭素繊維の多段表面電解処理方法。 The carbon fiber multi-stage surface electrolytic treatment method according to claim 1 or 2, wherein the amount of electricity in each successive treatment bath increases in order. 連続する各処理浴の電気量の変動率が、10%以上である請求項1〜4のいずれか1項記載の炭素繊維の多段表面電解処理方法。 The multistage surface electrolytic treatment method for carbon fibers according to any one of claims 1 to 4, wherein the variation rate of the amount of electricity in each successive treatment bath is 10% or more. 請求項1〜4のいずれか1項記載の多段表面電解処理方法で得られた、表面酸素濃度(O/C)が20〜35%の範囲にある炭素繊維。


Carbon fiber having a surface oxygen concentration (O / C) in the range of 20 to 35%, obtained by the multistage surface electrolytic treatment method according to any one of claims 1 to 4.


JP2007090428A 2007-03-30 2007-03-30 Method of multistage electrolytic treatment of carbon fiber Pending JP2008248424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090428A JP2008248424A (en) 2007-03-30 2007-03-30 Method of multistage electrolytic treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090428A JP2008248424A (en) 2007-03-30 2007-03-30 Method of multistage electrolytic treatment of carbon fiber

Publications (1)

Publication Number Publication Date
JP2008248424A true JP2008248424A (en) 2008-10-16

Family

ID=39973700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090428A Pending JP2008248424A (en) 2007-03-30 2007-03-30 Method of multistage electrolytic treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JP2008248424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170093819A (en) 2014-12-09 2017-08-16 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
CN114086386A (en) * 2021-11-17 2022-02-25 中复神鹰碳纤维股份有限公司 Surface treatment method for dry-jet wet-spinning high-modulus carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170093819A (en) 2014-12-09 2017-08-16 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
CN114086386A (en) * 2021-11-17 2022-02-25 中复神鹰碳纤维股份有限公司 Surface treatment method for dry-jet wet-spinning high-modulus carbon fiber

Similar Documents

Publication Publication Date Title
JP6211881B2 (en) Carbon fiber and method for producing the same
US20170335507A1 (en) Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
EP2905364A1 (en) Flame-proofed fiber bundle, carbon fiber bundle, and processes for producing these
WO2013073546A1 (en) Fiber-reinforced composite material and process for producing fiber-reinforced composite material
US20100266827A1 (en) Carbon fiber and composite material using the same
JP5662113B2 (en) Carbon fiber surface treatment method
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP5202183B2 (en) Surface porous carbon fiber, precursor fiber and production method thereof
JP2014101605A (en) Method of manufacturing carbon fiber
JP2008248424A (en) Method of multistage electrolytic treatment of carbon fiber
JP5226238B2 (en) Carbon fiber and composite material using the same
JP3755255B2 (en) Carbon fiber and method for producing the same
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP2008248427A (en) Method for surface electrolytic treatment of carbon fiber
JP6846868B2 (en) Method for manufacturing carbon fiber and carbon fiber with sizing agent attached
JP2006183173A (en) Carbon fiber and method for producing the same
JP6522971B2 (en) Method of manufacturing fiber bundle
JP2015137444A (en) Surface treatment method of carbon fiber bundle, method for producing carbon fiber bundle and carbon fiber
JP5419768B2 (en) Carbon fiber surface treatment method and carbon fiber produced by the treatment method
JPH08296124A (en) Non-circular cross section carbon fiber and carbon fiber-reinforced composite material
JP2010133033A (en) Carbon fiber for composite material and method for producing the same
JP6139318B2 (en) Carbon fiber manufacturing method
JP7360244B2 (en) Carbon fiber manufacturing method and carbon fiber
JP7494889B2 (en) Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method thereof
JP2003268651A (en) Flameretardant woven fabric, carbonized woven fabric, and method for producing of them