JP2019085292A - BN COATED SiC FIBER AND MANUFACTURING METHOD THEREFOR, SiC FIBER REINFORCED SiC COMPOSITE MATERIAL USING BN COATED SiC FIBER - Google Patents

BN COATED SiC FIBER AND MANUFACTURING METHOD THEREFOR, SiC FIBER REINFORCED SiC COMPOSITE MATERIAL USING BN COATED SiC FIBER Download PDF

Info

Publication number
JP2019085292A
JP2019085292A JP2017213727A JP2017213727A JP2019085292A JP 2019085292 A JP2019085292 A JP 2019085292A JP 2017213727 A JP2017213727 A JP 2017213727A JP 2017213727 A JP2017213727 A JP 2017213727A JP 2019085292 A JP2019085292 A JP 2019085292A
Authority
JP
Japan
Prior art keywords
particles
sic
sic fiber
fiber
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017213727A
Other languages
Japanese (ja)
Other versions
JP6944345B2 (en
Inventor
晃一 町田
Koichi Machida
晃一 町田
青沼 伸一朗
Shinichiro Aonuma
伸一朗 青沼
小林 慶朗
Yoshiaki Kobayashi
慶朗 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to JP2017213727A priority Critical patent/JP6944345B2/en
Publication of JP2019085292A publication Critical patent/JP2019085292A/en
Application granted granted Critical
Publication of JP6944345B2 publication Critical patent/JP6944345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

To provide a SiC fiber reinforced SiC composite material high in breaking energy, and a manufacturing method therefor.SOLUTION: There is provided a SiC fiber reinforced SiC composite material by laminating a plurality of sheets woven with a BN coated SiC fiber bundle consisting of a SiC fiber 1, and first BN particles 2 and second BN particles 2' coating a surface of the SiC fiber 1, in which particle diameter of the first BN particles 2 is 1/10 or less of fiber diameter of the SiC fiber 1, and particle diameter of the second BN particles 2' is 1/10 or less of the particle diameter of the first BN particles 2.SELECTED DRAWING: Figure 3

Description

本発明は、繊維強化セラミックスに関する。   The present invention relates to fiber reinforced ceramics.

繊維強化セラミックスは、金属材料よりも軽量であり、優れた耐熱性及び剛性に加え、通常のセラミックスに比べて靱性が高いことから、従来は金属材料が使用されていた摺動材や回転材に用いられ始めている。特に、ジェットエンジンの高温部に耐熱性の高い炭化ケイ素繊維等のセラミックス材料を用いる研究が盛んになされている。   Fiber-reinforced ceramics are lighter than metal materials, have excellent heat resistance and rigidity, and have high toughness compared to ordinary ceramics, so sliding materials and rotating materials in which metal materials have been used conventionally It is beginning to be used. In particular, research has been actively conducted to use a ceramic material such as silicon carbide fiber having high heat resistance for the high temperature part of a jet engine.

例えば、特許第2968477号公報(特許文献1)には、SiC、Si34又はBN等からなる緩衝層の表面に高融点金属層を付与した非酸化物系繊維強化セラミックス及びその製造方法が記載されている。この技術では、非酸化物系セラミック繊維と高融点金属層との間に化学蒸着(Chemical Vapor Deposition;CVD)法等を用いてカーボン層やBN緩衝層などの中間層を形成させている。しかしながら、緻密な中間層では製造又は使用の際に、金属層及び繊維の間で熱膨張差による応力により中間層及び金属層に亀裂などが生じ、繊維強化セラミックス材料の靱性低下を招くという問題があった。つまり、このような繊維強化セラミックス材料は、剛性に優れるが、耐衝撃性に劣るという問題があった。また、このような多層構造体を構成する場合、耐衝撃性を向上させるためには、繊維強化セラミックス材料の厚みを増さざるを得ず、重量が増加してしまうという問題があった。 For example, Japanese Patent No. 2968477 (Patent Document 1) is a non-oxide fiber reinforced ceramic in which a high melting point metal layer is provided on the surface of a buffer layer made of SiC, Si 3 N 4 or BN, etc. Have been described. In this technology, an intermediate layer such as a carbon layer or a BN buffer layer is formed between a non-oxide ceramic fiber and a high melting point metal layer by using a chemical vapor deposition (CVD) method or the like. However, in the case of a dense intermediate layer, there is a problem in that cracks and the like occur in the intermediate layer and the metal layer due to the stress due to the thermal expansion difference between the metal layer and the fiber during production or use, leading to a decrease in toughness of the fiber reinforced ceramic material. there were. That is, such a fiber-reinforced ceramic material is excellent in rigidity but has a problem of being inferior in impact resistance. Further, in the case of constructing such a multilayer structure, in order to improve the impact resistance, the thickness of the fiber-reinforced ceramic material has to be increased, and there is a problem that the weight is increased.

特許第2968477号公報Patent No. 2968477

本発明の課題は、上記した従来技術の問題に鑑み、破壊エネルギーの高いSiC繊維強化SiC複合材及びその製造方法を提供することにある。   An object of the present invention is to provide an SiC fiber-reinforced SiC composite having high fracture energy and a method of manufacturing the same in view of the problems of the above-described conventional technology.

本発明のBN被覆SiC繊維は、SiC繊維と、前記SiC繊維の表面を被覆する、第1のBN粒子と第2のBN粒子とからなり、前記第1のBN粒子の粒径が、前記SiC繊維の繊維径の1/10以下であり、前記第2のBN粒子の粒径が、前記第1のBN粒子の粒径の1/10以下であることを特徴とする。   The BN-coated SiC fiber of the present invention comprises SiC fiber, and first BN particles and second BN particles covering the surface of the SiC fiber, wherein the particle diameter of the first BN particles is the above-mentioned SiC It is 1/10 or less of the fiber diameter of the fiber, and the particle diameter of the second BN particles is 1/10 or less of the particle diameter of the first BN particles.

本発明のBN被覆SiC繊維の製造方法は、表面電荷の違いによる吸着現象を用いてBN粒子をSiC繊維表面へ吸着させる工程を有することを特徴とする。
前記工程は、正又は負に帯電したSiC繊維の表面に、該SiC繊維とは反対の電荷に帯電した第1のBN粒子を吸着させる工程1と、第1のBN粒子が付着したSiC繊維の表面に、前記第1のBN粒子とは反対の電荷に帯電した第2のBN粒子を吸着させ、その後、正及び負に帯電した第2のBN粒子を正負を交互に吸着させてBN付着SiC繊維を得る工程2と、前記BN付着SiC繊維を加熱処理してBN被覆SiC繊維を得る工程3と、を有することが好ましい。
本発明のSiC繊維強化SiC複合材は、上記BN被覆SiC繊維を用いたものである。
The method for producing BN-coated SiC fibers according to the present invention is characterized by including the step of causing BN particles to be adsorbed onto the surface of SiC fibers using an adsorption phenomenon due to the difference in surface charge.
The step includes the step 1 of adsorbing the first BN particles charged to the opposite charge to the SiC fibers on the surface of the positively or negatively charged SiC fibers, and the first BN particles adhering to the surface of the SiC fibers. A second BN particle charged to the opposite charge to the first BN particle is adsorbed on the surface, and then a second BN particle positively and negatively charged is adsorbed alternately to positive and negative to form BN-bonded SiC. It is preferable to have the process 2 of obtaining a fiber, and the process 3 which heat-processes the said BN adhesion SiC fiber, and obtains a BN coated SiC fiber.
The SiC fiber reinforced SiC composite material of the present invention uses the above-mentioned BN coated SiC fiber.

本発明によれば、SiC繊維の繊維径よりも小さい粒径を有する第1のBN粒子と、第1のBN粒子の間に第1のBN粒子よりも小さい第2のBN粒子をSiC繊維表面に吸着させることで、SiC繊維束内にBN粒子を緻密に吸着させることができ、該BN粒子が吸着したSiC繊維束を製織したシートを複数枚積層させることで、高い破壊エネルギーを有するSiC繊維強化SiC複合材を得ることができる。   According to the present invention, a first BN particle having a particle size smaller than the fiber diameter of the SiC fiber, and a second BN particle smaller than the first BN particle between the first BN particle and the SiC fiber surface The BN particles can be densely adsorbed in the SiC fiber bundle by adsorbing to the SiC fiber bundle, and by laminating a plurality of woven sheets of the SiC fiber bundle in which the BN particles are adsorbed, the SiC fiber having high fracture energy A reinforced SiC composite can be obtained.

図1は、正電荷を持つSiC繊維に、アニオンポリマーまたはカチオンポリマーで表面帯電させたBN粒子が吸着する様子を示す模式図である。FIG. 1 is a schematic view showing how a BN particle surface-charged with an anionic polymer or cationic polymer is adsorbed to a positively charged SiC fiber. 図2は、SiC繊維を、BN粒子を含む電解質ポリマー水溶液中に浸して、SiC繊維にBN粒子が吸着している様子を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing how the BN particles are adsorbed to the SiC fibers by immersing the SiC fibers in an electrolyte polymer aqueous solution containing BN particles. 図3は、BN被覆SiC繊維の模式図である。FIG. 3 is a schematic view of BN coated SiC fiber.

以下、本発明について詳細に説明する。
本発明のBN被覆SiC繊維は、炭化ケイ素(SiC)繊維と、前記SiC繊維の表面を被覆する、第1の窒化ホウ素(BN)粒子と第2の窒化ホウ素(BN)粒子とからなる。そして、第1のBN粒子の粒径は、SiC繊維の繊維径の1/10以下であり、第2のBN粒子の粒径は、第1のBN粒子の粒径の1/10以下である。
上記BN被覆SiC繊維は、表面電荷の違いによる吸着現象を用いて第1のBN粒子及び第2のBN粒子をSiC繊維表面に吸着させることにより製造することができる。具体的には、上記BN被覆SiC繊維の製造方法は、正又は負に帯電したSiC繊維の表面に、該SiC繊維とは反対の電荷に帯電した、第1のBN粒子を吸着させる工程1と、第1のBN粒子が付着したSiC繊維の表面に、前記第1のBN粒子とは反対の電荷に帯電した第2のBN粒子を吸着させ、その後、正及び負に帯電した第2のBN粒子を正負を交互に吸着させてBN付着SiC繊維を得る工程2と、前記BN付着SiC繊維を加熱処理してBN被覆SiC繊維を得る工程3とからなる。
Hereinafter, the present invention will be described in detail.
The BN-coated SiC fiber of the present invention comprises silicon carbide (SiC) fiber, and first boron nitride (BN) particles and second boron nitride (BN) particles which coat the surface of the SiC fiber. And, the particle diameter of the first BN particles is 1/10 or less of the fiber diameter of the SiC fiber, and the particle diameter of the second BN particles is 1/10 or less of the particle diameter of the first BN particles. .
The BN-coated SiC fiber can be produced by adsorbing the first BN particles and the second BN particles on the surface of the SiC fiber using an adsorption phenomenon due to the difference in surface charge. Specifically, the method for producing a BN-coated SiC fiber comprises the steps of: adsorbing first BN particles charged to a charge opposite to that of the SiC fiber on the surface of the positively or negatively charged SiC fiber; A second BN particle charged to the opposite charge to the first BN particle is adsorbed onto the surface of the SiC fiber to which the first BN particle is attached, and then a second BN positively and negatively charged The process comprises: Step 2 of alternately adsorbing positive and negative particles to obtain BN-deposited SiC fibers; and 3 of heat-treating the BN-deposited SiC fibers to obtain BN-coated SiC fibers.

ここで、BN被覆SiC繊維として用いるSiC繊維にはSiC単繊維、SiC繊維束およびSiC繊維束を織ったシート状の織物が用いられる。SiC繊維織物の織り方に特段制限はなく、平織り、綾織り、朱子織りなど、いずれでもよいが、朱子織りは平織りに比べて繊維束の間隔が広く、複合化時には原料ガスが拡散して繊維密度が緻密になるため、朱子織りが好ましい。前記SiC繊維の繊維径は、通常5μm以上20μm以下、好ましくは7μm以上15μm以下である。   Here, as a SiC fiber used as the BN-coated SiC fiber, a sheet-like woven fabric in which an SiC single fiber, an SiC fiber bundle and an SiC fiber bundle are woven is used. There is no particular limitation on the weave method of the SiC fiber fabric, and any of plain weave, twill weave, satin weave, etc. may be used, but the satin weave has wider fiber bundles compared to plain weave, and the raw material gas is diffused during compounding and fiber density Yarn weave is preferred because The fiber diameter of the SiC fiber is generally 5 μm to 20 μm, preferably 7 μm to 15 μm.

BNは、常温常圧下で六方晶系の固体の化合物である。第1のBN粒子の粒径は、SiC繊維の繊維径の1/10以下であり、第2のBN粒子は、第1のBN粒子の粒径の1/10以下である。第1のBN粒子の粒径がSiC繊維の繊維径の1/10を超えていると、SiC繊維の繊維間にBN粒子が緻密に吸着できず、得られる複合材の破壊強度が充分に得られないことがある。第1のBN粒子の粒径は、SiC繊維の繊維径の1/20以下であることが好ましい。また、第2のBN粒子の粒径が、第1のBN粒子の粒径の1/10を超えていると、SiC繊維の表面を被覆した第1のBN粒子間の隙間を、第2のBN粒子で充分に埋めることができず、得られる複合材の破壊強度が充分に得られないことがある。具体的には、第1のBN粒子の粒径は、0.5μm以上2μm以下が好ましく、0.5μm以上1μm以下がより好ましい。第2のBN粒子の粒径は、0.05μm以上0.3μm以下が好ましく、0.05μm以上0.1μm以下がより好ましい。
なお、これらのBN粒子には、必要な粒径の市販品を用いることができる。
BN is a compound of a hexagonal solid at normal temperature and pressure. The particle size of the first BN particles is 1/10 or less of the fiber diameter of the SiC fiber, and the second BN particles are 1/10 or less of the particle size of the first BN particles. If the particle size of the first BN particles exceeds 1/10 of the fiber diameter of the SiC fibers, the BN particles can not be precisely adsorbed between the fibers of the SiC fibers, and the fracture strength of the resulting composite material is sufficiently obtained. I can not do it. The particle diameter of the first BN particles is preferably 1/20 or less of the fiber diameter of the SiC fiber. In addition, when the particle diameter of the second BN particles exceeds 1/10 of the particle diameter of the first BN particles, the gaps between the first BN particles coated on the surface of the SiC fiber BN particles can not be sufficiently filled, and the fracture strength of the resulting composite may not be sufficiently obtained. Specifically, the particle diameter of the first BN particles is preferably 0.5 μm or more and 2 μm or less, and more preferably 0.5 μm or more and 1 μm or less. 0.05 micrometer or more and 0.3 micrometer or less are preferable, and, as for the particle size of 2nd BN particle | grains, 0.05 micrometer or more and 0.1 micrometer or less are more preferable.
In addition, the commercial item of a required particle size can be used for these BN particle | grains.

本発明のBN被覆SiC繊維の製造方法では、電解質ポリマーによる表面帯電が用いられる。図1に示すように、例えば、カチオンポリマー水溶液(正電荷付与液)に浸すことによってカチオンポリマー層を形成し正に帯電したSiC繊維に、負電荷を持つアニオンポリマー水溶液(負電荷付与液)に浸すことによってアニオンポリマー層を形成し負に帯電した第1のBN粒子を吸着させ、次いで、BN粒子付着SiC繊維を負電荷を持つアニオンポリマー水溶液(負電荷付与液)に浸すことによってアニオンポリマー層を形成し負に帯電させ、正電荷を持つカチオンポリマー水溶液(正電荷付与液)に浸すことによってカチオンポリマー層を形成した第2のBN粒子を吸着させる。さらに、第2のBN粒子を吸着させるサイクルを繰り返すことによって、図2に示すような、SiC繊維にBN粒子が緻密に吸着した被覆層を形成させることができる。   In the method for producing BN-coated SiC fibers of the present invention, surface charging with an electrolyte polymer is used. As shown in FIG. 1, for example, a cationic polymer layer is formed by immersion in a cationic polymer aqueous solution (positive charge imparting solution), and a positively charged SiC fiber is made into an anionic polymer aqueous solution (negative charge imparting solution) having a negative charge. An anionic polymer layer is formed by immersion to adsorb the negatively charged first BN particles, and then an anionic polymer layer is formed by immersing the BN particle-attached SiC fiber in a negatively charged anionic polymer aqueous solution (negatively charged solution) The second BN particles having the cationic polymer layer formed thereon are adsorbed by being immersed in a cationic polymer aqueous solution (positive charge imparting solution) having a positive charge. Furthermore, by repeating the cycle of adsorbing the second BN particles, it is possible to form a coating layer in which the BN particles are closely adsorbed to the SiC fiber, as shown in FIG.

ここで、電解質ポリマーは、通常、カチオンポリマー又はアニオンポリマーをいう。
カチオンポリマーには、例えば、ビニルピロリドン−N、N−ジメチルアミノエチルメタクリル酸共重合体硫酸塩液及びポリジアリルメチルアンモニウムクロライド(PDDA)などが挙げられる。これらのうち、水溶性の理由により、ポリジアリルメチルアンモニウムクロライド(PDDA)等が好ましい。
アニオンポリマーには、例えば、アクリル樹脂アルカノールアミン液及びポリスチレンスルホン酸(PSS)などが挙げられる。これらのうち、取扱いが容易で水溶性に優れる等の理由により、ポリスチレンスルホン酸(PSS)等が好ましい。
Here, the electrolyte polymer usually refers to a cationic polymer or an anionic polymer.
Examples of cationic polymers include vinylpyrrolidone-N, N-dimethylaminoethyl methacrylic acid copolymer sulfate solution, polydiallylmethyl ammonium chloride (PDDA) and the like. Among these, polydiallylmethyl ammonium chloride (PDDA) is preferable because of its water solubility.
Anionic polymers include, for example, acrylic resin alkanolamine liquids and polystyrene sulfonic acid (PSS). Among these, polystyrene sulfonic acid (PSS) and the like are preferable because of easy handling and excellent water solubility.

本発明では、まず、電解質ポリマー水溶液中に帯電処理した第1のBN粒子を分散させ、該帯電した第1のBN粒子を含む電解質ポリマー水溶液中に第1のBN粒子とは反対電荷を持つSiC繊維を浸漬することにより、SiC繊維に第1のBN粒子が吸着される。これは、表面電荷の違いによる吸着現象を利用したものである。次いで、第1のBN粒子とは反対電荷を持つ第2のBN粒子を電解質ポリマー水溶液中に分散させ、第1のBN粒子が付着したSiC繊維を浸漬させる。この操作を通常10回以上、好ましくは20回以上繰り返すことにより、SiC繊維の表面にBN粒子が緻密に吸着されたSiC繊維を形成することができる。本発明では、粒径の大きな第1のBN粒子を最初に吸着させた後、粒径の小さな第2のBN粒子を吸着させることで、第1のBN粒子の間を第2のBN粒子で隙間なく吸着することができる。   In the present invention, first, the first BN particles charged in the electrolyte polymer aqueous solution are dispersed, and the SiC having an opposite charge to the first BN particles in the aqueous electrolyte polymer solution containing the charged first BN particles. By immersing the fibers, the first BN particles are adsorbed to the SiC fibers. This utilizes the adsorption phenomenon by the difference in surface charge. Next, the second BN particles having the opposite charge to the first BN particles are dispersed in the aqueous electrolyte polymer solution, and the SiC fibers to which the first BN particles are attached are immersed. By repeating this operation usually 10 times or more, preferably 20 times or more, it is possible to form a SiC fiber in which BN particles are closely adsorbed on the surface of the SiC fiber. In the present invention, the first BN particles having a large particle size are first adsorbed, and then the second BN particles having a small particle size are adsorbed to form second BN particles between the first BN particles. It can be adsorbed without gaps.

なお、電解質ポリマーを溶解させる水系溶媒は、極性溶媒であれば水に限られず、例えば、メタノール、エタノールなどのアルコールであってもよい。
また、カチオンポリマー又はアニオンポリマーは前記溶媒に、通常0.1g/l以上10g/l以下、好ましくは0.5g/l以上2g/l以下となるように溶解させる。
The aqueous solvent in which the electrolyte polymer is dissolved is not limited to water as long as it is a polar solvent, and may be, for example, an alcohol such as methanol or ethanol.
In addition, the cationic polymer or the anionic polymer is dissolved in the solvent to be usually 0.1 g / l or more and 10 g / l or less, preferably 0.5 g / l or more and 2 g / l or less.

このようにして得られるBN被覆SiC繊維は、厚みが通常0.05μm以上5μm以下、好ましくは0.05μm以上2μm以下である。厚みが5μmを超えると、SiC繊維の内部までBN粒子が吸着せず、また、得られる複合体の重量が増加してしまうなど、取り扱い性に影響することがある。図3に示すように、本発明のBN被覆SiC繊維では、第1のBN粒子の隙間を第2のBN粒子が埋めるように付着している。   The thickness of the BN-coated SiC fiber obtained in this manner is generally 0.05 μm to 5 μm, preferably 0.05 μm to 2 μm. When the thickness exceeds 5 μm, the BN particles may not be adsorbed to the inside of the SiC fiber, and the weight of the obtained composite may increase, which may affect the handling property. As shown in FIG. 3, in the BN-coated SiC fiber of the present invention, the second BN particles adhere so as to fill the gaps of the first BN particles.

本発明のBN被覆SiC繊維の製造方法の具体例を挙げる。
帯電SiC繊維の表面に、該帯電SiC繊維とは反対の表面電荷を持つ帯電第1のBN粒子を、静電気力による吸着現象を用いて吸着させる。次いで、第1のBN粒子付着SiC繊維を前記反対の表面電荷に帯電させ、前記帯電第1のBN粒子とは反対の表面電荷を持つ帯電第2のBN粒子を吸着させる。この時最初にSiC繊維を+に帯電し、−に帯電した第1のBN粒子を用いた場合は、第2のBN粒子を吸着させる際には第1のBN粒子付着SiC繊維を−に帯電させ、+に帯電させた第2のBN粒子を用いる。その後、BN付着SiC繊維を+に帯電させ、−に帯電させた第2のBN粒子を吸着させる。第2のBN粒子を吸着させる操作を複数回、例えば合計して20回程度繰り返して、緻密なBN被覆を有するSiC繊維からなるBN粒子付着SiC繊維を作製する。
得られたBN粒子付着SiC繊維を、金網容器に入れた状態で液体ピッチ及びポリビニルブチラール(PVB)樹脂の混合溶液に浸漬し、引き上げた後、余剰樹脂液を振り落とし、60℃で乾燥させ、PVB樹脂を固化させる。さらに、非酸化雰囲気下に1000℃で熱処理を行うことで、BN被覆SiC繊維を作製する。
The specific example of the manufacturing method of BN coating SiC fiber of this invention is given.
The charged first BN particles having a surface charge opposite to that of the charged SiC fiber are adsorbed onto the surface of the charged SiC fiber using an adsorption phenomenon by electrostatic force. Then, the first BN particle-attached SiC fiber is charged to the opposite surface charge, and the charged second BN particles having the opposite surface charge to the first charged BN particles are adsorbed. At this time, in the case where the first BN particles, in which the SiC fiber is charged first to + and is charged to-, are used to adsorb the second BN particles, the first BN particle-adhered SiC fiber is charged to-. And use the second BN particles charged to +. Thereafter, the BN-adhered SiC fiber is positively charged, and the negatively charged second BN particles are adsorbed. The operation of adsorbing the second BN particles is repeated a plurality of times, for example, about 20 times in total, to produce BN particle-adhered SiC fibers composed of SiC fibers having a dense BN coating.
The obtained BN particle-adhered SiC fiber is immersed in a mixed solution of liquid pitch and polyvinyl butyral (PVB) resin in a state of being placed in a wire mesh container, pulled up, shaken off excess resin solution, and dried at 60 ° C. Solidify the PVB resin. Furthermore, BN coated SiC fibers are produced by heat treatment at 1000 ° C. in a non-oxidizing atmosphere.

本発明のSiC繊維強化SiC複合材は、上記BN被覆SiC繊維を織ったBN被覆SiC繊維織物を複数積層させた構造を有する。強度の観点から、具体的には、前記SiC繊維強化SiC複合材は、BN被覆SiC繊維が体積率で30vol%以上50vol%以下になるように積層させるのが好ましい。   The SiC fiber reinforced SiC composite material of the present invention has a structure in which a plurality of BN coated SiC fiber woven fabrics in which the above-mentioned BN coated SiC fibers are woven are laminated. From the viewpoint of strength, specifically, the SiC fiber-reinforced SiC composite material is preferably laminated so that the BN-coated SiC fiber is 30 vol% or more and 50 vol% or less in volume ratio.

以下、本発明をSiC繊維織物を用いた実施例に基づいて具体的に説明するが、本発明は、下記実施例により制限されるものではない。   Hereinafter, the present invention will be specifically described based on examples using a SiC fiber fabric, but the present invention is not limited by the following examples.

[実施例1]
(1)SiC繊維織物及びBN粒子の表面帯電処理
シート状のSiC繊維織物(宇部興産(株)製、SA8朱子織 SA8−S20I16PX、元糸1600本 / ヤーン目付300g/m2、繊維径7.5μm)を、カチオンポリマー水溶液(正電荷付与液)またはアニオンポリマー水溶液(負電荷付与液)に浸漬させてコーティングし、水洗いをして、該SiC繊維織物の表面を帯電処理した。
Example 1
(1) Surface charging treatment of SiC fiber fabric and BN particles Sheet-like SiC fiber fabric (manufactured by Ube Industries, Ltd., SA8 satin weave SA8-S20I16PX, base yarn 1600 / filament weight 300 g / m 2 , fiber diameter 7. 5 μm) was dipped in a cationic polymer aqueous solution (positive charging solution) or an anionic polymer aqueous solution (negative charging solution) to be coated, washed with water, and the surface of the SiC fiber fabric was charged.

第1のBN粒子(昭和電工(株)製、六方晶窒化ホウ素粉末UHP−S2、粒径0.7μm)と第2のBN粒子((株)MARUKA製、六方晶窒化ホウ素粉末 AP−170S、粒径0.05μm)を、SiC繊維織物と同様にして、カチオンポリマー水溶液またはアニオンポリマー水溶液で浸漬コーティングし、水洗いをすることで、第1のBN粒子および第2のBN粒子の表面を帯電処理した。
なお、正電荷付与液及び負電荷付与液に交互に浸漬させるため、最後に正電荷付与液に浸漬させた場合は、表面の極性はプラス(+)となり、最後に負電荷付与液に浸漬させた場合は、表面の極性はマイナス(−)となる。
The first BN particles (manufactured by Showa Denko KK, hexagonal boron nitride powder UHP-S2, particle diameter 0.7 μm) and the second BN particles (manufactured by MARUKA, hexagonal boron nitride powder AP-170S, The particle diameter of 0.05 μm is dip-coated with an aqueous solution of cationic polymer or an aqueous solution of anionic polymer in the same manner as the SiC fiber fabric, and the surfaces of the first BN particles and the second BN particles are charged by washing with water. did.
In addition, in order to immerse alternately in the positive charge imparting solution and the negative charge imparting solution, when it is finally dipped in the positive charge imparting solution, the polarity of the surface becomes plus (+), and finally it is dipped in the negative charge imparting solution. In this case, the polarity of the surface is negative (-).

(2)得られた帯電SiC繊維織物の表面に、該帯電SiC繊維織物とは反対の表面電荷を持つ第1のBN粒子(粒径0.7μm)を、静電気力による吸着現象を用いて吸着させた。すなわち、+に帯電したSiC繊維織物を用いる場合は、−に帯電した第1のBN粒子を吸着させ、−に帯電したSiC繊維織物を用いる場合は、+に帯電した第1のBN粒子を吸着させた。
次いで、第1のBN粒子付着SiC繊維織物を前記反対の表面電荷に帯電させ、前記帯電第1のBN粒子とは反対の表面電荷を持つ帯電第2のBN粒子を吸着させた。すなわち、最初にSiC繊維織物を+に帯電し、−に帯電した第1のBN粒子を用いた場合は、第2のBN粒子を吸着させる際には第1のBN粒子付着SiC繊維を−に帯電させ、+に帯電させた第2のBN粒子を用いて吸着させた。その後、BN付着SiC繊維織物を+に帯電させ、−に帯電させた第2のBN粒子を吸着させた。第2のBN粒子を吸着させる操作を合計して20回繰り返して、緻密なBN被覆を有するSiC繊維からなるBN粒子付着SiC繊維織物を作製した。
(2) On the surface of the obtained charged SiC fiber fabric, the first BN particles (particle diameter 0.7 μm) having a surface charge opposite to that of the charged SiC fiber fabric are adsorbed using an adsorption phenomenon by electrostatic force I did. That is, when using a positively charged SiC fiber fabric, the first BN particles charged with-are adsorbed, and when using a negatively charged SiC fiber fabric, the first BN particles charged with + are adsorbed. I did.
Next, the first BN particle-adhered SiC fiber fabric was charged to the opposite surface charge, and the charged second BN particles having the opposite surface charge to the first charged BN particles were adsorbed. That is, in the case where the first BN particles charged first to the SiC fiber woven fabric to + and then to − are used, when adsorbing the second BN particles, the first BN particle-adhered SiC fiber is The charged and adsorbed second BN particles were used for adsorption. Thereafter, the BN-bonded SiC fiber fabric was charged to +, and the second charged BN particles were adsorbed. The operation of adsorbing the second BN particles was repeated a total of 20 times to produce a BN particle-adhered SiC fiber fabric composed of SiC fibers having a dense BN coating.

得られたBN粒子付着SiC繊維織物を、金網容器に入れた状態で液体ピッチ及びポリビニルブチラール(PVB)樹脂の混合溶液に浸漬し、引き上げた後、余剰樹脂液を振り落とし、60℃で乾燥させ、PVB樹脂を固化させた。さらに、非酸化雰囲気下に1000℃で熱処理を行い、BN被覆SiC繊維織物を作製した。   The obtained BN particle-adhered SiC fiber fabric is immersed in a mixed solution of liquid pitch and polyvinyl butyral (PVB) resin in a state of being placed in a wire mesh container, pulled up, shaken off excess resin solution, and dried at 60 ° C. , And solidified the PVB resin. Furthermore, heat treatment was performed at 1000 ° C. in a non-oxidizing atmosphere to produce a BN-coated SiC fiber fabric.

1 SiC繊維
2 第1のBN粒子
2’ 第2のBN粒子
3 電解質ポリマー
1 SiC fiber 2 first BN particles 2 'second BN particles 3 electrolyte polymer

Claims (4)

SiC繊維と、前記SiC繊維の表面を被覆する、第1のBN粒子と第2のBN粒子とからなり、
前記第1のBN粒子の粒径が、前記SiC繊維の繊維径の1/10以下であり、
前記第2のBN粒子の粒径が、前記第1のBN粒子の粒径の1/10以下である、
ことを特徴とするBN被覆SiC繊維。
SiC fiber, and a first BN particle and a second BN particle covering the surface of the SiC fiber,
The particle diameter of the first BN particles is 1/10 or less of the fiber diameter of the SiC fiber,
The particle size of the second BN particles is 1/10 or less of the particle size of the first BN particles,
BN coated SiC fiber characterized by
表面電荷の違いによる吸着現象を用いて、第1のBN粒子及び第2のBN粒子をSiC繊維表面へ吸着させる工程を有することを特徴とするBN被覆SiC繊維の製造方法。   A process for producing a BN-coated SiC fiber, comprising the steps of: adsorbing a first BN particle and a second BN particle to the surface of a SiC fiber using an adsorption phenomenon due to a difference in surface charge. 前記工程は、
正又は負に帯電したSiC繊維の表面に、該SiC繊維とは反対の電荷に帯電した第1のBN粒子を吸着させる工程1と、
第1のBN粒子が吸着したSiC繊維を加熱処理して、第1のBN粒子付着SiC繊維を得る工程2と、
前記第1のBN付着SiC繊維の表面に、前記第1のBN粒子とは反対の電荷に帯電した第2のBN粒子を吸着させ、その後、正及び負に帯電した第2のBN粒子を正負を交互に吸着させてBN被覆SiC繊維を得る工程3とを有する、請求項2に記載のBN被覆SiC繊維の製造方法。
Said process is
Adsorbing first BN particles charged to the opposite charge side of the SiC fiber to the surface of the positively or negatively charged SiC fiber;
A heat treatment of the SiC fiber to which the first BN particles are adsorbed to obtain a first BN particle-adhered SiC fiber;
The second BN particles charged to the opposite charge to the first BN particles are adsorbed on the surface of the first BN-bonded SiC fiber, and then the second BN particles positively and negatively charged are positively or negatively Are alternately adsorbed to obtain BN-coated SiC fibers. 3. The method for producing BN-coated SiC fibers according to claim 2.
請求項1に記載のBN被覆SiC繊維を用いたSiC繊維強化SiC複合材。   An SiC fiber reinforced SiC composite using the BN coated SiC fiber according to claim 1.
JP2017213727A 2017-11-06 2017-11-06 SiC fiber bundle for SiC fiber reinforced composite material and its manufacturing method Active JP6944345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017213727A JP6944345B2 (en) 2017-11-06 2017-11-06 SiC fiber bundle for SiC fiber reinforced composite material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017213727A JP6944345B2 (en) 2017-11-06 2017-11-06 SiC fiber bundle for SiC fiber reinforced composite material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019085292A true JP2019085292A (en) 2019-06-06
JP6944345B2 JP6944345B2 (en) 2021-10-06

Family

ID=66762279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017213727A Active JP6944345B2 (en) 2017-11-06 2017-11-06 SiC fiber bundle for SiC fiber reinforced composite material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6944345B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064577A (en) * 2001-06-12 2003-03-05 Toray Ind Inc Method for treating carbon fiber bundle
JP2008248427A (en) * 2007-03-30 2008-10-16 Toho Tenax Co Ltd Method for surface electrolytic treatment of carbon fiber
JP2010064945A (en) * 2008-09-12 2010-03-25 Toyohashi Univ Of Technology Method for manufacturing ceramic composite particle and functional ceramic composite particle
JP2016156109A (en) * 2015-02-25 2016-09-01 国立大学法人東京工業大学 Surface-coated inorganic fiber and manufacturing method thereof, and composite material
JP2017014033A (en) * 2015-06-29 2017-01-19 クアーズテック株式会社 Reinforcing fiber material and manufacturing method thereof, and fiber reinforced ceramics composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064577A (en) * 2001-06-12 2003-03-05 Toray Ind Inc Method for treating carbon fiber bundle
JP2008248427A (en) * 2007-03-30 2008-10-16 Toho Tenax Co Ltd Method for surface electrolytic treatment of carbon fiber
JP2010064945A (en) * 2008-09-12 2010-03-25 Toyohashi Univ Of Technology Method for manufacturing ceramic composite particle and functional ceramic composite particle
JP2016156109A (en) * 2015-02-25 2016-09-01 国立大学法人東京工業大学 Surface-coated inorganic fiber and manufacturing method thereof, and composite material
JP2017014033A (en) * 2015-06-29 2017-01-19 クアーズテック株式会社 Reinforcing fiber material and manufacturing method thereof, and fiber reinforced ceramics composite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COMPANY PROFILE MZK水島合金鉄株式会社, JPN6020043497, 2017, ISSN: 0004482422 *

Also Published As

Publication number Publication date
JP6944345B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
CN105152671B (en) SiCfThe interface modification method of/SiC ceramic matrix composite material
US8999453B2 (en) Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom
CN109206146B (en) Carbon fiber/nanofiber synergistic tough ceramic matrix composite and preparation method thereof
AU2010321534B2 (en) Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
JP6155439B2 (en) Manufacturing method of parts made of CMC material
AU2010333929A1 (en) Metal matrix composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
CN108485181A (en) A kind of silicon carbide-polyether-ether-ketone is the fibre reinforced composites and preparation method thereof of matrix
CN108947588A (en) A kind of C/SiC composite material and the antioxidant coating for the material and preparation method thereof
US20100104868A1 (en) Multi-functional hybrid fiber by simultaneous multi-component deposition, composite material with the same, and method for manufacturing the same
CN112390657A (en) In-situ reaction connection method for fiber-reinforced silicon carbide-based composite material
CN107285800A (en) A kind of three-dimensional CVD silicon carbide ceramic foam material with hollow member
EP3061604B1 (en) Conformal composite coatings
JP6900302B2 (en) Method for manufacturing BN-coated SiC fiber
CN103724030B (en) A kind of carbon fiber enhanced porous composite and preparation method thereof
JP2019085292A (en) BN COATED SiC FIBER AND MANUFACTURING METHOD THEREFOR, SiC FIBER REINFORCED SiC COMPOSITE MATERIAL USING BN COATED SiC FIBER
JP2007015901A (en) Manufacture of sic/sic composite material of high thermal conductivity using carbon nanotube or nanofiber
JP6862280B2 (en) Method for manufacturing SiC / SiC composite material
WO2010143608A1 (en) Composite inorganic fiber and method for producing same, and composite inorganic fiber processed article and method for producing same
EP4201915A1 (en) Introduction of metallic particles to enable formation of metallic carbides in a matrix
CN114163263B (en) Novel environmental barrier coating and structure for SiC ceramic matrix composite
CN113563097B (en) Carbon fiber preform, preparation method thereof and preparation method of carbon/carbon composite material
WO2015016072A1 (en) Ceramic composite material and production method for ceramic composite material
JP7085388B2 (en) Method for manufacturing SiC fiber reinforced SiC composite material
JP6122728B2 (en) SiC fiber reinforced SiC composite material and method for producing SiC fiber reinforced SiC composite material
JP2002265285A (en) METHOD FOR MANUFACTURING HIGH STRENGTH SiC FIBER/SiC COMPOSITE MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210910

R150 Certificate of patent or registration of utility model

Ref document number: 6944345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350