JP2008248427A - Method for surface electrolytic treatment of carbon fiber - Google Patents

Method for surface electrolytic treatment of carbon fiber Download PDF

Info

Publication number
JP2008248427A
JP2008248427A JP2007090575A JP2007090575A JP2008248427A JP 2008248427 A JP2008248427 A JP 2008248427A JP 2007090575 A JP2007090575 A JP 2007090575A JP 2007090575 A JP2007090575 A JP 2007090575A JP 2008248427 A JP2008248427 A JP 2008248427A
Authority
JP
Japan
Prior art keywords
carbon fiber
electrolytic treatment
electricity
electrolytic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007090575A
Other languages
Japanese (ja)
Inventor
Rie Kawahito
理恵 川人
Taro Oyama
太郎 尾山
Hiroshi Kimura
洋 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2007090575A priority Critical patent/JP2008248427A/en
Publication of JP2008248427A publication Critical patent/JP2008248427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient method for the surface electrolytic treatment to improve the surface condition of a carbon fiber and to provide a carbon fiber having a high strength. <P>SOLUTION: The surface of a carbon fiber is electrolyzed by using a multi-stage electrolytic treatment bath having a plurality of continuously arranged electrolytic treatment baths having the combination of an anodic cell and a cathodic cell, carrying out the electrolytic treatment keeping the electric quantity of 20-300 C/g for each stage and 150-500 C/g in total, and, thereafter, reversing the potential by using an electrolytic treatment bath comprising a combination of a cathodic cell and an anodic cell to perform the electrolytic treatment at an electric quantity of 20-60 C/g at the reversed potential. The invention further provides a high-strength carbon fiber produced by the method and having a strength of resin-impregnated strand of ≥6,000 MPa, an elastic modulus of resin-impregnated strand of ≥340 GPa and a density of ≥1.76 g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、優れた機械的物性を有し、且つ、マトリックス樹脂との界面接着性等に優れた炭素繊維を製造するための表面電解処理方法に関する。 The present invention relates to a surface electrolytic treatment method for producing carbon fibers having excellent mechanical properties and excellent interfacial adhesion with a matrix resin.

近年、炭素繊維を強化繊維として用いた複合材料は、軽く、高強度等の優れた機械的特性を有するので、航空機、自動車等の部材として多く用いられるようになってきている。これらの複合材料は、例えば、強化繊維にマトリックス樹脂が含浸された中間製品であるプリプレグから、加熱・加圧といった成形・加工工程を経て成形される。 In recent years, composite materials using carbon fibers as reinforcing fibers are light and have excellent mechanical properties such as high strength, and thus are increasingly used as members of aircraft, automobiles and the like. These composite materials are molded, for example, from a prepreg, which is an intermediate product in which a reinforcing fiber is impregnated with a matrix resin, through molding and processing steps such as heating and pressing.

炭素繊維とマトリックス樹脂との複合化において、高性能化を追求するためには、炭素繊維そのもの自体の強度や弾性率等の機械的物性の他、マトリックス樹脂との接着性に関与する炭素繊維の表面特性を向上させることが必要不可欠である。つまり、炭素繊維表面とマトリックス樹脂との接着性が高いもの同士を複合化し、マトリックス樹脂と炭素繊維をより均一に分散することで、より高性能のコンポジット特性(高強度、高弾性、高耐衝撃性等)を有する複合材料を得ることができると期待される。 In order to pursue high performance in the composite of carbon fiber and matrix resin, in addition to the mechanical properties such as strength and elastic modulus of the carbon fiber itself, the carbon fiber involved in the adhesion to the matrix resin It is essential to improve surface properties. In other words, by combining materials with high adhesion between the carbon fiber surface and the matrix resin, and dispersing the matrix resin and the carbon fiber more uniformly, higher performance composite properties (high strength, high elasticity, high impact resistance) It is expected that a composite material having properties such as properties) can be obtained.

前述のごとく複合材料のための強化繊維として用いられる炭素繊維は、通常、その前駆体繊維の耐炎化処理、炭素化処理、あるいは更に黒鉛化処理を経て得られた炭素繊維に、更に表面処理やサイジング処理が行われたものである。表面処理の方法・手段としては、薬液を用いる液相酸化、電解液溶液中で炭素繊維を陽極として処理する電解酸化、及び気相状態でのプラズマ処理などによる気相酸化等がある。表面処理方法としては、比較的取り扱い性が良く、コスト的に有利な電解酸化処理法が好適に採用される。電解酸化処理に用いられる電解液としては、酸性水溶液またはアルカリ性水溶液のいずれも使用可能であるが、硝酸などの電気伝導度の高い水溶液が、繊維表面への官能基の導入量など処理効率の面から有利である。 As described above, the carbon fiber used as the reinforcing fiber for the composite material is usually a carbon fiber obtained by subjecting the precursor fiber to flame resistance treatment, carbonization treatment, or further graphitization treatment. The sizing process has been performed. Examples of surface treatment methods and means include liquid phase oxidation using a chemical solution, electrolytic oxidation in which a carbon fiber is treated as an anode in an electrolyte solution, and gas phase oxidation by plasma treatment in a gas phase. As the surface treatment method, an electrolytic oxidation treatment method that is relatively easy to handle and is advantageous in terms of cost is preferably employed. As the electrolytic solution used for the electrolytic oxidation treatment, either an acidic aqueous solution or an alkaline aqueous solution can be used, but an aqueous solution having high electrical conductivity such as nitric acid is used in terms of treatment efficiency such as the amount of functional groups introduced to the fiber surface. Is advantageous.

電解酸化による表面処理によって、炭素繊維の形成過程で生じた表面の脆弱層が除去され、
繊維の強度等の機械的物性が向上すると共に、炭素繊維表面にカルボキシル基、カルボニル基、水酸基等の官能基が生成され、これがマトリックス樹脂との接着性を高めるのに寄与すると考えられる。かかる点に着目して、炭素繊維の表面状態を改善させる方法が提案されている。例えば、パルス的に炭素繊維トウを印加して陽極酸化し、トウ内部への電解質の拡散効率を上げる方法が提案されている(例えば、特許文献1と2参照)。また、炭素繊維トウとマトリックス樹脂との接着力を向上させるために、炭素繊維トウに対して陽極酸化と陰極還元を周期的に繰り返して、その表面電解処理を行う方法も提案されている(特許文献3参照)。
特開平7−189113号公報 特開平7−207573号公報 特開平10−266066号公報
By surface treatment by electrolytic oxidation, the fragile layer on the surface generated in the formation process of carbon fiber is removed,
It is considered that mechanical properties such as fiber strength are improved and functional groups such as a carboxyl group, a carbonyl group, and a hydroxyl group are generated on the surface of the carbon fiber, and this contributes to enhancing the adhesion to the matrix resin. Focusing on this point, a method for improving the surface state of the carbon fiber has been proposed. For example, a method has been proposed in which carbon fiber tow is pulsed and anodized to increase the efficiency of electrolyte diffusion into the tow (see, for example, Patent Documents 1 and 2). In addition, in order to improve the adhesion between the carbon fiber tow and the matrix resin, a method of subjecting the carbon fiber tow to surface electrolytic treatment by periodically repeating anodization and cathodic reduction has been proposed (patent) Reference 3).
JP 7-189113 A JP-A-7-207573 Japanese Patent Laid-Open No. 10-266066

炭素繊維は、炭化あるいは黒鉛化処理温度が高くなるほどグラファイト結晶構造が発達し酸化されにくくなるので、表面電解処理によって官能基を付与する際に電解電気量を大きくする必要がある。しかし、電気量が大きくなると、繊維表面の粗さが増大し、繊維の機械的特性が低下する。また、処理ムラが起こりやすく、不均一な表面状態となるため、コンポジット特性が低下する。この問題を回避するために、表面電解処理を多段で行うことによって、一つの処理段(陽極槽と陰極槽)での電気量を低減する方法も知られている。均一な表面電解処理のためには、陽極槽と陰極槽の繰り返しが2〜12回程度の多段電解処理が好ましいとされている(例えば、特許文献4参照)。しかしながら、処理段が増加するとそれだけ設備コストがかかるという問題も発生する。以上のような状況のもと、より高性能の複合材料を効率よく製造するために、炭素繊維の生産性、具体的には、表面処理である電解処理の効率的な方法の開発が望まれていた。
特開2003−64577号公報
Since the carbon fiber develops a graphite crystal structure and becomes difficult to be oxidized as the carbonization or graphitization temperature increases, it is necessary to increase the amount of electrolysis when a functional group is imparted by surface electrolytic treatment. However, as the amount of electricity increases, the roughness of the fiber surface increases and the mechanical properties of the fiber decrease. In addition, uneven processing tends to occur, resulting in a non-uniform surface state, resulting in deterioration of composite characteristics. In order to avoid this problem, a method of reducing the amount of electricity in one processing stage (anode tank and cathode tank) by performing surface electrolytic treatment in multiple stages is also known. For uniform surface electrolytic treatment, multi-stage electrolytic treatment in which the anode tank and the cathode tank are repeated about 2 to 12 times is preferable (for example, see Patent Document 4). However, when the number of processing stages increases, there is a problem that the equipment cost increases accordingly. Under the circumstances as described above, in order to efficiently produce a higher performance composite material, it is desired to develop a carbon fiber productivity, specifically, an efficient method of electrolytic treatment as a surface treatment. It was.
JP 2003-64577 A

本発明の課題は、炭素繊維の表面状態を改善させるための表面電解処理法において、電解酸化による均一な処理及び繊維の物性低下要因となる欠陥の除去、そして、電解還元による適度な官能基を有する表面状態の形成を効率的に行う方法と、それによって得られる高強度炭素繊維を提供することにある。 An object of the present invention is to provide a surface electrolytic treatment method for improving the surface state of carbon fiber, to perform uniform treatment by electrolytic oxidation, removal of defects that cause deterioration in physical properties of the fiber, and appropriate functional groups by electrolytic reduction. An object of the present invention is to provide a method for efficiently forming a surface state having high strength carbon fibers obtained thereby.

本発明のうち請求項1に記載された発明は、炭素繊維の表面を電解処理する方法において、先ず、陽極槽と陰極槽の組合せからなる電解処理浴が複数連続して設置された多段電解処理浴を用いて、各段の電気量が20〜300C/gの範囲で且つ総電気量が150〜500C/gの範囲で電解処理を行い、その後、陰極槽と陽極槽の組合せからなる電解処理浴を用いて電位を逆転させて、逆転した電位での電気量が20〜60C/gの範囲で電解処理を行うことを特徴とする炭素繊維の表面電解処理方法である。 The invention described in claim 1 of the present invention is a method for electrolytically treating the surface of a carbon fiber. First, a multi-stage electrolytic treatment in which a plurality of electrolytic treatment baths comprising a combination of an anode tank and a cathode tank are installed continuously. Using a bath, electrolytic treatment is performed in a range where the amount of electricity at each stage is in the range of 20 to 300 C / g and the total amount of electricity is in the range of 150 to 500 C / g, and then an electrolytic treatment comprising a combination of a cathode cell and an anode cell. This is a carbon fiber surface electrolytic treatment method characterized in that the electric potential is reversed using a bath and the amount of electricity at the reversed electric potential is in the range of 20 to 60 C / g.

本発明において、電解処理浴とは、陽極と陰極が別々の槽に設置された陽極槽と陰極槽とからなる一対の処理槽を意味し、かかる電解処理浴が連続して設置されているものが多段電解処理浴と定義される。そしてまた、本発明においては、前記一対の処理槽からなる電解処理浴、即ち、電解酸化と電解還元が行われる一対の陽極槽と陰極槽を、1ユニットと称するものとする。電位を逆転させる場合には、陰極槽と陽極槽の順序に配列されたものが1ユニットの電解処理浴と定義される。 In the present invention, the electrolytic treatment bath means a pair of treatment tanks composed of an anode tank and a cathode tank in which an anode and a cathode are installed in separate tanks, and the electrolytic treatment bath is continuously installed. Is defined as a multi-stage electrolytic treatment bath. In the present invention, an electrolytic treatment bath comprising the pair of treatment tanks, that is, a pair of anode tank and cathode tank in which electrolytic oxidation and electrolytic reduction are performed is referred to as one unit. In the case of reversing the electric potential, a unit arranged in the order of a cathode tank and an anode tank is defined as one unit of electrolytic treatment bath.

請求項2に記載された発明は、多段電解処理浴の処理浴が、2〜20ユニットからなる請求項1記載の炭素繊維の表面電解処理方法である。 The invention described in claim 2 is the carbon fiber surface electrolytic treatment method according to claim 1, wherein the treatment bath of the multistage electrolytic treatment bath comprises 2 to 20 units.

請求項3に記載された発明は、多段電解処理浴の電気量が、順に増大している請求項2記載の炭素繊維の表面電解処理方法である。 The invention described in claim 3 is the carbon fiber surface electrolytic treatment method according to claim 2, wherein the amount of electricity in the multi-stage electrolytic treatment bath increases in order.

請求項4に記載された発明は、各電解処理浴の電気量の変動率が、10%以上である請求項3記載の炭素繊維の表面電解処理方法である。 The invention described in claim 4 is the carbon fiber surface electrolytic treatment method according to claim 3, wherein the variation rate of the amount of electricity in each electrolytic treatment bath is 10% or more.

請求項5に記載された発明は、電位を逆転させた電解処理浴が、1〜5ユニットからなる請求項1〜4のいずれか1項記載の炭素繊維の表面電解処理方法である。 The invention described in claim 5 is the carbon fiber surface electrolytic treatment method according to any one of claims 1 to 4, wherein the electrolytic treatment bath in which the potential is reversed comprises 1 to 5 units.

そして、請求項6に記載された発明は、前記請求項1〜5のいずれか1項記載の方法で得られた、樹脂含浸ストランド強度が6000MPa以上、樹脂含浸ストランド弾性率が340GPa以上、密度が1.76g/cm以上である高強度炭素繊維である。 The invention described in claim 6 is the resin impregnated strand strength obtained by the method according to any one of claims 1 to 5 is 6000 MPa or more, the resin impregnated strand elastic modulus is 340 GPa or more, and the density is It is a high-strength carbon fiber that is 1.76 g / cm 3 or more.

本発明によると、引張強度や圧縮強度等の機械的物性が向上した炭素繊維が得られる。また、表面状態が改善された、具体的には、表面酸素濃度(O/C)と表面粗さが適度な値を有する炭素繊維が、表面電解処理の簡単な条件設定で効率良く製造することができる。そして、得られた炭素繊維は、マトリックス樹脂との接着性が向上し、高いコンポジット特性を有する複合材料を製造することができる。 According to the present invention, carbon fibers having improved mechanical properties such as tensile strength and compressive strength can be obtained. In addition, carbon fibers having improved surface conditions, specifically, surface oxygen concentration (O / C) and surface roughness having appropriate values should be efficiently manufactured with simple conditions for surface electrolytic treatment. Can do. And the obtained carbon fiber can improve the adhesiveness with matrix resin, and can manufacture the composite material which has a high composite characteristic.

本発明により得られる炭素繊維は、樹脂含浸ストランド強度、樹脂含浸ストランド弾性率、及び密度が高く、マトリックス樹脂と複合化して複合材料にした場合、マトリックス樹脂との良好な接着性を有する補強材として機能する。従って、本発明の炭素繊維を用いると、従来のものよりもより高性能(高強度、高弾性)な複合材料を得ることができ、これらは、航空宇宙分野や自動車分野等において安全性が高く、且つ、軽量な複合材料として利用できる。 The carbon fiber obtained by the present invention has a high resin-impregnated strand strength, a resin-impregnated strand elastic modulus, and a high density, and when it is combined with a matrix resin to form a composite material, it has a good adhesion to the matrix resin. Function. Therefore, by using the carbon fiber of the present invention, it is possible to obtain a composite material with higher performance (high strength, high elasticity) than the conventional one, and these are highly safe in the aerospace field, the automobile field, etc. And can be used as a lightweight composite material.

炭素繊維は、通常、その前駆体繊維の耐炎化処理、炭素化処理、あるいは更に黒鉛化処理を経て得られた炭素繊維に、更に表面処理やサイジング処理が行われる。本発明は、かかる工程のうち表面処理を電解処理法で行う際の特定の方法に関するものである。 The carbon fiber is usually further subjected to surface treatment and sizing treatment on the carbon fiber obtained by subjecting the precursor fiber to flame resistance treatment, carbonization treatment, or further graphitization treatment. This invention relates to the specific method at the time of performing surface treatment by the electrolytic treatment method among these processes.

炭素繊維を、電解酸化と電解還元が行われる一対の陽極槽と陰極槽を用いて表面電解処理する場合、陽極槽では、電解酸化による炭素繊維表面のエッチングが行われる。かかるエッチングにより、炭素繊維の焼成過程で生じた脆弱層が除去されると共に、酸化反応により、炭素繊維表面にカルボキシル基やカルボニル基や水酸基等の官能基が生成されると考えられる。そして、陰極槽では、電解還元により、精製した官能基の一部が還元除去されると考えられる。 When carbon fiber is subjected to surface electrolytic treatment using a pair of anode tank and cathode tank in which electrolytic oxidation and electrolytic reduction are performed, etching of the carbon fiber surface by electrolytic oxidation is performed in the anode tank. Such etching is considered to remove the brittle layer generated during the firing process of the carbon fiber and generate functional groups such as a carboxyl group, a carbonyl group, and a hydroxyl group on the surface of the carbon fiber by the oxidation reaction. In the cathode chamber, it is considered that a part of the purified functional group is reduced and removed by electrolytic reduction.

電解酸化によるエッチングの程度は、使用する電気量に依存し、電気量が高いほど繊維表面が強くエッチングされるが、過度な処理を行うと、逆に、削れ過ぎた部分が新たな欠陥となるため好ましくない。クラックやボイドなどの物理的欠陥および繊維の焼成過程で生じる脆弱層は、炭素繊維の破断開始点となる。従って、最適な表面状態を形成させ、炭素繊維の機械的物性を改善するためには、適度なエッチングが必要である。 The degree of etching by electrolytic oxidation depends on the amount of electricity used, and the higher the amount of electricity, the more strongly the fiber surface is etched. However, if excessive treatment is performed, the excessively shaved part becomes a new defect. Therefore, it is not preferable. Physical flaws such as cracks and voids and a fragile layer generated during the fiber firing process serve as a starting point for carbon fiber breakage. Therefore, in order to form an optimum surface state and improve the mechanical properties of the carbon fiber, appropriate etching is required.

本発明においては、炭素繊維の表面を電解処理するに際し、先ず、陽極槽と陰極槽の組合せからなる電解処理浴が複数連続して設置された多段電解処理浴を用いて電解処理を行い、電解処理の最終の段階で、陰極槽と陽極槽の組合せを逆にした電解処理浴を用いて、電位を逆転させて電解処理を行う方法を採用したものである。驚くべきことに、かかる方法によって、ストランド強度や単繊維圧縮強度に代表される炭素繊維の機械的物性および表面酸素濃度や表面粗さに表される炭素繊維の表面状態を、非常に好ましいものに改善することができるのである。 In the present invention, when electrolytically treating the surface of the carbon fiber, first, electrolytic treatment is performed using a multi-stage electrolytic treatment bath in which a plurality of electrolytic treatment baths composed of a combination of an anode tank and a cathode tank are continuously installed, and electrolysis is performed. In the final stage of the treatment, a method is employed in which the electrolytic treatment is performed by reversing the potential using an electrolytic treatment bath in which the combination of the cathode and anode vessels is reversed. Surprisingly, by this method, the mechanical properties of carbon fibers represented by strand strength and single fiber compressive strength, and the surface state of carbon fibers expressed by surface oxygen concentration and surface roughness are made very favorable. It can be improved.

本発明において多段電解処理浴とは、前述のごとく、陽極槽と陰極槽とからなる一対の処理槽(1ユニット)が連続して、好ましくは2〜20ユニット、更に好ましくは2〜10ユニット設置されている表面電解処理装置である。かかる装置を用いて、炭素繊維、例えば、炭素繊維のトウに対して、電解質溶液を介して間接給電して、陽極酸化による表面電解処理と陰極還元による表面電解処理が交互に連続して行われる。 In the present invention, as described above, the multi-stage electrolytic treatment bath is a series of treatment tanks (one unit) composed of an anode tank and a cathode tank, preferably 2 to 20 units, more preferably 2 to 10 units. This is a surface electrolytic treatment apparatus. Using such an apparatus, carbon fiber, for example, carbon fiber tow is indirectly supplied with power through an electrolyte solution, and surface electrolytic treatment by anodization and surface electrolytic treatment by cathodic reduction are alternately and continuously performed. .

本発明において電位を逆転させて表面電解処理を行うための電解処理浴は、基本的には前記と同じ陽極槽と陰極槽とからなる一対の処理槽(1ユニット)であるが、前記のものと
は、組合せの順序のみが逆で、陰極槽と陽極槽の組合せからなる電解処理浴である。この電解処理浴は一段、即ち1ユニットであっても、多段であっても良い。多段の場合には、2〜5ユニットで十分である。
In the present invention, the electrolytic treatment bath for performing surface electrolytic treatment by reversing the potential is basically a pair of treatment tanks (one unit) composed of the same anode tank and cathode tank as described above. Is an electrolytic treatment bath consisting of a combination of a cathode cell and an anode cell, the order of combination being reversed. This electrolytic treatment bath may be one stage, that is, one unit or multiple stages. In the case of multiple stages, 2 to 5 units are sufficient.

本発明において、電解処理浴は、陽極槽と陰極槽とが別々に構成されており、電解液を介して印加する装置であればどのようなものでもかまわないが、電解液が繊維に均一に浸透するものが好ましい。 In the present invention, the electrolytic treatment bath is composed of an anode tank and a cathode tank separately, and any apparatus can be used as long as it is applied via an electrolytic solution. What penetrates is preferred.

本発明は、炭素繊維表面の電解処理を、先ず、陽極槽と陰極槽の組合せからなる電解処理浴が複数連続して設置された多段電解処理浴を用いて、各段の電気量が20〜300C/g(炭素繊維1g当たりのクーロン数)、好ましくは30〜200C/gの範囲で、且つ、総電気量が150〜500C/g、好ましくは150〜350C/gの範囲で電解処理を行う方法である(以下、この電気量を酸化電気量と称する)。通電する電気は通常、直流を用いるが、電気量は一定のものであっても良いが、連続する各処理浴の電気量を順に増大させる方法が好ましい。そしてその際、連続する各電解処理浴の電気量の変動率は、10%以上、好ましくは10〜500%、更に好ましくは20〜100%である。 In the present invention, the electrolytic treatment of the carbon fiber surface is performed by first using a multi-stage electrolytic treatment bath in which a plurality of electrolytic treatment baths comprising a combination of an anode tank and a cathode tank are continuously installed, Electrolytic treatment is performed at 300 C / g (the number of coulombs per gram of carbon fiber), preferably in the range of 30 to 200 C / g, and the total amount of electricity in the range of 150 to 500 C / g, preferably 150 to 350 C / g. (Hereinafter, this quantity of electricity is referred to as the quantity of oxidized electricity). Usually, direct current is used as the electricity to be energized, but the amount of electricity may be constant, but a method of sequentially increasing the amount of electricity in each successive treatment bath is preferable. At that time, the variation rate of the amount of electricity of each successive electrolytic treatment bath is 10% or more, preferably 10 to 500%, and more preferably 20 to 100%.

電気量が前記範囲よりも大きい場合には、炭素繊維自体の強度が低下することがあるので好ましくない。電気量を大きくすると、エッチング量が増えるが、電気量が大きすぎると処理過剰となり、表面粗さが増大し、繊維強度が低下するため好ましくない。また、電気量が小さすぎると、十分なエッチング効果が得られないため好ましくない。 If the amount of electricity is larger than the above range, the strength of the carbon fiber itself may decrease, which is not preferable. If the amount of electricity is increased, the amount of etching increases, but if the amount of electricity is too large, the treatment becomes excessive, the surface roughness increases, and the fiber strength decreases, which is not preferable. On the other hand, if the amount of electricity is too small, a sufficient etching effect cannot be obtained.

また、電位を逆転させた電解処理浴での電気量は20〜60C/g、好ましくは20〜40C/gの範囲である(以下、この電気量を還元電気量と称する)。ここでも多段処理を行う場合には、2〜5ユニットで合計の電気量が前記条件を満足すれば良い。電気量が前記範囲より小さい場合には、還元の効果が不十分であり、前記範囲より大きいと還元が過大になり好ましくない。 The amount of electricity in the electrolytic treatment bath with the potential reversed is 20 to 60 C / g, preferably 20 to 40 C / g (hereinafter, this amount of electricity is referred to as reducing electricity). Here again, in the case of performing multi-stage processing, it is sufficient that the total amount of electricity in 2 to 5 units satisfies the above conditions. When the amount of electricity is smaller than the above range, the effect of reduction is insufficient.

なお、炭素繊維1g当たりのクーロン数(C/g)とは、下記式で計算される値である。
C/g=0.36×A/(E×S×Y×F)
ここで、A(電流値:A)、E(炭素繊維のストランド数)、S(速度:m/hr)、Y(繊度:dtex)、F(フィラメント数)である。
The number of coulombs per gram of carbon fiber (C / g) is a value calculated by the following formula.
C / g = 0.36 × A / (E × S × Y × F)
Here, A (current value: A), E (number of carbon fiber strands), S (speed: m / hr), Y (fineness: dtex), and F (number of filaments).

炭素繊維の表面を電解処理すると、電解酸化によるエッチングによって、炭素繊維の表面欠陥となる焼成工程で生じた脆弱部が、エッチングにより取り除かれ炭素繊維自体の強度が向上する。また、マトリックス樹脂との親和性を向上させる効果を有する、カルボキシル基、カルボニル基、水酸基等の官能基が導入される。その結果、炭素繊維とマトリックス樹脂との接着性が向上し、得られた複合材料のコンポジット特性が向上すると推測される。 When the surface of the carbon fiber is subjected to electrolytic treatment, the weakened portion generated in the firing process, which becomes a surface defect of the carbon fiber, is removed by etching by etching by electrolytic oxidation, and the strength of the carbon fiber itself is improved. In addition, a functional group such as a carboxyl group, a carbonyl group, or a hydroxyl group having an effect of improving the affinity with the matrix resin is introduced. As a result, it is estimated that the adhesion between the carbon fiber and the matrix resin is improved, and the composite properties of the obtained composite material are improved.

本発明において表面酸素濃度(O/C)とは、X線光電子分光器により測定される炭素繊維表面の炭素原子に対する酸素原子の存在比を意味し、O/C値が20〜30%の範囲にあることが必要である。O/C値が21〜29%のものがより好ましい。O/C値が20%未満の場合は、炭素繊維とマトリックス樹脂との接着性が劣り、得られる複合材料の物性低下の原因になる。一方、O/C値が30%を超える場合は、炭素繊維とマトリクス樹脂との接着性が強すぎるため、かえって応力集中が生じ、耐衝撃性などのコンポジット特性が低下するため好ましくない。 In the present invention, the surface oxygen concentration (O / C) means the abundance ratio of oxygen atoms to carbon atoms on the surface of the carbon fiber measured by an X-ray photoelectron spectrometer, and the O / C value is in the range of 20 to 30%. It is necessary to be in Those having an O / C value of 21 to 29% are more preferred. When the O / C value is less than 20%, the adhesion between the carbon fiber and the matrix resin is inferior, causing a decrease in physical properties of the resulting composite material. On the other hand, if the O / C value exceeds 30%, the adhesion between the carbon fiber and the matrix resin is too strong, and stress concentration occurs on the contrary, and composite properties such as impact resistance deteriorate, which is not preferable.

本発明において表面粗さとは、AFM(原子間力顕微鏡)により測定される炭素繊維表面の0.5μm角の平均面粗さ(Ra)を意味し、この値は繊維表面の極微小な凹凸を表しており、7.0nm以下であることが望ましい。炭素繊維表面の極微小な凹凸は、繊維表面のミクロ欠陥として炭素繊維の破断開始点となるため、表面粗さが7.0nmより大きい場合には、ミクロ欠陥により炭素繊維の物性が低下するため不適当である。 In the present invention, the surface roughness means an average surface roughness (Ra) of 0.5 μm square of the carbon fiber surface measured by AFM (Atomic Force Microscope), and this value indicates a very small unevenness on the fiber surface. It is desirable that it is 7.0 nm or less. The microscopic irregularities on the surface of the carbon fiber become the starting point of breakage of the carbon fiber as microdefects on the fiber surface. When the surface roughness is larger than 7.0 nm, the physical properties of the carbon fiber are lowered due to the microdefects. Inappropriate.

表面処理で用いる電解液の電解質については、特に制限はないが、硫酸、硝酸、塩酸、リン酸、ホウ酸、炭酸等の無機酸、酢酸、酪酸、シュウ酸、アクリル酸、マレイン酸等の有機酸、硫酸アンモニウム、硫酸水素アンモニウム、硝酸アンモニウム、硝酸水素アンモニウム、リン酸2水素アンモニウム、リン酸水素2アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム等のアンモニウム塩又はアンモニア、水酸化ナトリウム、水酸化カリウム、水酸化バリウム等のアルカリ水酸化物、炭酸ナトリウム、炭酸水素ナトリウム、リン酸ナトリウム、リン酸カリウム等の無機塩、マレイン酸ナトリウム、酢酸ナトリウム、酢酸カリウム、安息香酸ナトリウム等の有機塩を単独または2種類以上の混合物として用いることができる。そのなかでも、硝酸水溶液を用いるのが特に好ましい。 There are no particular restrictions on the electrolyte used in the surface treatment, but inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, and carbonic acid, organic acids such as acetic acid, butyric acid, oxalic acid, acrylic acid, and maleic acid Acid, ammonium sulfate, ammonium hydrogen sulfate, ammonium nitrate, ammonium hydrogen nitrate, ammonium dihydrogen phosphate, ammonium dihydrogen phosphate, ammonium carbonate, ammonium hydrogen carbonate ammonium salt or ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide Inorganic salts such as alkali hydroxides such as sodium carbonate, sodium bicarbonate, sodium phosphate and potassium phosphate, and organic salts such as sodium maleate, sodium acetate, potassium acetate and sodium benzoate alone or in combination of two or more It can be used as a mixture. Among these, it is particularly preferable to use an aqueous nitric acid solution.

以上のようにして表面処理が施された炭素繊維は、通常、サイジング剤が付与される。サイジング剤としては、複合材料に用いるマトリックス樹脂に合わせて選択することが好ましく、例えばエポキシ樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリイミド樹脂、ポノビニルアルコール樹脂、ポリビニルピロリドン樹脂、ポリエーテルスルホン樹脂等を単独であるいは2種類以上を混合して用いることができる。サイジング剤を炭素繊維へ付与するに際しては、サイジング剤を溶解した溶液又は分散した分散液(サイジング液)に、炭素繊維を浸漬し、次いで乾燥する方法によるのが一般的である。 The carbon fiber that has been surface-treated as described above is usually provided with a sizing agent. The sizing agent is preferably selected according to the matrix resin used for the composite material, for example, an epoxy resin, an epoxy-modified polyurethane resin, a polyester resin, a phenol resin, a polyamide resin, a polyurethane resin, a polyimide resin, a ponovinyl alcohol resin, Polyvinyl pyrrolidone resin, polyether sulfone resin, etc. can be used alone or in admixture of two or more. When the sizing agent is applied to the carbon fiber, the carbon fiber is generally immersed in a solution in which the sizing agent is dissolved or a dispersion liquid (sizing solution) and then dried.

また、本発明の炭素繊維としては、請求項6に記載された様に、樹脂含浸ストランド強度が6000MPa以上、樹脂含浸ストランド弾性率が340GPa以上、密度が1.76g/cm以上のものが好ましい。樹脂含浸ストランド強度は6100MPa以上、樹脂含浸ストランド弾性率は340〜370GPa、密度は1.76〜1.80g/cmのものがより好ましい。以上の構成にすることにより、本発明の炭素繊維は、マトリックス樹脂と複合化して複合材料にした場合、マトリックス樹脂との良好な接着性を有する補強材として機能する。しかも、この炭素繊維は、毛羽や糸切れも少ない。 The carbon fiber of the present invention preferably has a resin-impregnated strand strength of 6000 MPa or more, a resin-impregnated strand elastic modulus of 340 GPa or more, and a density of 1.76 g / cm 3 or more. . More preferably, the resin-impregnated strand strength is 6100 MPa or more, the resin-impregnated strand elastic modulus is 340 to 370 GPa, and the density is 1.76 to 1.80 g / cm 3 . With the above configuration, the carbon fiber of the present invention functions as a reinforcing material having good adhesion to the matrix resin when it is combined with the matrix resin to form a composite material. Moreover, this carbon fiber has less fuzz and yarn breakage.

以下、実施例により本発明を詳述するが、本発明はこれに限定されるものではない。炭素繊維の樹脂含浸ストランド強度及び弾性率は、JIS R 7601に規定された方法により測定した。密度は、アルキメデス法により測定し、試料繊維はアセトン中にて脱気処理し測定した。 Hereinafter, although an example explains the present invention in detail, the present invention is not limited to this. The resin-impregnated strand strength and elastic modulus of carbon fiber were measured by the method defined in JIS R7601. The density was measured by the Archimedes method, and the sample fiber was measured after degassing in acetone.

炭素繊維の表面酸素濃度(O/C)は、次の手順に従ってXPS(ESCA)によって求めることができる。炭素繊維をカットしてステンレス製の試料支持台上に拡げて並べた後、光電子脱出角度を90度に設定し、X線源としてMgKαを用い、試料チャンバー内を1×10−6Paの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値B.E.を284.6eVに合わせる。O1sピーク面積は、528〜540eVの範囲で直線のベースラインを引くことにより求め、C1sピーク面積は、282〜292eVの範囲で直線のベースラインを引くことにより求める。炭素繊維表面の表面酸素濃度O/Cは、上記O1sピーク面積とC1sピーク面積の比で計算して求められる。 The surface oxygen concentration (O / C) of the carbon fiber can be determined by XPS (ESCA) according to the following procedure. After cutting the carbon fibers and spreading them on a stainless steel sample support table, the photoelectron escape angle was set to 90 degrees, MgKα was used as the X-ray source, and the inside of the sample chamber was vacuumed at 1 × 10 −6 Pa. Keep it up. As correction of the peak accompanying charging during measurement, first, the binding energy value B. of the main peak of C1s. E. Is adjusted to 284.6 eV. The O1s peak area is obtained by drawing a straight base line in the range of 528 to 540 eV, and the C1s peak area is obtained by drawing a straight base line in the range of 282 to 292 eV. The surface oxygen concentration O / C on the surface of the carbon fiber is determined by calculating the ratio of the O1s peak area to the C1s peak area.

表面粗さはAFM(原子間力顕微鏡)を用い次の手順に従って求めた。測定に供する炭素繊維を試料台に固定し、原子間力顕微鏡としてDigital Instruments社製NanoScopeIIIを用い、Tapping Modeにて測定を行った。プローブとして、NCH(Si製、カンチレバー長 125μm)を使用し、測定は炭素繊維の軸方向がスキャン方向となるように行い、測定範囲0.5μm角の測定を実施した。 The surface roughness was determined according to the following procedure using AFM (Atomic Force Microscope). The carbon fiber to be used for measurement was fixed to a sample stage, and measurement was performed in Tapping Mode using a Digital Scope Nanoscope III as an atomic force microscope. NCH (Si, cantilever length 125 μm) was used as a probe, and measurement was performed such that the axial direction of the carbon fiber was the scan direction, and measurement was performed with a measurement range of 0.5 μm square.

単繊維の圧縮強度とは、炭素繊維の単繊維の繊維方向に対して直角な方向への圧縮強度(n=5で測定)を意味する。測定に際しては、スライドグラス上に炭素繊維の単繊維を固定したサンプルを作成し、島津製作所製微小圧縮試験機「MCTM-200」を用いて、平面50μm圧子を使用し、負荷速度7.25mgf/secにて測定を行った。 The compressive strength of a single fiber means the compressive strength (measured at n = 5) in a direction perpendicular to the fiber direction of the single fiber of carbon fiber. In the measurement, a sample in which a single fiber of carbon fiber was fixed on a slide glass was prepared, and a flat compression 50 μm indenter was used with a micro compression tester “MCTM-200” manufactured by Shimadzu Corporation, with a load speed of 7.25 mgf / Measurement was performed in sec.

[実施例1〜6]
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を、常法により湿式紡糸し、水洗・乾燥後、トタール延伸倍率が14倍になるようにスチーム延伸を行い、0.65デニールの繊度を有するフィラメント数12,000の前駆体繊維を得た。
[Examples 1 to 6]
A copolymer spinning stock consisting of 95% by mass of acrylonitrile / 4% by mass of methyl acrylate / 1% by mass of itaconic acid is wet-spun by a conventional method, washed with water and dried, and then steam-stretched so that the total stretching ratio is 14 times. And a precursor fiber having a filament number of 12,000 having a fineness of 0.65 denier was obtained.

得られた前駆体繊維を加熱空気中で延伸しながら、240〜250℃の温度範囲内で耐炎化処理を行い、次いで窒素雰囲気中、300〜2000℃の温度範囲内で第一及び第二炭素化処理を行い、未電解処理炭素繊維を得た。 While the obtained precursor fiber is stretched in heated air, flameproofing treatment is performed within a temperature range of 240 to 250 ° C., and then in a nitrogen atmosphere, primary and second carbons are heated within a temperature range of 300 to 2000 ° C. An unelectrolyzed carbon fiber was obtained.

前記未電解処理炭素繊維を、陽極槽と陰極槽とからなる一対の処理槽(1ユニット)が2〜5ユニットの多段電解処理浴と、電位を逆転させた電解処理浴1ユニットを使用して、非接触電解処理を行った。電解溶液として液温20〜40℃の6.3質量%硝酸水溶液を用い、各ユニットにおける酸化電気量、総酸化電気量及び還元電気量を変化させてサンプル採取を行った。その後、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、繊維直径5.1μmの炭素繊維を得た。得られた炭素繊維のストランド強度、ストランド弾性率、単繊維圧縮強度、表面酸素濃度および炭素繊維の表面粗さと電気量の関係は表1に示した。 Using the unelectrolyzed carbon fiber, a multi-stage electrolytic treatment bath having 2 to 5 units of a pair of treatment tanks (one unit) composed of an anode tank and a cathode tank, and one unit of an electrolytic treatment bath with the potential reversed. Then, non-contact electrolytic treatment was performed. A 6.3 mass% nitric acid aqueous solution having a liquid temperature of 20 to 40 ° C. was used as the electrolytic solution, and samples were collected by changing the amount of oxidation electricity, the total amount of oxidation electricity, and the amount of reduction electricity in each unit. Thereafter, sizing treatment was performed by a conventional method and dried to obtain carbon fibers having a density of 1.77 g / cm 3 and a fiber diameter of 5.1 μm. Table 1 shows the relationship between the strand strength, strand elastic modulus, single fiber compressive strength, surface oxygen concentration, carbon fiber surface roughness, and electric quantity of the obtained carbon fiber.

[比較例1〜5]
総酸化電気量、1ユニットの酸化電気量および還元電気量を、本発明の範囲外とする以外は実施例1の場合と同様にして実験を行った。これにより得られた炭素繊維のストランド強度、ストランド弾性率、単繊維圧縮強度、表面酸素濃度および炭素繊維の表面粗さと電気量の関係を表1に示した。いずれかの条件が本発明の範囲外の場合には、適切な表面状態が得られないために、炭素繊維の機械的物性が低下することが確認された。
[Comparative Examples 1-5]
Experiments were conducted in the same manner as in Example 1 except that the total amount of electricity oxidized, the amount of electricity oxidized and the amount of electricity reduced were outside the scope of the present invention. Table 1 shows the relationship between the strand strength, strand elastic modulus, single fiber compressive strength, surface oxygen concentration, carbon fiber surface roughness, and electric quantity of the carbon fiber thus obtained. When any of the conditions is out of the range of the present invention, it was confirmed that an appropriate surface state cannot be obtained, so that the mechanical properties of the carbon fiber are lowered.

Figure 2008248427
Figure 2008248427

Claims (6)

炭素繊維の表面を電解処理する方法において、先ず、陽極槽と陰極槽の組合せからなる電解処理浴が複数連続して設置された多段電解処理浴を用いて、各段の電気量が20〜300C/gの範囲で且つ総電気量が150〜500C/gの範囲で電解処理を行い、
その後、陰極槽と陽極槽の組合せからなる電解処理浴を用いて電位を逆転させて、逆転した電位での電気量が20〜60C/gの範囲で電解処理を行うことを特徴とする炭素繊維の表面電解処理方法。
In the method of electrolytically treating the surface of carbon fiber, first, using a multistage electrolytic treatment bath in which a plurality of electrolytic treatment baths composed of a combination of an anode tank and a cathode tank are installed, the amount of electricity in each stage is 20 to 300C. / G and the total amount of electricity is 150 to 500 C / g in the electrolytic treatment,
Thereafter, the carbon fiber is characterized in that the potential is reversed using an electrolytic treatment bath comprising a combination of a cathode tank and an anode tank, and the electrolytic treatment is performed in the range of 20 to 60 C / g of electricity at the reversed potential. Surface electrolytic treatment method.
多段電解処理浴の処理浴が、2〜20ユニットからなる請求項1記載の炭素繊維の表面電解処理方法。 2. The carbon fiber surface electrolytic treatment method according to claim 1, wherein the treatment bath of the multistage electrolytic treatment bath comprises 2 to 20 units. 多段電解処理浴の電気量が、順に増大している請求項2記載の炭素繊維の表面電解処理方法。 The carbon fiber surface electrolytic treatment method according to claim 2, wherein the amount of electricity in the multistage electrolytic treatment bath increases in order. 各電解処理浴の電気量の変動率が、10%以上である請求項3記載の炭素繊維の表面電解処理方法。 The carbon fiber surface electrolytic treatment method according to claim 3, wherein the variation rate of the amount of electricity in each electrolytic treatment bath is 10% or more. 電位を逆転させた電解処理浴が、1〜5ユニットからなる請求項1〜4のいずれか1項記載の炭素繊維の表面電解処理方法。 The carbon fiber surface electrolytic treatment method according to any one of claims 1 to 4, wherein the electrolytic treatment bath with the potential reversed is composed of 1 to 5 units. 請求項1〜5のいずれか1項記載の方法で得られた、樹脂含浸ストランド強度が6000MPa以上、樹脂含浸ストランド弾性率が340GPa以上、密度が1.76g/cm以上である高強度炭素繊維。
A high-strength carbon fiber obtained by the method according to any one of claims 1 to 5, having a resin-impregnated strand strength of 6000 MPa or more, a resin-impregnated strand elastic modulus of 340 GPa or more, and a density of 1.76 g / cm 3 or more. .
JP2007090575A 2007-03-30 2007-03-30 Method for surface electrolytic treatment of carbon fiber Pending JP2008248427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090575A JP2008248427A (en) 2007-03-30 2007-03-30 Method for surface electrolytic treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090575A JP2008248427A (en) 2007-03-30 2007-03-30 Method for surface electrolytic treatment of carbon fiber

Publications (1)

Publication Number Publication Date
JP2008248427A true JP2008248427A (en) 2008-10-16

Family

ID=39973702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090575A Pending JP2008248427A (en) 2007-03-30 2007-03-30 Method for surface electrolytic treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JP2008248427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216997A (en) * 2012-04-10 2013-10-24 Toho Tenax Co Ltd Carbon fiber chopped strand and method for producing the same
JP2019085292A (en) * 2017-11-06 2019-06-06 クアーズテック株式会社 BN COATED SiC FIBER AND MANUFACTURING METHOD THEREFOR, SiC FIBER REINFORCED SiC COMPOSITE MATERIAL USING BN COATED SiC FIBER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216997A (en) * 2012-04-10 2013-10-24 Toho Tenax Co Ltd Carbon fiber chopped strand and method for producing the same
JP2019085292A (en) * 2017-11-06 2019-06-06 クアーズテック株式会社 BN COATED SiC FIBER AND MANUFACTURING METHOD THEREFOR, SiC FIBER REINFORCED SiC COMPOSITE MATERIAL USING BN COATED SiC FIBER

Similar Documents

Publication Publication Date Title
EP2905364A1 (en) Flame-proofed fiber bundle, carbon fiber bundle, and processes for producing these
WO2016093250A1 (en) Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
CN110300819B (en) Carbon fiber precursor acrylic fiber, carbon fiber, and processes for producing these
JP2008248427A (en) Method for surface electrolytic treatment of carbon fiber
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JP2010047863A (en) Surface porous carbon fiber, precursor fiber and method for producing the same
JP4953410B2 (en) Carbon fiber and method for producing the same
JP3755255B2 (en) Carbon fiber and method for producing the same
JP2012102439A (en) Surface treatment method of carbon fiber
JP5226238B2 (en) Carbon fiber and composite material using the same
JP2008248424A (en) Method of multistage electrolytic treatment of carbon fiber
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP7338176B2 (en) Carbon fiber reinforced vinyl ester resin composition and method for producing the same
JP2015137444A (en) Surface treatment method of carbon fiber bundle, method for producing carbon fiber bundle and carbon fiber
JP6522971B2 (en) Method of manufacturing fiber bundle
JP5419768B2 (en) Carbon fiber surface treatment method and carbon fiber produced by the treatment method
JP7444929B2 (en) Carbon fiber manufacturing method and carbon fiber composite bottle
JP2004244258A (en) Carbon fiber for carbon fiber reinforced carbon composite materials and method of manufacturing the same
JPS62149964A (en) Production of ultrahigh strength carbon fiber
KR20190084187A (en) Apparatus and method for treating surface of carbon fiber
CN114197199B (en) Method for producing carbon fiber and carbon fiber composite bottle
JP4433676B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP7494889B2 (en) Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method thereof
JP2004277192A (en) Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor