JP6900302B2 - Method for manufacturing BN-coated SiC fiber - Google Patents

Method for manufacturing BN-coated SiC fiber Download PDF

Info

Publication number
JP6900302B2
JP6900302B2 JP2017213726A JP2017213726A JP6900302B2 JP 6900302 B2 JP6900302 B2 JP 6900302B2 JP 2017213726 A JP2017213726 A JP 2017213726A JP 2017213726 A JP2017213726 A JP 2017213726A JP 6900302 B2 JP6900302 B2 JP 6900302B2
Authority
JP
Japan
Prior art keywords
sic fiber
particles
sic
fiber
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017213726A
Other languages
Japanese (ja)
Other versions
JP2019085291A (en
Inventor
晃一 町田
晃一 町田
青沼 伸一朗
伸一朗 青沼
小林 慶朗
慶朗 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to JP2017213726A priority Critical patent/JP6900302B2/en
Publication of JP2019085291A publication Critical patent/JP2019085291A/en
Application granted granted Critical
Publication of JP6900302B2 publication Critical patent/JP6900302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

本発明は、繊維強化セラミックスに関する。 The present invention relates to fiber reinforced ceramics.

繊維強化セラミックスは、金属材料よりも軽量であり、優れた耐熱性及び剛性に加え、通常のセラミックスに比べて靱性が高いことから、従来は金属材料が使用されていた摺動材や回転材に用いられ始めている。特に、ジェットエンジンの高温部に耐熱性の高い炭化ケイ素繊維等のセラミックス材料を用いる研究が盛んになされている。 Fiber reinforced ceramics are lighter than metal materials, have excellent heat resistance and rigidity, and have higher toughness than ordinary ceramics. It is beginning to be used. In particular, research on using ceramic materials such as silicon carbide fibers with high heat resistance for high temperature parts of jet engines has been actively conducted.

例えば、特許第2968477号公報(特許文献1)には、SiC、Si34又はBN等からなる緩衝層の表面に高融点金属層を付与した非酸化物系繊維強化セラミックス及びその製造方法が記載されている。この技術では、非酸化物系セラミック繊維と高融点金属層との間に化学蒸着(Chemical Vapor Deposition;CVD)法等を用いてカーボン層やBN緩衝層などの中間層を形成させている。しかしながら、緻密な中間層では製造又は使用の際に、金属層及び繊維の間で熱膨張差による応力により中間層及び金属層に亀裂などが生じ、繊維強化セラミックス材料の靱性低下を招くという問題があった。つまり、このような繊維強化セラミックス材料は、剛性に優れるが、耐衝撃性に劣るという問題があった。また、このような多層構造体を構成する場合、耐衝撃性を向上させるためには、繊維強化セラミックス材料の厚みを増さざるを得ず、重量が増加してしまうという問題があった。 For example, Japanese Patent No. 2968477 (Patent Document 1), SiC, Si 3 N 4 or a non-oxide fiber-reinforced ceramic and a method of manufacturing the surface of the buffer layer to impart a high melting point metal layer made of BN or the like Are listed. In this technique, an intermediate layer such as a carbon layer or a BN buffer layer is formed between a non-oxide ceramic fiber and a refractory metal layer by a chemical vapor deposition (CVD) method or the like. However, in the dense intermediate layer, there is a problem that during manufacturing or use, stress due to the difference in thermal expansion between the metal layer and the fiber causes cracks in the intermediate layer and the metal layer, resulting in a decrease in toughness of the fiber reinforced ceramic material. there were. That is, such a fiber-reinforced ceramic material has a problem that it is excellent in rigidity but inferior in impact resistance. Further, in the case of constructing such a multilayer structure, in order to improve the impact resistance, there is a problem that the thickness of the fiber-reinforced ceramic material must be increased and the weight increases.

特許第2968477号公報Japanese Patent No. 2968477

本発明の課題は、上記した従来技術の問題に鑑み、破壊エネルギーの高いSiC繊維強化SiC複合材及びその製造方法を提供することにある。 An object of the present invention is to provide a SiC fiber-reinforced SiC composite material having high fracture energy and a method for producing the same, in view of the above-mentioned problems of the prior art.

本発明のBN被覆SiC繊維の製造方法は、SiC繊維と、前記SiC繊維の表面を被覆するBN粒子とからなり、前記BN粒子の粒径が、前記SiC繊維の繊維径の1/100以下であるBN被覆SiC繊維の製造方法であって、正又は負に帯電したSiC繊維の表面に、該SiC繊維とは反対の電荷に帯電した粒径が0.05μm以上0.8μm以下のBN粒子を吸着させる工程1と、BN粒子が吸着したSiC繊維の表面に前記BN粒子とは反対の電荷に帯電したBN粒子を吸着させ、その後、正及び負に帯電したBN粒子を交互に吸着させBN付着SiC繊維を得る工程2と、前記BN付着SiC繊維を加熱処理して、BN被覆SiC繊維を得る工程3と、を有することを特徴とするThe method for producing a BN-coated SiC fiber of the present invention comprises SiC fibers and BN particles that coat the surface of the SiC fibers, and the particle size of the BN particles is 1/100 or less of the fiber diameter of the SiC fibers. A method for producing a BN-coated SiC fiber, in which BN particles having a particle size of 0.05 μm or more and 0.8 μm or less charged with a charge opposite to that of the SiC fiber are formed on the surface of the positively or negatively charged SiC fiber. In step 1 of adsorbing, BN particles charged with a charge opposite to that of the BN particles are adsorbed on the surface of the SiC fiber on which the BN particles are adsorbed, and then positively and negatively charged BN particles are alternately adsorbed and adhered to the BN. It is characterized by having a step 2 of obtaining a SiC fiber and a step 3 of heat-treating the BN-adhered SiC fiber to obtain a BN-coated SiC fiber.

本発明によれば、SiC繊維の繊維径よりも充分に小さい粒径を有するBN粒子をSiC繊維表面に吸着させることで、SiC繊維束内にBN粒子を緻密に吸着させることができ、該BN粒子が吸着したSiC繊維束を製織したシートを複数枚積層させることで、高い破壊エネルギーを有するSiC繊維強化SiC複合材を得ることができる。 According to the present invention, by adsorbing BN particles having a particle size sufficiently smaller than the fiber diameter of the SiC fiber on the surface of the SiC fiber, the BN particles can be densely adsorbed in the SiC fiber bundle, and the BN. A SiC fiber-reinforced SiC composite material having high fracture energy can be obtained by laminating a plurality of sheets woven from a SiC fiber bundle in which particles are adsorbed.

図1は、正電荷を持つSiC繊維に、アニオンポリマーまたはカチオンポリマーで表面帯電させたBN粒子が吸着する様子を示す模式図である。FIG. 1 is a schematic view showing how BN particles surface-charged with an anionic polymer or a cationic polymer are adsorbed on a positively charged SiC fiber. 図2は、SiC繊維を、BN粒子を含む電解質ポリマー水溶液中に浸して、SiC繊維にBN粒子が吸着している様子を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing how the SiC fibers are immersed in an aqueous electrolyte polymer solution containing BN particles and the BN particles are adsorbed on the SiC fibers. 図3は、BN被覆SiC繊維の模式図である。FIG. 3 is a schematic view of a BN-coated SiC fiber.

以下、本発明について、図面を参照しながら、詳細に説明する。
本発明のBN被覆SiC繊維は、炭化ケイ素(SiC)繊維と、前記SiC繊維の表面を被覆する窒化ホウ素(BN)粒子とからなる。そして、BN粒子の粒径は、前記SiC繊維の繊維径の1/20以下、又は1/100以下である。
上記BN被覆SiC繊維は、表面電荷の違いによる吸着現象を用いてBN粒子をSiC繊維表面へ吸着させることにより製造することができる。具体的には、上記BN被覆SiC繊維の製造方法は、正又は負に帯電したSiC繊維の表面に、該SiC繊維とは反対の電荷に帯電したBN粒子を吸着させる工程1と、BN粒子が吸着したSiC繊維の表面に、前記BN粒子とは反対の電荷に帯電したBN粒子を吸着させ、その後、正及び負に帯電したBN粒子を交互に吸着させてBN付着SiC繊維を得る工程2と、前記BN付着SiC繊維を加熱処理して、BN被覆SiC繊維を得る工程3とからなる。
Hereinafter, the present invention will be described in detail with reference to the drawings.
The BN-coated SiC fiber of the present invention comprises silicon carbide (SiC) fiber and boron nitride (BN) particles that coat the surface of the SiC fiber. The particle size of the BN particles is 1/20 or less or 1/100 or less of the fiber diameter of the SiC fiber.
The BN-coated SiC fiber can be produced by adsorbing BN particles on the surface of the SiC fiber using an adsorption phenomenon due to a difference in surface charge. Specifically, the method for producing the BN-coated SiC fiber includes a step 1 in which BN particles charged with a charge opposite to that of the SiC fiber are adsorbed on the surface of the positively or negatively charged SiC fiber, and the BN particles are formed. Step 2 of adsorbing BN particles charged with a charge opposite to that of the BN particles on the surface of the adsorbed SiC fibers, and then alternately adsorbing positively and negatively charged BN particles to obtain BN-attached SiC fibers. The BN-attached SiC fiber is heat-treated to obtain a BN-coated SiC fiber.

ここで、BN被覆SiC繊維として用いるSiC繊維にはSiC単繊維、SiC繊維束およびSiC繊維束を織ったシート状の織物が用いられる。SiC繊維織物の織り方に特段制限はなく、平織り、綾織り、朱子織りなど、いずれでもよいが、朱子織りは平織りに比べて繊維束の間隔が広く、複合化時には原料ガスが拡散して繊維密度が緻密になるため、朱子織りが好ましい。前記SiC繊維の繊維径は、通常5μm以上20μm以下、好ましくは7μm以上15μm以下である。 Here, as the SiC fiber used as the BN-coated SiC fiber, a sheet-shaped woven fabric in which a SiC single fiber, a SiC fiber bundle, and a SiC fiber bundle are woven is used. There are no particular restrictions on the weaving method of the SiC fiber woven fabric, and any of plain weave, twill weave, satin weave, etc. may be used. Weave is preferable because it becomes dense. The fiber diameter of the SiC fiber is usually 5 μm or more and 20 μm or less, preferably 7 μm or more and 15 μm or less.

BNは、常温常圧下で六方晶系の固体の化合物である。BNの粒径は、SiC繊維の繊維径の1/20以下であることが好ましい。BNの粒径が1/20を超えていると、SiC繊維の繊維間にBN粒子が緻密に吸着できず、得られる複合材の破壊強度が充分に得られないことがある。このような理由から、BNの粒径は細かいほど好ましく、1/100以下であることがより好ましい。具体的には、BNの粒径は、0.05μm以上2μm以下が好ましく、0.05μm以上0.8μm以下がより好ましい。 BN is a hexagonal solid compound under normal temperature and pressure. The particle size of BN is preferably 1/20 or less of the fiber diameter of the SiC fiber. If the particle size of the BN exceeds 1/20, the BN particles cannot be densely adsorbed between the SiC fibers, and the fracture strength of the obtained composite material may not be sufficiently obtained. For this reason, the finer the particle size of the BN, the more preferable it is, and more preferably 1/100 or less. Specifically, the particle size of BN is preferably 0.05 μm or more and 2 μm or less, and more preferably 0.05 μm or more and 0.8 μm or less.

本発明のBN被覆SiC繊維の製造方法では、電解質ポリマーによる表面帯電が用いられる。図1に示すように、例えば、カチオンポリマー水溶液(正電荷付与液)に浸すことによってカチオンポリマー層を形成し正に帯電したSiC繊維に、負電荷を持つアニオンポリマー水溶液(負電荷付与液)に浸すことによってアニオンポリマー層を形成し負に帯電したBN粒子を吸着させ、次いで、BN粒子付着SiC繊維を負電荷を持つアニオンポリマー水溶液(負電荷付与液)に浸すことによってアニオンポリマー層を形成し負に帯電させ、正電荷を持つカチオンポリマー水溶液(正電荷付与液)に浸すことによってカチオンポリマー層を形成したBN粒子を吸着させる。このサイクルを繰り返すことによって、図2に示すような、SiC繊維にBN粒子が緻密に吸着した被覆層を形成させることができる。 In the method for producing a BN-coated SiC fiber of the present invention, surface charging with an electrolyte polymer is used. As shown in FIG. 1, for example, a cationic polymer layer is formed by immersing in a cationic polymer aqueous solution (positively charged liquid), and positively charged SiC fibers are charged with a negatively charged anionic polymer aqueous solution (negatively charged liquid). By immersing, an anionic polymer layer is formed to adsorb negatively charged BN particles, and then the BN particle-attached SiC fibers are immersed in a negatively charged anionic polymer aqueous solution (negatively charged liquid) to form an anionic polymer layer. The BN particles forming the cationic polymer layer are adsorbed by being negatively charged and immersed in a positively charged cationic polymer aqueous solution (positively charged liquid). By repeating this cycle, a coating layer in which BN particles are densely adsorbed can be formed on the SiC fiber as shown in FIG.

ここで、電解質ポリマーは、通常、カチオンポリマー又はアニオンポリマーをいう。
カチオンポリマーには、例えば、ビニルピロリドン−N、N−ジメチルアミノエチルメタクリル酸共重合体硫酸塩液及びポリジアリルメチルアンモニウムクロライド(PDDA)などが挙げられる。これらのうち、水溶性の理由により、ポリジアリルメチルアンモニウムクロライド(PDDA)等が好ましい。
アニオンポリマーには、例えば、アクリル樹脂アルカノールアミン液及びポリスチレンスルホン酸(PSS)などが挙げられる。これらのうち、取扱いが容易で水溶性に優れる等の理由により、ポリスチレンスルホン酸(PSS)等が好ましい。
Here, the electrolyte polymer usually refers to a cationic polymer or an anionic polymer.
Examples of the cationic polymer include vinylpyrrolidone-N, N-dimethylaminoethylmethacrylic acid copolymer sulfate solution, polydiallylmethylammonium chloride (PDDA), and the like. Of these, polydialylmethylammonium chloride (PDDA) and the like are preferable because of their water solubility.
Examples of the anionic polymer include an acrylic resin alkanolamine solution and polystyrene sulfonic acid (PSS). Of these, polystyrene sulfonic acid (PSS) and the like are preferable because they are easy to handle and have excellent water solubility.

本発明では、電解質ポリマー水溶液中に帯電処理したBN粒子を添加し、該帯電BN粒子を含む電解質ポリマー水溶液中にBN粒子とは反対電荷を持つSiC繊維を浸漬することにより、SiC繊維にBN粒子が吸着される。これは、表面電荷の違いによる吸着現象を利用したものである。この操作を通常10回以上、好ましくは20回以上繰り返すことにより、SiC繊維の表面にBN粒子が緻密に吸着されたSiC繊維を形成することができる。 In the present invention, the charged BN particles are added to the aqueous electrolyte polymer solution, and the SiC fibers having a charge opposite to that of the BN particles are immersed in the aqueous electrolyte polymer solution containing the charged BN particles, whereby the BN particles are immersed in the SiC fibers. Is adsorbed. This utilizes the adsorption phenomenon due to the difference in surface charge. By repeating this operation 10 times or more, preferably 20 times or more, the SiC fiber in which the BN particles are densely adsorbed can be formed on the surface of the SiC fiber.

なお、電解質ポリマーを溶解させる水系溶媒は、極性溶媒であれば水に限られず、例えば、メタノール、エタノールなどのアルコールであってもよい。
また、カチオンポリマー又はアニオンポリマーは前記溶媒に、通常0.1g/l以上10g/l以下、好ましくは0.5g/l以上2g/l以下となるように溶解させる。
The aqueous solvent that dissolves the electrolyte polymer is not limited to water as long as it is a polar solvent, and may be, for example, an alcohol such as methanol or ethanol.
The cationic polymer or anionic polymer is usually dissolved in the solvent at 0.1 g / l or more and 10 g / l or less, preferably 0.5 g / l or more and 2 g / l or less.

このようにして得られるBN被覆SiC繊維は、被覆の厚みが通常0.05μm以上5μm以下、好ましくは0.05μm以上2μm以下である。厚みが5μmを超えると、SiC繊維の内部までBN粒子が吸着せず、得られる複合体の重量が増加してしまうなど、取り扱い性に影響することがある。図3にBN被覆SiC繊維の模式図を示す。 The BN-coated SiC fiber thus obtained has a coating thickness of usually 0.05 μm or more and 5 μm or less, preferably 0.05 μm or more and 2 μm or less. If the thickness exceeds 5 μm, the BN particles are not adsorbed to the inside of the SiC fiber, and the weight of the obtained complex increases, which may affect the handleability. FIG. 3 shows a schematic view of the BN-coated SiC fiber.

本発明のBN被覆SiC繊維の製造方法の具体例を挙げる。
帯電SiC繊維の表面に、該帯電SiC繊維とは反対の表面電荷を持つ帯電BN粒子を、静電気力による吸着現象を用いて吸着させる。次いで、該帯電SiC繊維を前記反対の表面電荷に帯電させ、前記帯電BN粒子とは反対の表面電荷を持つ帯電BN粒子を吸着させる。この時最初のSiC繊維を+に帯電し、最初の吸着を−に帯電したBN粒子を用いた場合は、次の吸着時はSiC繊維を−に帯電させ、+に帯電させたBN粒子を用いる。この操作を複数回、例えば合計して20回程度繰り返して、緻密なBN被覆を有するSiC繊維からなるBN付着SiC繊維を作製する。
得られたBN付着SiC繊維を、金網容器に入れた状態で液体ピッチ及びポリビニルブチラール(PVB)樹脂の混合溶液に浸漬し、引き上げた後、余剰樹脂液を振り落とし、60℃で乾燥させ、PVB樹脂を固化させる。さらに、非酸化雰囲気下に1000℃で熱処理を行うことで、BN被覆SiC繊維を得る。
Specific examples of the method for producing the BN-coated SiC fiber of the present invention will be given.
Charged BN particles having a surface charge opposite to that of the charged SiC fiber are adsorbed on the surface of the charged SiC fiber by using an adsorption phenomenon due to electrostatic force. Next, the charged SiC fiber is charged to the opposite surface charge, and the charged BN particles having a surface charge opposite to the charged BN particles are adsorbed. At this time, when the first SiC fiber is positively charged and the first adsorption is negatively charged BN particles, the SiC fiber is negatively charged and the positively charged BN particles are used at the next adsorption. .. This operation is repeated a plurality of times, for example, about 20 times in total to prepare a BN-attached SiC fiber composed of a SiC fiber having a dense BN coating.
The obtained BN-attached SiC fiber is immersed in a mixed solution of liquid pitch and polyvinyl butyral (PVB) resin in a wire mesh container, pulled up, shaken off of excess resin solution, dried at 60 ° C., and PVB. Solidify the resin. Further, a BN-coated SiC fiber is obtained by performing a heat treatment at 1000 ° C. in a non-oxidizing atmosphere.

本発明のSiC繊維強化SiC複合材は、上記BN被覆SiC繊維を織ったBN被覆SiC繊維織物を複数積層させた構造を有する。強度の観点から、具体的には、前記SiC繊維強化SiC複合材は、BN被覆SiC繊維が体積率で30vol%以上50vol%以下になるように積層させるのが好ましい。 The SiC fiber-reinforced SiC composite material of the present invention has a structure in which a plurality of BN-coated SiC fiber woven fabrics woven from the above-mentioned BN-coated SiC fibers are laminated. From the viewpoint of strength, specifically, the SiC fiber-reinforced SiC composite material is preferably laminated so that the BN-coated SiC fibers have a volume fraction of 30 vol% or more and 50 vol% or less.

以下、本発明をSiC繊維織物を用いた実施例に基づいて具体的に説明するが、本発明は、下記実施例により制限されるものではない。 Hereinafter, the present invention will be specifically described based on an example using a SiC fiber woven fabric, but the present invention is not limited to the following examples.

[実施例1]
(1)SiC繊維織物及びBN粒子の表面帯電処理
シート状のSiC繊維織物(宇部興産(株)製、SA8朱子織 SA8−S20I16PX、元糸1600本 / ヤーン目付300g/m2、繊維径7.5μm)を、交互積層法(レイヤーバイレイヤー法)により、カチオンポリマー水溶液(正電荷付与液)及びアニオンポリマー水溶液(負電荷付与液)に交互に浸漬させてコーティングし、水洗いをして、該SiC繊維織物の表面を帯電処理した。
[Example 1]
(1) Surface charge treatment of SiC fiber woven fabric and BN particles Sheet-shaped SiC fiber woven fabric (manufactured by Ube Kosan Co., Ltd., SA8 Akiko weave SA8-S20I16PX, 1600 main yarns / 300 g / m 2 with yarn grain, fiber diameter 7. 5 μm) is alternately immersed in a cationic polymer aqueous solution (positive charge imparting solution) and an anionic polymer aqueous solution (negative charge imparting solution) by an alternating lamination method (layer-by-layer method) to coat the fibers, wash with water, and then wash the SiC. The surface of the textile fabric was charged.

BN粒子((株)MARUKA製、六方晶窒化ホウ素粉末 AP−170S、粒子径0.05μm)を、SiC繊維織物と同様にして、交互積層法(レイヤーバイレイヤー法)により、カチオンポリマー水溶液(正電荷付与液)及びアニオンポリマー水溶液(負電荷付与液)で浸漬コーティングし、水洗いをすることで、BN粒子の表面を帯電処理した。
なお、正電荷付与液及び負電荷付与液に交互に浸漬させるため、最後に正電荷付与液に浸漬させた場合は、表面の極性はプラス(+)となり、最後に負電荷付与液に浸漬させた場合は、表面の極性はマイナス(−)となる。
BN particles (manufactured by MARUKA Co., Ltd., hexagonal boron nitride powder AP-170S, particle diameter 0.05 μm) are subjected to a cationic polymer aqueous solution (positive) by an alternating lamination method (layer-by-layer method) in the same manner as the SiC fiber woven fabric. The surface of the BN particles was charged by dipping coating with a charge-imparting solution) and an anionic polymer aqueous solution (negative charge-imparting solution) and washing with water.
Since it is alternately immersed in the positive charge-imparting liquid and the negative charge-imparting liquid, the surface polarity becomes positive (+) when it is immersed in the positive charge-imparting liquid at the end, and it is finally immersed in the negative charge-imparting liquid. If so, the polarity of the surface will be negative (-).

(2)得られた帯電SiC繊維織物の表面に、該帯電SiC繊維織物とは反対の表面電荷を持つ帯電BN粒子を、静電気力による吸着現象を用いて吸着させた。すなわち、+に帯電したSiC繊維織物を用いる場合は、−に帯電したBN粒子を吸着させ、−に帯電したSiC繊維織物を用いる場合は、+に帯電したBN粒子を吸着させた。
次いで、このBN付着SiC繊維織物を前回とは反対の表面電荷に帯電させ、該BN付着SiC繊維織物とは反対の表面電荷を持つ帯電BN粒子を吸着させた。すなわち、先(1回目)の吸着を−の帯電SiC繊維織物を用い、+に帯電したBN粒子を用いた場合は、今回(2回目)の吸着は、+に帯電させたBN付着SiC繊維織物を用い、−に帯電したBN粒子を用いて行った。この操作を合計して20回繰り返して、緻密なBN被覆を有するSiC繊維からなるBN付着SiC繊維織物を作製した。
得られたBN付着SiC繊維織物を、金網容器に入れた状態で液体ピッチ及びポリビニルブチラール(PVB)樹脂の混合溶液に浸漬し、引き上げた後、余剰樹脂液を振り落とし、60℃で乾燥させ、PVB樹脂を固化させた。さらに、非酸化雰囲気下に1000℃で熱処理を行うことで、BN被覆SiC繊維織物を得た。
(2) Charged BN particles having a surface charge opposite to that of the charged SiC fiber woven fabric were adsorbed on the surface of the obtained charged SiC fiber woven fabric by using an adsorption phenomenon due to electrostatic force. That is, when the + charged SiC fiber woven fabric was used, the negatively charged BN particles were adsorbed, and when the negatively charged SiC fiber woven fabric was used, the + charged BN particles were adsorbed.
Next, the BN-attached SiC fiber woven fabric was charged with a surface charge opposite to that of the previous time, and charged BN particles having a surface charge opposite to that of the BN-attached SiC fiber woven fabric were adsorbed. That is, when the previous (first) adsorption uses a negatively charged SiC fiber woven fabric and the + charged BN particles are used, the current (second) adsorption uses a + charged BN-attached SiC fiber woven fabric. Was used, and BN particles charged with − were used. This operation was repeated 20 times in total to prepare a BN-attached SiC fiber woven fabric composed of SiC fibers having a dense BN coating.
The obtained BN-attached SiC fiber woven fabric was immersed in a mixed solution of liquid pitch and polyvinyl butyral (PVB) resin in a wire mesh container, pulled up, and then the excess resin liquid was shaken off and dried at 60 ° C. The PVB resin was solidified. Further, a BN-coated SiC fiber woven fabric was obtained by performing a heat treatment at 1000 ° C. in a non-oxidizing atmosphere.

[実施例2]
実施例1において、BN付着SiC繊維織物の表面に、帯電BN粒子を吸着させる操作を20回ではなく、41回繰り返したこと以外は、実施例1と同様にして、BN被覆SiC繊維織物を作製した。
[Example 2]
In Example 1, a BN-coated SiC fiber woven fabric was produced in the same manner as in Example 1 except that the operation of adsorbing the charged BN particles on the surface of the BN-attached SiC fiber woven fabric was repeated 41 times instead of 20 times. did.

[比較例1]
実施例1において、粒径0.05μmのBN粒子ではなく、粒径0.7μmのBN粒子(昭和電工(株)製、六方晶窒化ホウ素粉末 UHP−S2)を使用したこと以外は、実施例1と同様にして、BN被覆SiC繊維織物を作製した。
比較例1のBN被覆SiC繊維のSEM写真から、BN粒子の吸着を複数回繰り返しても隙間があることがわかった。
[Comparative Example 1]
In Example 1, BN particles having a particle size of 0.7 μm (Hexagonal boron nitride powder UHP-S2 manufactured by Showa Denko KK) were used instead of BN particles having a particle size of 0.05 μm. A BN-coated SiC fiber woven fabric was produced in the same manner as in Example 1.
From the SEM photograph of the BN-coated SiC fiber of Comparative Example 1, it was found that there was a gap even if the adsorption of the BN particles was repeated a plurality of times.

1 SiC繊維
2 BN粒子
3 電解質ポリマー
1 SiC fiber 2 BN particles 3 Electrolyte polymer

Claims (1)

SiC繊維と、前記SiC繊維の表面を被覆するBN粒子とからなり、
前記BN粒子の粒径が、前記SiC繊維の繊維径の1/100以下であるBN被覆SiC繊維の製造方法であって、
正又は負に帯電したSiC繊維の表面に、該SiC繊維とは反対の電荷に帯電した粒径が0.05μm以上0.8μm以下のBN粒子を吸着させる工程1と、
BN粒子が吸着したSiC繊維の表面に前記BN粒子とは反対の電荷に帯電したBN粒子を吸着させ、その後、正及び負に帯電したBN粒子を交互に吸着させBN付着SiC繊維を得る工程2と、
前記BN付着SiC繊維を加熱処理して、BN被覆SiC繊維を得る工程3と、
を有する、BN被覆SiC繊維の製造方法。
It consists of SiC fibers and BN particles that coat the surface of the SiC fibers.
A method for producing a BN-coated SiC fiber, wherein the particle size of the BN particles is 1/100 or less of the fiber diameter of the SiC fiber.
Step 1 of adsorbing BN particles having a particle size of 0.05 μm or more and 0.8 μm or less charged on the surface of a positively or negatively charged SiC fiber with a charge opposite to that of the SiC fiber.
Step 2 in which BN particles charged with a charge opposite to that of the BN particles are adsorbed on the surface of the SiC fiber on which the BN particles are adsorbed, and then positively and negatively charged BN particles are alternately adsorbed to obtain a BN-attached SiC fiber. When,
Step 3 of heat-treating the BN-adhered SiC fiber to obtain a BN-coated SiC fiber.
A method for producing a BN-coated SiC fiber.
JP2017213726A 2017-11-06 2017-11-06 Method for manufacturing BN-coated SiC fiber Active JP6900302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017213726A JP6900302B2 (en) 2017-11-06 2017-11-06 Method for manufacturing BN-coated SiC fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017213726A JP6900302B2 (en) 2017-11-06 2017-11-06 Method for manufacturing BN-coated SiC fiber

Publications (2)

Publication Number Publication Date
JP2019085291A JP2019085291A (en) 2019-06-06
JP6900302B2 true JP6900302B2 (en) 2021-07-07

Family

ID=66762270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017213726A Active JP6900302B2 (en) 2017-11-06 2017-11-06 Method for manufacturing BN-coated SiC fiber

Country Status (1)

Country Link
JP (1) JP6900302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090513A1 (en) * 2022-10-26 2024-05-02 大日本印刷株式会社 Particle-including base material, and production method for particle-including base material

Also Published As

Publication number Publication date
JP2019085291A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6155439B2 (en) Manufacturing method of parts made of CMC material
CN109206146B (en) Carbon fiber/nanofiber synergistic tough ceramic matrix composite and preparation method thereof
CN108602724B (en) Method for manufacturing part by using ceramic matrix composite material
JP2013518791A (en) Carbon nanotube leached fiber material, including carbon nanotubes arranged in parallel, production method thereof, and composite material produced therefrom
JP2016527173A (en) Process for making composite parts by low melting impregnation
EP2504164A1 (en) Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
EP2970016A1 (en) Ceramic matrix composite and method and article of manufacture
JP6900302B2 (en) Method for manufacturing BN-coated SiC fiber
JP6774863B2 (en) Manufacturing method of ceramic-based composite material
JP6490915B2 (en) Tubular body and manufacturing method thereof
Ishikawa Ceramic fibers and their applications
US20130029127A1 (en) Inorganic fiber for fiber bundles, process for producing the same, inorganic fiber bundle for composite material comprising the inorganic fiber for fiber bundles, and ceramic-based composite material reinforced with the fiber bundle
US11220465B2 (en) Method for producing SiC/SiC composite material
JP5920788B2 (en) Oxide-based composite material
JP6944345B2 (en) SiC fiber bundle for SiC fiber reinforced composite material and its manufacturing method
WO2010143608A1 (en) Composite inorganic fiber and method for producing same, and composite inorganic fiber processed article and method for producing same
JP2019172503A (en) PRODUCTION PROCESS FOR SiC FIBER REINFORCED SiC COMPOSITE MATERIAL
JP2019157292A (en) Inorganic powder coated inorganic fiber, fabric using the same, inorganic fiber reinforced ceramic group composite material, and manufacturing method of inorganic powder coated inorganic fiber
WO2015016072A1 (en) Ceramic composite material and production method for ceramic composite material
JP7085388B2 (en) Method for manufacturing SiC fiber reinforced SiC composite material
JP6122728B2 (en) SiC fiber reinforced SiC composite material and method for producing SiC fiber reinforced SiC composite material
CN111692612A (en) Three-dimensional woven aviation flame stabilizer and preparation method thereof
JP5668550B2 (en) Inorganic fiber for fiber bundle, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with fiber bundle
JP4616442B2 (en) Carbonaceous material having oxidation-resistant protective layer and method for producing the same
JP5668575B2 (en) Inorganic fiber for fiber bundle, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210616

R150 Certificate of patent or registration of utility model

Ref document number: 6900302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250