JP2014101605A - Method of manufacturing carbon fiber - Google Patents

Method of manufacturing carbon fiber Download PDF

Info

Publication number
JP2014101605A
JP2014101605A JP2012255250A JP2012255250A JP2014101605A JP 2014101605 A JP2014101605 A JP 2014101605A JP 2012255250 A JP2012255250 A JP 2012255250A JP 2012255250 A JP2012255250 A JP 2012255250A JP 2014101605 A JP2014101605 A JP 2014101605A
Authority
JP
Japan
Prior art keywords
carbon fiber
treatment
gas
fiber
superheated steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012255250A
Other languages
Japanese (ja)
Inventor
Hideaki Maeda
英朗 前田
Fumio Akiyama
文男 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2012255250A priority Critical patent/JP2014101605A/en
Publication of JP2014101605A publication Critical patent/JP2014101605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a carbon fiber, conducting a surface treatment of the carbon fiber efficiently and safely, at low cost and without applying a burden on the environment.SOLUTION: The method of manufacturing a carbon fiber is a manufacturing method of the carbon fiber including heat treating the carbon fiber having an untreated surface at 200 to 600°C under a super heated steam atmosphere containing an oxygen concentration of 1 to 1000 ppm. The oxidizing gas is preferably oxygen. The atmosphere used in the invention may contain an inactive gas of 0 to 80 vol% other than the super heated steam. Preferably it is heat treated under an atmosphere containing 1 to 1000 ppm of oxidizing gas and having a percentage of super heated steam of 20 to 99.9 vol%.

Description

本発明は、炭素繊維を効率の良く表面酸化処理する炭素繊維の製造方法に関する。   The present invention relates to a method for producing a carbon fiber in which carbon fiber is efficiently surface oxidized.

炭素繊維は、優れた比強度及び比弾性率を有し、軽量性に優れるため、熱硬化性及び熱可塑性樹脂の強化繊維として、従来のスポーツ・一般産業用途だけでなく、航空・宇宙用途、自動車用途など広く利用されている。利用用途が拡大されるにつれ、炭素繊維強化樹脂複合材料(以下コンポジットと称する)には、さらに高い性能が求められている。   Carbon fiber has excellent specific strength and specific elastic modulus, and is excellent in lightness. Therefore, as a reinforcing fiber for thermosetting and thermoplastic resin, not only conventional sports and general industrial applications, but also aerospace applications, Widely used for automotive applications. As usage applications expand, higher performance is required for carbon fiber reinforced resin composite materials (hereinafter referred to as composites).

コンポジットの性能は、使用する炭素繊維とマトリクス樹脂の力学的特性の違いだけで
なく、炭素繊維と樹脂の接着性など界面特性の違いによっても異なる。しかし、グラファイト構造を持つ炭素繊維の表面は、樹脂に対する濡れ性が低いため、樹脂との接着性が低い。そのため、表面処理により、炭素繊維表面に水酸基やカルボキシル基などの官能基を導入し、樹脂との接着性を改善している。
The performance of the composite differs depending not only on the difference in mechanical properties between the carbon fiber used and the matrix resin, but also on the difference in interface properties such as adhesion between the carbon fiber and the resin. However, since the surface of the carbon fiber having a graphite structure has low wettability with respect to the resin, the adhesion with the resin is low. For this reason, functional groups such as hydroxyl groups and carboxyl groups are introduced into the surface of the carbon fiber by surface treatment to improve the adhesion with the resin.

炭素繊維を表面処理する方法としては、電解酸化処理や薬液酸化処理などの液相酸化処
理や、気相酸化処理が知られているが、電解酸化処理がその処理のしやすさから、工業的に広く実施されている。しかしながら、電解酸化処理や薬液酸化処理などの液相酸化処理によって炭素繊維を表面処理する方法では、表面処理後に炭素繊維に付着した電解液などの薬液を純水などで洗浄する必要があり、製造装置が大型になったり、製造コストが増加したりすることがある。また、処理後に残存した薬液や繊維の洗浄により発生した廃液の処分が必要となり環境負荷が大きいという問題もある。
これに対し、気相酸化処理では、処理後の繊維に薬液が残存せず、また薬液や廃液などの処分も必要ないため、環境負荷が小さく、またコスト的にも有利である。
As methods for surface treatment of carbon fiber, liquid phase oxidation treatment such as electrolytic oxidation treatment and chemical liquid oxidation treatment and gas phase oxidation treatment are known. However, electrolytic oxidation treatment is industrially easy to perform. Has been widely implemented. However, in the method of surface treatment of carbon fiber by liquid phase oxidation treatment such as electrolytic oxidation treatment or chemical solution oxidation treatment, it is necessary to wash the chemical solution such as electrolyte attached to the carbon fiber after the surface treatment with pure water, etc. The apparatus may become large and the manufacturing cost may increase. In addition, there is a problem in that it is necessary to dispose of the chemical solution remaining after the treatment and the waste solution generated by the washing of the fibers, which causes a large environmental load.
On the other hand, in the gas phase oxidation treatment, the chemical solution does not remain in the fiber after the treatment, and the disposal of the chemical solution and the waste solution is not necessary, so that the environmental load is small and the cost is advantageous.

気相酸化による表面処理方法としては、酸化性気体を含む気体中での加熱、プラズマや電磁波を利用した方法等が知られている。
例えば特許文献1では、酸化性気体であるオゾンを用いた表面処理方法が提案されている。しかし、オゾンは非常に分解し易く、特に高温ほど分解が激しいため低温で行われるのが一般的であるが、この場合酸化反応はきわめて遅くなる。反応を促進するために、オゾン濃度を高める必要がありそのためには過剰のオゾンを供給せねばならずオゾンの反応効率が悪くなるなどの問題点を有している。また、オゾンは人体に有害であるという危険性を有している。それ故、炭素繊維の表面処理を行う方法としてオゾンによる酸化反応は工業的に利用されにくい現状である。
As a surface treatment method by gas phase oxidation, heating in a gas containing an oxidizing gas, a method using plasma or electromagnetic waves, and the like are known.
For example, Patent Document 1 proposes a surface treatment method using ozone which is an oxidizing gas. However, ozone is very easily decomposed, and the decomposition is particularly severe at higher temperatures, so that it is generally performed at a low temperature. In this case, the oxidation reaction is extremely slow. In order to promote the reaction, it is necessary to increase the ozone concentration. To that end, excess ozone must be supplied, and ozone reaction efficiency deteriorates. In addition, ozone has a danger of being harmful to the human body. Therefore, the oxidation reaction by ozone is not currently industrially used as a method for surface treatment of carbon fibers.

特許文献2には、電磁波を照射した雰囲気中での表面処理方法が提案されている。しかし、かかる処理では強力な電磁波を発生させるため複雑な装置が必要となり、工業的にコストが見合わない。
特許文献3では、炭素濃度15〜30質量%の酸化性雰囲気中で600〜800℃で加熱処理を行う方法が提案されているが、かかる条件では炭素繊維に対する酸化作用は不十分であり、電解酸化処理による重ねての酸化処理が必要になる。
その為、安全で、環境に負荷をかけず、コスト及び品質面でも有利な炭素繊維の表面処理方法が求められている。
Patent Document 2 proposes a surface treatment method in an atmosphere irradiated with electromagnetic waves. However, such a process generates a powerful electromagnetic wave and requires a complicated device, which is not cost effective industrially.
Patent Document 3 proposes a method of performing heat treatment at 600 to 800 ° C. in an oxidizing atmosphere having a carbon concentration of 15 to 30% by mass. However, under such conditions, the oxidizing action on carbon fibers is insufficient, and electrolysis is performed. Repeated oxidation treatment by oxidation treatment is required.
Therefore, there is a need for a carbon fiber surface treatment method that is safe, does not burden the environment, and is advantageous in terms of cost and quality.

特開2000−154460号公報JP 2000-154460 A 特開2004−238779号公報JP 2004-238777 A 特表2009−544863号公報JP 2009-544863 A

本発明の目的は、安全で、環境への負荷が低く、効率の良く炭素繊維の表面処理を行うことができる炭素繊維の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the carbon fiber which can perform the surface treatment of carbon fiber efficiently, with a safe and low environmental load.

本発明の炭素繊維の製造方法はは、気相酸化処理方法によって炭素繊維の表面処理を行う炭素繊維の製造方法であって、炭素繊維を、少なくとも酸化性気体と過熱水蒸気を含む気体を導入した処理室中で、200〜600℃で加熱する炭素繊維の製造方法である。
処理室に導入される気体に含まれる酸化性ガスは酸素であることが好ましく、酸化性ガスの存在量は、処理室に導入される気体の全体積に対して1〜1000ppmであることが好ましい。より好ましくは、少なくとも1〜1000ppmの酸化性ガスと20〜99.9vol%の過熱水蒸気とを含む気体を導入した処理室中で炭素繊維を加熱処理する。
The carbon fiber production method of the present invention is a carbon fiber production method in which a carbon fiber is subjected to a surface treatment by a gas phase oxidation treatment method, and the carbon fiber is introduced with a gas containing at least an oxidizing gas and superheated steam. It is the manufacturing method of the carbon fiber heated at 200-600 degreeC in a process chamber.
The oxidizing gas contained in the gas introduced into the processing chamber is preferably oxygen, and the abundance of the oxidizing gas is preferably 1 to 1000 ppm with respect to the total volume of the gas introduced into the processing chamber. . More preferably, the carbon fiber is heat-treated in a treatment chamber into which a gas containing at least 1-1000 ppm of oxidizing gas and 20-99.9 vol% of superheated steam is introduced.

本発明の炭素繊維の製造方法は、酸化性気体と過熱水蒸気を用い炭素繊維の表面処理を行うため、環境負荷が低く、効率よく炭素繊維の表面処理を行うことができる。   Since the carbon fiber manufacturing method of the present invention performs surface treatment of carbon fiber using an oxidizing gas and superheated steam, the surface treatment of carbon fiber can be efficiently performed with low environmental load.

本発明は気相酸化処理方法により炭素繊維の表面処理を行う炭素繊維の製造方法に関するものである。
本発明の炭素繊維の製造方法は、炭素繊維を少なくとも酸化性気体と過熱水蒸気を含む気体を導入した処理室中で、200〜600℃で加熱する炭素繊維の製造方法である。
本発明の製造方法は、PAN系、ピッチ系など、公知の炭素繊維を制限なく表面処理す
ることができる。本発明で用いる炭素繊維としては、得られるコンポジット物性の面か
ら、PAN系の炭素繊維を用いることが好ましい。
The present invention relates to a method for producing carbon fiber in which a surface treatment of carbon fiber is performed by a vapor phase oxidation method.
The carbon fiber manufacturing method of the present invention is a carbon fiber manufacturing method in which the carbon fiber is heated at 200 to 600 ° C. in a treatment chamber into which a gas containing at least an oxidizing gas and superheated steam is introduced.
The production method of the present invention can surface-treat known carbon fibers such as PAN-based and pitch-based without limitation. As the carbon fiber used in the present invention, a PAN-based carbon fiber is preferably used from the viewpoint of the obtained composite physical properties.

本発明で用いる炭素繊維の繊度は、特に制限されるものではないが、単繊維繊度が好ましくは0.1〜50dtex、より好ましくは0.5〜2.0dtexであり、繊維束の総繊度が10〜500000texであることが好ましく、より好ましくは150〜10000texである。本発明で用いる前駆体繊維束のフィラメント数は、好ましくは1000〜100000本、さらに好ましくは3000〜50000本である。また、製造効率の面からは、12000本以上がより好ましく、24000本以上がさらに好ましい。   The fineness of the carbon fiber used in the present invention is not particularly limited, but the single fiber fineness is preferably 0.1 to 50 dtex, more preferably 0.5 to 2.0 dtex, and the total fineness of the fiber bundle is It is preferable that it is 10-500000 tex, More preferably, it is 150-10000 tex. The number of filaments in the precursor fiber bundle used in the present invention is preferably 1000 to 100,000, more preferably 3000 to 50000. Moreover, 12000 or more are more preferable from the surface of manufacturing efficiency, and 24000 or more are further more preferable.

本発明の炭素繊維の製造方法は、かかる炭素繊維を、少なくとも酸化性気体と過熱水蒸気を含む気体を導入した処理室中で200〜600℃で加熱する。
過熱水蒸気とは、任意の圧力において、その圧力における水の沸点より高い温度に過熱された水蒸気である。本発明で用いる過熱水蒸気は、乾き度1.0以上の過熱水蒸気であることが好ましい。水蒸気の乾き度が1.0以上であれば、表面処理反応の効率を十分に高くすることができる。
In the method for producing carbon fiber of the present invention, the carbon fiber is heated at 200 to 600 ° C. in a treatment chamber into which a gas containing at least an oxidizing gas and superheated steam is introduced.
Superheated steam is steam that is superheated to a temperature higher than the boiling point of water at any pressure. The superheated steam used in the present invention is preferably superheated steam having a dryness of 1.0 or more. If the dryness of water vapor is 1.0 or more, the efficiency of the surface treatment reaction can be sufficiently increased.

過熱水蒸気は、炭素に対して高温で水性ガス化反応を生じ、200〜600℃の緩やかな反応場において、酸化性気体との副反応により炭素繊維表面を酸化することができる。加熱処理温度は、300〜500℃であることがより好ましい。処理温度が200℃以上あれば、酸化反応は十分に進行する。一方、処理温度が600℃を超えると、過熱水蒸気の水性ガス化反応により炭素繊維内の炭素が引き抜かれ、炭素繊維の強度が低下する。
処理時間は特に限定されないが、反応の均一性、生産性の観点から1〜60分であることが好ましい。
Superheated steam causes a water gasification reaction to carbon at a high temperature, and can oxidize the carbon fiber surface by side reaction with an oxidizing gas in a mild reaction field of 200 to 600 ° C. The heat treatment temperature is more preferably 300 to 500 ° C. If the treatment temperature is 200 ° C. or higher, the oxidation reaction proceeds sufficiently. On the other hand, when the treatment temperature exceeds 600 ° C., carbon in the carbon fiber is extracted by the water gasification reaction of superheated steam, and the strength of the carbon fiber is lowered.
The treatment time is not particularly limited, but is preferably 1 to 60 minutes from the viewpoint of reaction uniformity and productivity.

本発明において処理室に導入される気体には、表面処理の反応を調節するために不活性ガスが含まれていてもよい。本発明において処理室に導入される気体に含まれる過熱水蒸気の量は全気体の体積に対して20〜99.9vol%であることが好ましい。一方、処理室に導入される気体に含まれる不活性ガスは、全気体の体積に対して0〜80vol%であることが好ましく、より好ましくは0〜30vol%であり、0.1〜20vol%であることが更に好ましい。   In the present invention, the gas introduced into the treatment chamber may contain an inert gas in order to adjust the surface treatment reaction. In the present invention, the amount of superheated steam contained in the gas introduced into the processing chamber is preferably 20 to 99.9 vol% with respect to the total gas volume. On the other hand, the inert gas contained in the gas introduced into the processing chamber is preferably 0 to 80 vol%, more preferably 0 to 30 vol%, and more preferably 0.1 to 20 vol% with respect to the total gas volume. More preferably.

処理室に導入する気体に含まれる過熱水蒸気の量が20vol%以上であれば、水性ガス化反応効率が良く、表面酸化処理時間を短縮しやすい。
不活性ガスとしては、例えば、アルゴン、ヘリウム、ネオンなどの不活性ガスや窒素などが挙げられる。中でもアルゴンまたは窒素を用いることが好ましい。
If the amount of superheated steam contained in the gas introduced into the treatment chamber is 20 vol% or more, the water gasification reaction efficiency is good and the surface oxidation treatment time can be easily shortened.
Examples of the inert gas include inert gases such as argon, helium, and neon, and nitrogen. Of these, argon or nitrogen is preferably used.

処理室に導入される気体に含まれる酸化性気体は、全気体の体積に対して1〜1000ppmであることが好ましく、1〜100ppmであることがより好ましい。含まれる酸化性気体の量が1000ppmを超えると炭素繊維が二酸化炭素に分解されやすくなり、炭素繊維の強度が低下しやすい傾向がある。   The oxidizing gas contained in the gas introduced into the processing chamber is preferably 1 to 1000 ppm, more preferably 1 to 100 ppm, based on the total gas volume. If the amount of the oxidizing gas contained exceeds 1000 ppm, the carbon fiber tends to be decomposed into carbon dioxide, and the strength of the carbon fiber tends to decrease.

酸化性ガスとしては、例えば、酸素、オゾン、一酸化窒素、二酸化窒素、亜酸化窒素、酸酸化二窒素、四酸化二窒素、五酸化二窒素、一酸化硫黄、二酸化硫黄、三酸化硫黄などが挙げられる。好ましくは、環境負荷が少なく安全な酸素である。   Examples of the oxidizing gas include oxygen, ozone, nitric oxide, nitrogen dioxide, nitrous oxide, dinitrogen oxide, dinitrogen tetroxide, dinitrogen pentoxide, sulfur monoxide, sulfur dioxide, and sulfur trioxide. Can be mentioned. Preferably, it is oxygen that has a low environmental impact and is safe.

過熱水蒸気と酸化性気体との混合は、事前に過熱水蒸気源となる水に酸化性気体を溶解させる方法を用いても、処理室内に別々に導入する方法を用いてもよい。極微量の酸化性気体を精度良く導入する場合、事前に加熱水蒸気源である水に酸化性気体を溶解させる方法が好ましい。   For mixing the superheated steam and the oxidizing gas, a method of dissolving the oxidizing gas in water as a superheated steam source in advance or a method of separately introducing it into the processing chamber may be used. In the case of introducing an extremely small amount of oxidizing gas with high accuracy, a method of dissolving the oxidizing gas in water as a heating water vapor source in advance is preferable.

本発明で用いる処理室は、密閉型の過熱水蒸気処理装置を用いても、開放型の過熱水蒸気処理装置を用いても良い。好ましくは連続生産が容易な開放型である。開放型の処理装置を用いる場合、処理装置の開放部は外部からの気体の侵入を防ぐために、例えば水シールやラビリンス構造などの公知の手段によりシールされていることが好ましい。また、処理装置の開放部の開口面積または、処理装置内へ導入する過熱水蒸気を含む気体の導入量を調節することで、処理装置内への過熱水蒸気を含む気体の導入量と処理装置の開放部から噴出す気体の流出量をバランスさせることが好ましい。   The treatment chamber used in the present invention may use a closed superheated steam treatment apparatus or an open superheated steam treatment apparatus. The open type is preferable because it allows easy continuous production. When using an open type processing apparatus, it is preferable that the open part of the processing apparatus is sealed by a known means such as a water seal or a labyrinth structure in order to prevent gas from entering from the outside. In addition, by adjusting the opening area of the open part of the processing apparatus or the amount of gas containing superheated steam introduced into the processing apparatus, the amount of gas containing superheated steam introduced into the processing apparatus and the opening of the processing apparatus are adjusted. It is preferable to balance the outflow amount of the gas ejected from the section.

処理装置内への過熱水蒸気を含む気体の導入量は、処理装置の処理室内容積に対して、毎分0.0001〜1000倍量であることが好ましい。より好ましくは毎分0.001〜100倍量である。水蒸気を含む気体の導入量が処理室内容積に対して、毎分0.0001倍量であれば、処理室内に十分な過熱水蒸気を存在させることができ、炭素繊維表面に処理を行なうことができる。一方、毎分1000倍量以下であれば、導入された気体の風圧により繊維が受けるダメージを抑えることができる。   The amount of the gas containing superheated steam introduced into the processing apparatus is preferably 0.0001 to 1000 times per minute with respect to the processing chamber volume of the processing apparatus. More preferably, the amount is 0.001 to 100 times per minute. If the amount of gas containing water vapor is 0.0001 times the amount of the processing chamber volume per minute, sufficient superheated water vapor can be present in the processing chamber, and the carbon fiber surface can be processed. . On the other hand, if the amount is 1000 times or less per minute, damage to the fiber due to the wind pressure of the introduced gas can be suppressed.

また、処理室内の雰囲気気体が過熱水蒸気を20vol%以上含む気体とするよう、過熱水蒸気を含む気体の処理室への導入量を調節し、導入気体で処理室内の雰囲気気体を十分に置換することが好ましい。処理室内に導入する気体及び処理室内の雰囲気気体に含まれる水蒸気の量は、例えば湿度図表を用いて湿球温度から絶対湿度を求める方法によって測定できる。(例えば、伊與田ら、球状湿潤材料の温度測定による過熱水蒸気と空気混合比の簡易測定、日本機械学会論文集(B編)78巻790号1267〜1278頁、2012年)   In addition, the amount of gas containing superheated steam introduced into the processing chamber is adjusted so that the atmosphere gas in the processing chamber contains 20 vol% or more of superheated steam, and the atmosphere gas in the processing chamber is sufficiently replaced with the introduced gas. Is preferred. The amount of water vapor contained in the gas introduced into the processing chamber and the atmospheric gas in the processing chamber can be measured, for example, by a method of obtaining absolute humidity from the wet bulb temperature using a humidity chart. (For example, Ikeda et al., Simple measurement of mixing ratio of superheated steam and air by measuring the temperature of spherical wet material, Transactions of the Japan Society of Mechanical Engineers (B) 78, 790, 1267 to 1278, 2012)

本発明においては、酸化性気体と過熱水蒸気を含む気体を導入した処理室で、炭素繊維が撓まない張力をかけ加熱処理する事が好ましい。張力が低いと糸が暴れ糸切れ等のダメージを受ける。表面処理時の張力は特に限定されるものでは無いが、糸のダメージを抑制するには、1dtexの炭素繊維に対して9〜60Nにすることが好ましい。   In the present invention, it is preferable that the heat treatment is performed by applying a tension at which the carbon fiber is not bent in a treatment chamber into which a gas containing an oxidizing gas and superheated steam is introduced. If the tension is low, the yarn will run wild and take damage such as yarn breakage. The tension during the surface treatment is not particularly limited, but it is preferably 9 to 60 N for 1 dtex carbon fiber in order to suppress yarn damage.

本発明においては、過熱水蒸気と酸化性気体を含む気体を導入した処理室で加熱処理を行う前に、表面未処理炭素繊維を公知の技術を用いて前処理しても良い。
上述のような本発明の炭素繊維の製造方法は、使用する気体成分の大部分が水及び不活性気体である為に安全である。また、電解液などの薬液を使用しないため、処理後の繊維に薬液が残存せず、また薬液や廃液などの処分も必要ない。そのため、環境への負荷が低く、且つ低コストで炭素繊維の表面処理を行なうことができる。
In the present invention, the surface untreated carbon fiber may be pretreated using a known technique before performing the heat treatment in the treatment chamber into which the gas containing superheated steam and oxidizing gas is introduced.
The carbon fiber production method of the present invention as described above is safe because most of the gaseous components used are water and inert gas. In addition, since no chemical solution such as an electrolytic solution is used, the chemical solution does not remain in the treated fiber, and it is not necessary to dispose of the chemical solution or the waste solution. Therefore, the surface treatment of the carbon fiber can be performed at a low cost with a low environmental load.

本発明の製造方法は、PAN系、ピッチ系など、公知の炭素繊維を制限なく表面処理することができるが、本発明で用いる炭素繊維としては、得られるコンポジット物性の面から、PAN系の炭素繊維を用いることが好ましい。PAN系の炭素繊維は、例えば、以下の方法により製造することができる。   In the production method of the present invention, known carbon fibers such as PAN-based and pitch-based can be surface-treated without limitation, but as the carbon fibers used in the present invention, PAN-based carbon is used from the viewpoint of the obtained composite physical properties It is preferable to use fibers. The PAN-based carbon fiber can be produced, for example, by the following method.

アクリロニトリルを90質量%以上、好ましくは95質量%以上含有する単量体を重合して得られる紡糸溶液を、紡糸した後、水洗・乾燥・延伸して得られるPAN繊維が前駆体繊維として用いられる。前駆体繊維のフィラメント数は、製造効率の面では1000フィラメント以上が好ましく、12000フィラメント以上がより好ましい。
かかる前駆体繊維を、加熱空気中200〜300℃で10〜100分間耐炎化処理することで耐炎化繊維が得られる。耐炎化処理では、前駆体繊維を延伸倍率0.90〜1.20の範囲で延伸することが好ましい。
A PAN fiber obtained by spinning a spinning solution obtained by polymerizing a monomer containing 90% by mass or more, preferably 95% by mass or more of acrylonitrile, and then washing, drying and stretching is used as a precursor fiber. . The number of filaments of the precursor fiber is preferably 1000 filaments or more, more preferably 12000 filaments or more in terms of production efficiency.
Such a precursor fiber is subjected to a flameproofing treatment at 200 to 300 ° C. in heated air for 10 to 100 minutes to obtain a flameproofing fiber. In the flameproofing treatment, it is preferable to stretch the precursor fiber in a range of a draw ratio of 0.90 to 1.20.

さらに得られた耐炎化繊維を、300℃〜1000℃で低温炭素化した後、1000〜2000℃で高温炭素化する二段階の炭素化工程を経て、緻密な内部構造をもつ炭素繊維が得られる。より高い弾性率が求められる場合は、さらに2000〜3000℃の高温で黒鉛化処理を行ってもよい。   Further, after the obtained flame-resistant fiber is carbonized at a low temperature of 300 ° C. to 1000 ° C., a carbon fiber having a dense internal structure is obtained through a two-stage carbonization step of carbonizing at a high temperature of 1000 to 2000 ° C. . When a higher elastic modulus is required, the graphitization treatment may be further performed at a high temperature of 2000 to 3000 ° C.

上記の炭素繊維には、上述の表面処理を行った後、必要に応じてサイジング処理が施される。サイジング方法は、従来公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、炭素繊維に付着させた後に、乾燥させることが好ましい。サイジング剤の付着量は0.1〜3.0%が好ましく、さらに好ましくは0.1〜1.5%である。サイジング剤の付着量が3.0%を超えると、炭素繊維の開繊性が低下し、マトリクス樹脂の繊維束内部への含浸不良を引き起こしやすい傾向がある。   The carbon fiber is subjected to the above-described surface treatment and then subjected to sizing treatment as necessary. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after adhering to the carbon fiber. The adhesion amount of the sizing agent is preferably 0.1 to 3.0%, more preferably 0.1 to 1.5%. When the adhesion amount of the sizing agent exceeds 3.0%, the openability of the carbon fiber is lowered, and the impregnation into the fiber bundle inside the matrix resin tends to occur.

一般に、サイジング剤の付着量が少ないと、サイジング剤が付着していない部分ができ、均一性を保つことが難しいという問題がある。しかし、本発明によって製造される炭素繊維は、表面官能基が均一に形成されており、繊維表面の濡れ性は一様に改善されているため、少量の付着量でも、ムラなく均一にサイジング剤を付着することができる。
このようにして得られる炭素繊維は、熱可塑性樹脂、熱硬化性樹脂などの強化繊維として、スポーツ用途、レジャー用途、一般産業用途、航空・宇宙用途、自動車用途などに広く利用できる。
In general, when the amount of sizing agent attached is small, there is a problem that a portion where no sizing agent is attached is formed and it is difficult to maintain uniformity. However, the carbon fiber produced according to the present invention has uniform surface functional groups, and the wettability of the fiber surface is improved uniformly, so even with a small amount of adhesion, the sizing agent can be evenly distributed. Can be attached.
The carbon fiber thus obtained can be widely used as a reinforcing fiber such as a thermoplastic resin and a thermosetting resin for sports use, leisure use, general industrial use, aerospace use, automobile use and the like.

本発明の炭素繊維の製造方法により得られた炭素繊維を用い、マトリックス樹脂と組み合わせ、例えば、オートクレーブ成形、プレス成形、樹脂トランスファー成形、フィラメントワインディング成形など、公知の手段・方法により複合材料が得られる。
炭素繊維は、通常、シート状の強化繊維材料として用いられる。シート状の材料とは、繊維材料を一方向にシート状に引き揃えたもの、繊維材料を織編物や不織布等の布帛に成形したもの、多軸織物等が挙げられる。
The carbon fiber obtained by the carbon fiber production method of the present invention is used and combined with a matrix resin, and a composite material can be obtained by a known means / method such as autoclave molding, press molding, resin transfer molding, filament winding molding, etc. .
Carbon fiber is usually used as a sheet-like reinforcing fiber material. Examples of the sheet-like material include those obtained by arranging fiber materials in a sheet shape in one direction, those obtained by forming a fiber material into a fabric such as a woven or knitted fabric and a nonwoven fabric, and multiaxial woven fabrics.

マトリックス樹脂としては、熱硬化性樹脂又は熱可塑性樹脂が用いられる。熱硬化性マトリックス樹脂の具体例として、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂、ビスマレイミド樹脂、アセチレン末端を有するポリイミド樹脂及びポリイソイミド樹脂、ナジック酸末端を有するポリイミド樹脂等を挙げることができる。これらは1種又は2種以上の混合物として用いることもできる。中でも、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂やビニルエステル樹脂が、特に好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤以外に、通常用いられる着色剤や各種添加剤等が含まれていてもよい。   As the matrix resin, a thermosetting resin or a thermoplastic resin is used. Specific examples of thermosetting matrix resins include epoxy resins, unsaturated polyester resins, phenol resins, vinyl ester resins, cyanate ester resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins and cyanate ester resins. And a prepolymerized resin, bismaleimide resin, polyimide resin and polyisoimide resin having acetylene terminal, and polyimide resin having nadic acid terminal. These can also be used as one type or a mixture of two or more types. Of these, epoxy resins and vinyl ester resins excellent in heat resistance, elastic modulus, and chemical resistance are particularly preferable. These thermosetting resins may contain commonly used colorants and various additives in addition to the curing agent and the curing accelerator.

熱可塑性樹脂としては、例えば、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミド、ポリアミドイミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリアクリロニトリル、ポリアラミド、ポリベンズイミダゾール等が挙げられる。
複合材料中に占める樹脂組成物の含有率は、10〜90重量%、好ましくは20〜60重量%、更に好ましくは25〜45重量%である。
Examples of the thermoplastic resin include polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide, polyamide , Polyamideimide, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyacrylonitrile, polyaramid, polybenzimidazole and the like.
The content of the resin composition in the composite material is 10 to 90% by weight, preferably 20 to 60% by weight, and more preferably 25 to 45% by weight.

以下、本発明を実施例により具体的に説明する。各実施例及び比較例における各繊維の物性の評価方法は以下の方法によった。   Hereinafter, the present invention will be specifically described by way of examples. The evaluation method of the physical property of each fiber in each Example and Comparative Example was based on the following method.

<過熱水蒸気発生装置>
過熱水蒸気の調製はトクデン株式会社製過熱水蒸気発生装置、ユーティリティーパワスチーマーUPSS−W60を用いて行った。
<Superheated steam generator>
The superheated steam was prepared by using a superheated steam generator and utility power steamer UPSS-W60 manufactured by Tokuden Corporation.

<超純水>
過熱水蒸気源である水には、関東化学株式会社製超純水「Ultrapur」(製品名)を用いた。
<Ultra pure water>
As water that is a superheated steam source, ultrapure water “Ultrapur” (product name) manufactured by Kanto Chemical Co., Ltd. was used.

<ガス流量、濃度調整>
ガス流量は高温ガス流量計を用い、酸素濃度計を用いモニターし、各気体の流量調整により求める雰囲気を調製した。
<Gas flow rate and concentration adjustment>
The gas flow rate was monitored using a high-temperature gas flow meter and an oxygen concentration meter, and the atmosphere required by adjusting the flow rate of each gas was prepared.

<処理室内酸素濃度>
処理室内の酸素濃度はミッシェル・ジャパン株式会社製酸素センサーXZR−500、酸素濃度計XCU−500を用いて測定した。処理時間1分毎の測定値の平均を酸素濃度値とした。
<Processing chamber oxygen concentration>
The oxygen concentration in the treatment chamber was measured using an oxygen sensor XZR-500 and an oxygen concentration meter XCU-500 manufactured by Michel Japan. The average of the measured values every 1 minute of treatment time was defined as the oxygen concentration value.

<水蒸気源である純水の酸素含有率>
水蒸気源である純水に含まれる酸素濃度は、飯島電子工業株式会社製DOマスターB1032を用いて測定を行なった。
<Oxygen content of pure water as a water vapor source>
The oxygen concentration contained in pure water as a water vapor source was measured using DO Master B1032 manufactured by Iijima Electronics Co., Ltd.

<炭素繊維表面酸素濃度O/C>
炭素繊維の表面酸素濃度O/Cは、日本電子株式会社製ESCA JPS−9000MXを用いて行った。炭素繊維を切り出し、ステンレス製試料支持台上に拡げて並べた後、光電子脱出角度を90度に設定した。X線源としてMgKαを用い、試料チャンバー内は1×10−6Paの真空度で測定を行なった。測定時の帯電に伴うピークの補正として、先ずC1Sの主ピークの結合エネルギー値B.E.を284.6evに合わせた。O1Sピーク面積は528〜540eVの範囲で直線のベースラインを引くことにより求めた。C1Sピーク面積は282〜292eVの範囲で直線のベースラインを引くことにより求めた。O/Cは得られたO1Sピーク面積とC1Sピーク面積比より算出した。
<Carbon fiber surface oxygen concentration O / C>
The surface oxygen concentration O / C of the carbon fiber was performed using ESCA JPS-9000MX manufactured by JEOL Ltd. After cutting out the carbon fibers and arranging them on a stainless steel sample support base, the photoelectron escape angle was set to 90 degrees. MgKα was used as the X-ray source, and the inside of the sample chamber was measured at a vacuum degree of 1 × 10 −6 Pa. As the correction of the peak due to the measurement time of charging, first main peak of binding energy of C 1S B. E. Was adjusted to 284.6 ev. The O 1S peak area was determined by drawing a straight base line in the range of 528 to 540 eV. The C 1S peak area was determined by drawing a straight base line in the range of 282 to 292 eV. O / C was calculated from the obtained O 1S peak area and C 1S peak area ratio.

<ストランド引張り強度>
炭素繊維のストランド引張り強度はJIS R−7608に準拠し、エポキシ樹脂含浸ストランドの測定を測定した。
<Strand tensile strength>
The strand tensile strength of the carbon fiber was measured according to JIS R-7608 and the epoxy resin-impregnated strand was measured.

<サイズ剤付着量(溶剤抽出法)>
炭素繊維束10gを取り出し、溶剤としてアセトンを用い、JIS R7604 A法(溶剤抽出法)に基づいてサイズ剤の付着量を求めた。
<Amount of sizing agent (solvent extraction method)>
The carbon fiber bundle 10g was taken out, acetone was used as a solvent, and the adhesion amount of the sizing agent was determined based on JIS R7604 A method (solvent extraction method).

<実施例1>
前駆体繊維であるPAN繊維ストランド(単繊維繊度0.7dtex,フィラメント数24000)を空気中で、繊維比重1.35になるまで耐炎化処理し、次に窒素ガス雰囲気中、最高温度650℃で低温炭化させた。その後、窒素雰囲気下1300℃で高温炭素化させて炭素繊維を製造した。得られた未表面処理の炭素繊維の炭素繊維表面酸素濃(O/C)を測定したところ、2.6%であった。
引き続き未表面処理の炭素繊維を、過熱水蒸気で満たした開放型の加熱炉(処理室)中を通過させ表面処理を施した。過熱水蒸気源である超純水中に予め酸素を溶存させ、処理室の酸素濃度が1ppmとなるように調整した。処理炉内雰囲気中の過熱水蒸気割合は99.9vol%であった。処理室内の温度は250℃とし、被処理繊維の処理室滞留時間は15分とした。得られた炭素繊維のO/Cを測定したところ、7.9%であり、表面処理により繊維表面のO/Cの向上が認められ、炭素繊維表面が酸化されていることが確認できた。
処理後の炭素繊維に、ビスフェノールA型エポキシ樹脂を主成分とするサイズ剤でサイズ剤付着量が1.0wt%となるようサイズ剤浴の濃度を調節してサイジング処理を行ない、炭素繊維束のストランド引張強度を測定したところ4980MPaと良好な強度を示した。
<Example 1>
Precursor PAN fiber strands (single fiber fineness 0.7 dtex, filament number 24000) are flame-resistant in air until the fiber has a specific gravity of 1.35, then in a nitrogen gas atmosphere at a maximum temperature of 650 ° C. Low temperature carbonized. Thereafter, carbon fiber was produced by high-temperature carbonization at 1300 ° C. in a nitrogen atmosphere. When the carbon fiber surface oxygen concentration (O / C) of the obtained unsurface-treated carbon fiber was measured, it was 2.6%.
Subsequently, the non-surface-treated carbon fiber was passed through an open heating furnace (treatment chamber) filled with superheated steam to perform surface treatment. Oxygen was previously dissolved in ultrapure water as a superheated steam source, and the oxygen concentration in the treatment chamber was adjusted to 1 ppm. The ratio of superheated steam in the atmosphere in the processing furnace was 99.9 vol%. The temperature in the treatment chamber was 250 ° C., and the treatment chamber residence time of the fiber to be treated was 15 minutes. When the O / C of the obtained carbon fiber was measured, it was 7.9%, and it was confirmed that the surface treatment improved the O / C of the fiber surface, and the carbon fiber surface was oxidized.
Sizing treatment is performed on the carbon fiber after the treatment by adjusting the concentration of the sizing agent bath so that the sizing agent adhesion amount is 1.0 wt% with the sizing agent mainly composed of bisphenol A type epoxy resin. When the strand tensile strength was measured, it showed a good strength of 4980 MPa.

<実施例2〜4>
処理室内の温度を表1に記載の温度に変更した以外は、実施例1と同様にして、炭素繊維の表面酸化処理を行った。得られた炭素繊維のO/C及びストランド強度を表1に記載した。
処理温度を変更した実施例2〜4においても、炭素繊維表面は十分に酸化されていた。実施例1〜4を比較すると処理温度が高くなるにつれ、O/Cが向上するとともに、ストランド強度が向上する傾向が見られた。
<Examples 2 to 4>
The surface oxidation treatment of the carbon fiber was performed in the same manner as in Example 1 except that the temperature in the treatment chamber was changed to the temperature shown in Table 1. Table 1 shows the O / C and strand strength of the obtained carbon fiber.
Also in Examples 2 to 4 in which the treatment temperature was changed, the carbon fiber surface was sufficiently oxidized. When Examples 1 to 4 were compared, as the processing temperature increased, O / C improved and the strand strength tended to improve.

<比較例1>
実施例1と同様に、前駆体繊維であるPAN繊維ストランド(単繊維繊度0.7dtex, フィラメント数24000)を空気中で、繊維比重1.35になるまで耐炎化処理し、次に窒素ガス雰囲気中、最高温度650℃で低温炭化させた。その後、窒素雰囲気下1300℃で高温炭素化させて炭素繊維を製造した。得られた未表面処理の炭素繊維の炭素繊維表面酸素濃(O/C)を測定したところ、2.6%であった。
未表面処理の炭素繊維に、表面処理を行わないまま、ビスフェノールA型エポキシ樹脂を主成分とするサイズ剤でサイズ剤付着量が1.0wt%となるようサイズ剤浴の濃度を調節してサイジング処理を行った。得られた炭素繊維束のストランド引張強度は4240MPaであり、実施例1〜4と比較して低いものであった。
<Comparative Example 1>
As in Example 1, PAN fiber strands (single fiber fineness 0.7 dtex, filament number 24000) as precursor fibers were flame-resistant in air until the fiber specific gravity reached 1.35, and then a nitrogen gas atmosphere Medium temperature carbonization was performed at a maximum temperature of 650 ° C. Thereafter, carbon fiber was produced by high-temperature carbonization at 1300 ° C. in a nitrogen atmosphere. When the carbon fiber surface oxygen concentration (O / C) of the obtained unsurface-treated carbon fiber was measured, it was 2.6%.
Sizing by adjusting the concentration of the sizing agent bath so that the sizing agent adhesion amount is 1.0 wt% with the sizing agent mainly composed of bisphenol A type epoxy resin, without performing surface treatment on the untreated carbon fiber. Processed. The strand tensile strength of the obtained carbon fiber bundle was 4240 MPa, which was lower than those of Examples 1 to 4.

<比較例2>
処理室内の温度を150℃に変更した以外は、実施例1と同様にして、炭素繊維の表面酸化処理を行った。得られた炭素繊維のO/Cを測定したところ、2.9%であり、繊維表面はほとんど酸化されていなかった。
処理後の炭素繊維に、実施例1と同様にしてサイジング処理を行い、炭素繊維束のストランド引張強度を測定したところ、4310MPaであった。
<Comparative example 2>
The surface oxidation treatment of the carbon fiber was performed in the same manner as in Example 1 except that the temperature in the treatment chamber was changed to 150 ° C. When O / C of the obtained carbon fiber was measured, it was 2.9%, and the fiber surface was hardly oxidized.
The treated carbon fiber was subjected to sizing treatment in the same manner as in Example 1, and the strand tensile strength of the carbon fiber bundle was measured. As a result, it was 4310 MPa.

<比較例3>
処理室内の温度を750℃に変更した以外は、実施例1と同様にして、炭素繊維の表面酸化処理を行った。得られた炭素繊維のO/Cを測定したところ、16.5%であり、繊維表面は十分に酸化されていた。
処理後の炭素繊維に、実施例1と同様にしてサイジング処理を行い、炭素繊維束のストランド引張強度を測定したところ、1960MPaと大変低いものであった。処理温度が高すぎ、水性ガス化反応により炭素繊維内の炭素が引き抜かれ、炭素繊維の強度が低下したものと考えられる。
<Comparative Example 3>
The surface oxidation treatment of the carbon fiber was performed in the same manner as in Example 1 except that the temperature in the treatment chamber was changed to 750 ° C. When O / C of the obtained carbon fiber was measured, it was 16.5%, and the fiber surface was sufficiently oxidized.
The treated carbon fiber was subjected to sizing treatment in the same manner as in Example 1, and the strand tensile strength of the carbon fiber bundle was measured. As a result, it was as low as 1960 MPa. It is considered that the treatment temperature is too high, carbon in the carbon fiber is pulled out by the water gasification reaction, and the strength of the carbon fiber is lowered.

Figure 2014101605
Figure 2014101605

<実施例5〜9>
処理室内の酸素濃度を表2に記載の濃度に変更した以外は、実施例3と同様にして、炭素繊維の表面酸化処理を行った。得られた炭素繊維のO/C及びストランド強度を表2に記載した。
処理室内の酸素濃度を変更した実施例5〜9においても、炭素繊維表面は十分に酸化されていた。実施例5〜9および実施例3を比較すると酸素濃度が高くなるにつれ、O/Cが向上するとともに、ストランド強度が向上する傾向が見られた。処理室の酸素濃度が1000ppmを超える実施例9では、ややストランド強度の低下が見られた。
<Examples 5-9>
The surface oxidation treatment of the carbon fiber was performed in the same manner as in Example 3 except that the oxygen concentration in the treatment chamber was changed to the concentration shown in Table 2. Table 2 shows the O / C and strand strength of the obtained carbon fiber.
Also in Examples 5 to 9 in which the oxygen concentration in the treatment chamber was changed, the carbon fiber surface was sufficiently oxidized. When Examples 5 to 9 and Example 3 were compared, the O / C was improved and the strand strength was improved as the oxygen concentration was increased. In Example 9 in which the oxygen concentration in the treatment chamber exceeded 1000 ppm, a slight decrease in strand strength was observed.

Figure 2014101605
Figure 2014101605

<実施例10〜12>
被処理繊維の処理室内滞留時間を表3に記載の時間に変更した以外は、実施例3と同様にして、炭素繊維の表面酸化処理を行った。得られた炭素繊維のO/C及びストランド強度を表3に記載した。
滞留時間を変更した実施例10〜12においても、炭素繊維表面は十分に酸化されていた。実施例10〜12および実施例3を比較すると滞留時間が長くなるにつれ、O/Cが向上する傾向が見られた。
<Examples 10 to 12>
The surface oxidation treatment of the carbon fiber was performed in the same manner as in Example 3 except that the residence time of the fiber to be treated was changed to the time shown in Table 3. Table 3 shows the O / C and strand strength of the obtained carbon fiber.
Also in Examples 10 to 12 in which the residence time was changed, the carbon fiber surface was sufficiently oxidized. When Examples 10-12 and Example 3 were compared, the tendency for O / C to improve was seen as residence time became long.

Figure 2014101605
Figure 2014101605

<実施例13〜17>
処理室内の水蒸気割合を表4に記載の割合に変更した以外は、実施例3と同様にして、炭素繊維の表面酸化処理を行った。処理室内の水蒸気割合は、流量計を用いてモニタリングを行いながら、別ラインから処理室内に不活性ガスであるアルゴンガスを導入することで調節した。得られた炭素繊維のO/C及びストランド強度を表4に記載した。
処理室内の水蒸気割合を変更した実施例13〜17においても、炭素繊維表面は十分に酸化されていた。
<Examples 13 to 17>
The surface oxidation treatment of the carbon fiber was performed in the same manner as in Example 3 except that the water vapor ratio in the processing chamber was changed to the ratio shown in Table 4. The water vapor ratio in the processing chamber was adjusted by introducing argon gas, which is an inert gas, from another line into the processing chamber while monitoring using a flow meter. Table 4 shows the O / C and strand strength of the obtained carbon fiber.
Also in Examples 13 to 17 in which the water vapor ratio in the treatment chamber was changed, the carbon fiber surface was sufficiently oxidized.

Figure 2014101605
Figure 2014101605

Claims (4)

気相酸化処理方法によって炭素繊維の表面処理を行う炭素繊維の製造方法であって、炭素繊維を、少なくとも酸化性気体と過熱水蒸気を含む気体を導入した処理室中で、200〜600℃で加熱することを特徴とする炭素繊維の製造方法。   A carbon fiber manufacturing method for performing carbon fiber surface treatment by a gas phase oxidation method, wherein the carbon fiber is heated at 200 to 600 ° C. in a treatment chamber into which a gas containing at least an oxidizing gas and superheated steam is introduced. A method for producing carbon fiber, comprising: 処理室に導入する気体に含まれる酸化性気体が1〜1000ppmである請求項1に記載の炭素繊維の製造方法。   The manufacturing method of the carbon fiber of Claim 1 whose oxidizing gas contained in the gas introduce | transduced into a process chamber is 1-1000 ppm. 酸化性気体が酸素であることを特徴とする請求項1または2に記載の炭素繊維の製造方法。   The method for producing carbon fiber according to claim 1 or 2, wherein the oxidizing gas is oxygen. 少なくとも1〜1000ppmの酸化性ガスと20〜99.9vol%の過熱水蒸気とを含む気体を導入した処理室中で炭素繊維を加熱処理する請求項1〜3のいずれか1項に記載の炭素繊維の製造方法。   The carbon fiber according to any one of claims 1 to 3, wherein the carbon fiber is heat-treated in a treatment chamber into which a gas containing at least 1-1000 ppm of oxidizing gas and 20-99.9 vol% of superheated steam is introduced. Manufacturing method.
JP2012255250A 2012-11-21 2012-11-21 Method of manufacturing carbon fiber Pending JP2014101605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255250A JP2014101605A (en) 2012-11-21 2012-11-21 Method of manufacturing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255250A JP2014101605A (en) 2012-11-21 2012-11-21 Method of manufacturing carbon fiber

Publications (1)

Publication Number Publication Date
JP2014101605A true JP2014101605A (en) 2014-06-05

Family

ID=51024356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255250A Pending JP2014101605A (en) 2012-11-21 2012-11-21 Method of manufacturing carbon fiber

Country Status (1)

Country Link
JP (1) JP2014101605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159663A (en) * 2013-01-25 2014-09-04 Japan Fine Ceramics Center Superheated steam-treated carbon fiber and method for producing the same
JP2017082354A (en) * 2015-10-27 2017-05-18 一般財団法人ファインセラミックスセンター Modified carbon fiber and method for producing the same
JP2018084020A (en) * 2017-12-15 2018-05-31 矢崎総業株式会社 Plated wire and wire harness
US10633756B2 (en) 2015-04-02 2020-04-28 Yazaki Corporation Plated fiber, carbon fiber, wire harness and plating method
KR102108657B1 (en) * 2018-12-06 2020-05-26 재단법인 한국탄소융합기술원 High Strength Carbon Fiber Using Superheated Steam Surface Treatment and Manufacturing Method Thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124680A (en) * 1987-11-04 1989-05-17 Asahi Chem Ind Co Ltd Acidic functional group-containing carbonaceous fiber and its production
JPH01201525A (en) * 1988-02-03 1989-08-14 Osaka Gas Co Ltd Method for treating surface of carbon fiber, carbon fiber having treated surface and composite material containing said carbon fiber as reinforcing material
JPH03287860A (en) * 1990-04-04 1991-12-18 Toray Ind Inc Production of carbon fiber
JPH07290582A (en) * 1994-04-26 1995-11-07 Osaka Gas Co Ltd Manufacture of graphite fiber reinforced fluoroplastic composite body
JP2004238779A (en) * 2003-02-10 2004-08-26 Mitsubishi Rayon Co Ltd Method for producing carbon fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124680A (en) * 1987-11-04 1989-05-17 Asahi Chem Ind Co Ltd Acidic functional group-containing carbonaceous fiber and its production
JPH01201525A (en) * 1988-02-03 1989-08-14 Osaka Gas Co Ltd Method for treating surface of carbon fiber, carbon fiber having treated surface and composite material containing said carbon fiber as reinforcing material
JPH03287860A (en) * 1990-04-04 1991-12-18 Toray Ind Inc Production of carbon fiber
JPH07290582A (en) * 1994-04-26 1995-11-07 Osaka Gas Co Ltd Manufacture of graphite fiber reinforced fluoroplastic composite body
JP2004238779A (en) * 2003-02-10 2004-08-26 Mitsubishi Rayon Co Ltd Method for producing carbon fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159663A (en) * 2013-01-25 2014-09-04 Japan Fine Ceramics Center Superheated steam-treated carbon fiber and method for producing the same
US10633756B2 (en) 2015-04-02 2020-04-28 Yazaki Corporation Plated fiber, carbon fiber, wire harness and plating method
JP2017082354A (en) * 2015-10-27 2017-05-18 一般財団法人ファインセラミックスセンター Modified carbon fiber and method for producing the same
JP2018084020A (en) * 2017-12-15 2018-05-31 矢崎総業株式会社 Plated wire and wire harness
KR102108657B1 (en) * 2018-12-06 2020-05-26 재단법인 한국탄소융합기술원 High Strength Carbon Fiber Using Superheated Steam Surface Treatment and Manufacturing Method Thereof

Similar Documents

Publication Publication Date Title
KR101689861B1 (en) Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
Gulgunje et al. Low-density and high-modulus carbon fibers from polyacrylonitrile with honeycomb structure
CN111101371B (en) High-performance carbon nanotube/carbon composite fiber and rapid preparation method thereof
EP2554725B1 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
JP2014101605A (en) Method of manufacturing carbon fiber
JP6211881B2 (en) Carbon fiber and method for producing the same
US20170335507A1 (en) Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
JP4392432B2 (en) Method for producing carbonized fabric
JP2016113726A (en) Polyacrylonitrile-based carbon fiber precursor fiber and carbon fiber production method
JP5662113B2 (en) Carbon fiber surface treatment method
Zhang et al. Manufacture of carbon fibers from polyacrylonitrile precursors treated with CoSO4
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP6522971B2 (en) Method of manufacturing fiber bundle
JP4677862B2 (en) Carbon fiber manufacturing method and apparatus
WO2019203088A1 (en) Carbon fiber bundle, manufacturing method therefor, prepeg, and carbon-fiber-reinforced composite material
JP6922859B2 (en) Manufacturing method of carbon material
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP5226238B2 (en) Carbon fiber and composite material using the same
JP6846868B2 (en) Method for manufacturing carbon fiber and carbon fiber with sizing agent attached
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP2013023801A (en) Method for producing carbon fiber bundle
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP6139318B2 (en) Carbon fiber manufacturing method
JP2008248424A (en) Method of multistage electrolytic treatment of carbon fiber
JP2007332498A (en) Method for producing carbon fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161129