JPS59150116A - Production of high-strength carbon fiber - Google Patents
Production of high-strength carbon fiberInfo
- Publication number
- JPS59150116A JPS59150116A JP2126683A JP2126683A JPS59150116A JP S59150116 A JPS59150116 A JP S59150116A JP 2126683 A JP2126683 A JP 2126683A JP 2126683 A JP2126683 A JP 2126683A JP S59150116 A JPS59150116 A JP S59150116A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- inert atmosphere
- heat
- preoxidized
- under tension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、アクリロニトリル系合成繊維を熱処理するこ
とにより、高強度炭素繊維を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-strength carbon fibers by heat-treating acrylonitrile-based synthetic fibers.
炭素繊維は、比強度、比弾性率が高く航空。Carbon fiber has high specific strength and specific modulus and is suitable for aviation.
宇宙関係、レジャー用品及び工業用材料等への各種複合
材料の強化材として広く用いられている。しかし乍ら、
未だその強度は十分であるとは言い難く、高強度炭素繊
維の開発が望まれている。従来開発されてさた製造方法
としては、例えは特開昭54−147222号が知られ
ている。この方法は、繊維密度1.30〜1.42P
/an”なる耐炎化処理系を不活性雰囲気中300〜8
00℃の温度領域に於て25%までの範囲で伸長しなが
ら炭素化処理し、引き続いて800℃以上の温度で熱処
理することにより炭素化処理を完結せしめている。しか
し、この方法では第1図の伸長変化に見られるように、
500℃付近で著しい物理的変化を受ける為、処理工程
における構造変化が複雑であり、収縮緩和の抑制が困難
である。It is widely used as a reinforcing material in various composite materials for space-related, leisure goods, and industrial materials. However,
It is still difficult to say that its strength is sufficient, and the development of high-strength carbon fiber is desired. As a conventionally developed manufacturing method, for example, Japanese Patent Application Laid-open No. 147222/1984 is known. This method has a fiber density of 1.30 to 1.42P.
/an'' flame-retardant treatment system in an inert atmosphere at 300~8
Carbonization treatment is carried out while elongating up to 25% in a temperature range of 00°C, followed by heat treatment at a temperature of 800°C or higher to complete the carbonization treatment. However, with this method, as seen in the elongation changes in Figure 1,
Since it undergoes significant physical changes at around 500°C, the structural changes during the treatment process are complex, making it difficult to suppress shrinkage relaxation.
本発明者らは、かかる観点て着目して鋭意検討を重ねた
ところ耐炎化処理系を800℃以上の熱処理を施して炭
素化するに先立ち、800℃以下の熱処理工程72段に
分割し、この工程で伸長処理することにより構造変化を
円滑に行い、高強度炭素繊維を製造する本発明を完成し
た。The inventors of the present invention have focused on this point of view and have conducted extensive studies, and have divided the flame-retardant treatment system into 72 stages of heat treatment at 800°C or lower before carbonizing it by heat treatment at 800°C or higher. The present invention has been completed to produce high-strength carbon fibers by smoothly changing the structure by elongating the fibers during the process.
即ち、本発明の要旨とするところは、アクリロニトリル
合成繊維を酸化性雰囲気中200〜300℃の温度下で
密度が1.25〜1.37 P/:ca”となるように
耐炎化処理した繊維を不活性雰囲気中300〜500℃
の緊張下で熱処理を行った後、500〜800℃の不活
性雰囲気中で緊張を加え熱処理を行う。さらにその後8
00℃以上の不活性雰囲気中で炭素化を完結せしめ、4
00 kP/mvt”以上好ましくは5 Q Oky/
urn’以上となる高強度炭素繊維を製造する方法にあ
る。That is, the gist of the present invention is to provide fibers obtained by flame-retardantly treating acrylonitrile synthetic fibers to have a density of 1.25 to 1.37 P/:ca'' at a temperature of 200 to 300°C in an oxidizing atmosphere. 300-500℃ in an inert atmosphere
After heat treatment is performed under tension of , heat treatment is performed under tension in an inert atmosphere at 500 to 800°C. Further after that 8
Carbonization is completed in an inert atmosphere at 00°C or higher, and 4
00 kP/mvt” or more preferably 5 Q Oky/
The present invention provides a method for producing high-strength carbon fiber having a strength of urn' or higher.
本発明で用いるアクリロニトリル合成繊維はポリアクリ
ロニトリル又は85:i量係以上のアクυロニ) IJ
ルと他の共重合可能な単量体、例えばアクリル酸メチ/
I/l アクリル酸エチル等のアクリル酸エステルあ
るいはメタクリル酸、アクリル酸、イタコノ酸等の不飽
和カルボン酸。The acrylonitrile synthetic fiber used in the present invention is polyacrylonitrile or acrylonitrile with a weight ratio of 85:i or more) IJ
and other copolymerizable monomers, such as methyl acrylate/
I/l Acrylic esters such as ethyl acrylate, or unsaturated carboxylic acids such as methacrylic acid, acrylic acid, and itaconoic acid.
さらに塩化ビニル、スチレン、アクリルアミド。Also vinyl chloride, styrene, and acrylamide.
ジアセトンアクリルアミド、アリルスルホン酸等を適宜
共重合せしめた重合体を溶媒に溶解した後、湿式法ある
いは乾式法によって繊維化せしめたものである。A polymer obtained by appropriately copolymerizing diacetone acrylamide, allyl sulfonic acid, etc. is dissolved in a solvent and then made into fibers by a wet method or a dry method.
本発明を実施するに際しては、まずアクリロニ) リル
系合成繊維を200〜300℃の空気等の酸化性雰囲気
中で耐炎化処理し、1.25〜1、377/cwL’の
密度とする。この際、耐炎化処理系の繊維密度が1.2
5ノ/ロ3未満の場合、以後の工程で耐炎化処理系が軟
化を呈し、後の処理工程に於て糸切れ等の不都合を生じ
る。一方、密度が1.37り7cm3以上の場合、大ぎ
な伸度な加えることができず、炭素繊維引張強度の向上
が図れない。よって、本発明を実施するに際して用いる
耐炎化処理系の繊維密度は1.25〜1、377/cm
”であることが必要である。In carrying out the present invention, first, acrylonitrile-based synthetic fibers are subjected to flame-retardant treatment in an oxidizing atmosphere such as air at 200 to 300°C to give a density of 1.25 to 1,377/cwL'. At this time, the fiber density of the flame-resistant treated system is 1.2
If the ratio is less than 5 no/ro 3, the flame-retardant treatment system will soften in subsequent steps, causing problems such as thread breakage in subsequent treatment steps. On the other hand, if the density is 1.37cm3 or more, it is not possible to add a large elongation, and the carbon fiber tensile strength cannot be improved. Therefore, the fiber density of the flame-retardant treatment system used in carrying out the present invention is 1.25 to 1,377/cm.
” is necessary.
続(熱処理工程は、第1図に示した如り500℃付近を
境として延伸工程と収縮工程に分けられる。かかる観点
から、これらの2つの異なる現象を不活性雰囲気中30
0〜500℃の温度範囲の緊張下で熱処理する工程と、
500〜800℃の不活性雰囲気の緊張下で熱処理する
工程に分割して行わせることにより、各工程で反応度を
コントロールしつつ緊張をコントロールすることが可能
となり配向度の高い、緻密な欠陥の少ない中間構造体を
形成することができる。本発明ン実施するに際して30
0〜500℃の工程と500〜800℃の工程における
緊張は各々3%以上の伸長率が好ましい。この際伸張率
がどちらか一方でも3チ以下の場合、強度の向上は望め
ない。(As shown in Figure 1, the heat treatment process is divided into a stretching process and a shrinking process, with the temperature around 500°C as the boundary.
a step of heat treatment under tension in a temperature range of 0 to 500°C;
By dividing the process into heat treatment under tension in an inert atmosphere at 500 to 800°C, it is possible to control the tension while controlling the degree of reactivity in each process. Fewer intermediate structures can be formed. 30 when carrying out the present invention
The tension in the 0-500°C step and the 500-800°C step is preferably an elongation rate of 3% or more. At this time, if the elongation rate is less than 3 inches on either side, no improvement in strength can be expected.
最後に、一般に実施されているように800°C以上の
不活性雰囲気中で炭素化を完結せしめることにより高強
度炭素繊維を製造することができる。Finally, high-strength carbon fibers can be produced by completing carbonization in an inert atmosphere at 800° C. or higher, as is generally practiced.
以下実施例により本発明を更に具体的に説明するが、強
度は次に示す方法によって求めたものである。The present invention will be explained in more detail with reference to Examples below, and the strength was determined by the method shown below.
エポキシ樹脂(シェル化学社製:エビコート828)’
&含浸硬化処理せしめた炭素繊維束を試長200mm、
引張速度5m*/minの条件で引張破断試験法により
求めた。Epoxy resin (manufactured by Shell Chemical Co., Ltd.: Ebicoat 828)'
& Impregnated and hardened carbon fiber bundle with trial length of 200mm,
It was determined by a tensile rupture test method at a tensile speed of 5 m*/min.
実施例1
アクリロニトリル/メチルアクリレート/メタクリル酸
(95/4/1 )共重合体を湿式法により繊維化して
フィラメント数6000本、単糸テニール165dのマ
ルチフィラメントを得た。この繊維束を220〜260
℃の温度勾配をもつ空気中で伸長することにより耐炎化
処理を行った。以下の工程条件及び得られた炭素繊維の
性能評価の結果7表1に示す。Example 1 An acrylonitrile/methyl acrylate/methacrylic acid (95/4/1) copolymer was made into fibers by a wet method to obtain a multifilament with 6,000 filaments and a single tenier of 165 d. This fiber bundle is 220 to 260
Flameproofing treatment was performed by stretching in air with a temperature gradient of °C. Table 1 shows the following process conditions and the results of performance evaluation of the obtained carbon fibers.
表 1
表1中の隨3.4及びl’th7. 8は本発明の方法
、実施の条件によって得ちれた炭素繊維の引張強度を示
し、%1及び嵐6は従来の前炭素化工程が1段だけの場
合であり、 Na3. 5. 9及び1blo〜12は
本発明の条件からはずれた場合を示し℃いる。Table 1 Numbers 3.4 and l'th7 in Table 1. 8 indicates the tensile strength of the carbon fiber obtained by the method and implementation conditions of the present invention, %1 and Arashi 6 are for the case where the conventional pre-carbonization step is only one stage, Na3. 5. 9 and 1blo to 12 indicate cases outside the conditions of the present invention.
本発明の方法及び条件によって得た炭素繊維は比較例の
ものに比べ、引張強度が著しく同上していることが分る
。まな、耐炎化処理系の繊維密度は本発明で規定する範
囲にあることが必要であることも分る。It can be seen that the carbon fibers obtained by the method and conditions of the present invention have significantly higher tensile strength than those of the comparative examples. It is also understood that the fiber density of the flame-retardant treatment system must be within the range specified by the present invention.
第1図は本発明で用いる耐炎化処理系を熱処理した際の
糸長の変化を縦軸に、熱処理温度を横軸にとり、連続的
に耐炎化処理系を昇温熱処理したときの繊維長の長さの
変化を示したものである。Figure 1 shows the change in fiber length when the flame-retardant treatment system used in the present invention is heat-treated, with the vertical axis representing the heat treatment temperature and the horizontal axis representing the change in fiber length when the flame-retardant treatment system is continuously heat-treated at elevated temperatures. This shows the change in length.
Claims (1)
7 P/crIL”となるように処理した耐炎化繊維を
不活性雰囲気中300〜500℃の緊張下で熱処理を行
った後、500〜800℃の不活性雰囲気中で緊張を加
え熱処理を行い、さらにその後800℃以上の不活性雰
囲気下で熱処理を行うことを特徴とする高強度炭素繊維
の製造方法。Acrylonitrile synthetic fiber with a density of 1.25 to 1.3
7 P/crIL" flame-resistant fibers are heat-treated under tension at 300 to 500°C in an inert atmosphere, and then heat-treated under tension at 500 to 800°C in an inert atmosphere. A method for producing high-strength carbon fibers, which further comprises performing a heat treatment in an inert atmosphere at 800° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2126683A JPS59150116A (en) | 1983-02-10 | 1983-02-10 | Production of high-strength carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2126683A JPS59150116A (en) | 1983-02-10 | 1983-02-10 | Production of high-strength carbon fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59150116A true JPS59150116A (en) | 1984-08-28 |
Family
ID=12050298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2126683A Pending JPS59150116A (en) | 1983-02-10 | 1983-02-10 | Production of high-strength carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59150116A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61119717A (en) * | 1984-11-14 | 1986-06-06 | Toho Rayon Co Ltd | Bundle of water-absorbing carbon fiber of high performance |
WO1987002391A1 (en) * | 1985-10-09 | 1987-04-23 | Mitsubishi Rayon Co., Ltd. | Process for producing carbon fibers |
US5023414A (en) * | 1989-03-28 | 1991-06-11 | Matsushita Electric Works, Ltd. | Electrical switch for detecting positions of an automatic transmission of an automobile |
JP2004091961A (en) * | 2002-08-30 | 2004-03-25 | Toho Tenax Co Ltd | Method for producing carbon fiber |
JP2004277972A (en) * | 2003-03-19 | 2004-10-07 | Toho Tenax Co Ltd | High strength carbon fiber and method for producing the same |
CN110106585A (en) * | 2019-05-20 | 2019-08-09 | 中国科学院山西煤炭化学研究所 | A kind of polyacrylonitrile-based carbon fibre and preparation method thereof |
JP2019214819A (en) * | 2015-07-14 | 2019-12-19 | 三菱ケミカル株式会社 | Manufacturing method of carbon material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54147222A (en) * | 1978-05-08 | 1979-11-17 | Mitsubishi Rayon Co Ltd | Production of high-performance carbon fiber |
JPS5721521A (en) * | 1980-07-14 | 1982-02-04 | Mitsubishi Rayon Co Ltd | Production of carbon fiber of high strength and elongation |
JPS5725419A (en) * | 1980-07-16 | 1982-02-10 | Mitsubishi Rayon Co Ltd | Preparation of carbon fiber |
JPS57121622A (en) * | 1981-01-19 | 1982-07-29 | Mitsubishi Rayon Co Ltd | Preparation of carbon fiber |
JPS59137512A (en) * | 1983-01-25 | 1984-08-07 | Mitsubishi Rayon Co Ltd | Production of high-strength carbon fiber |
-
1983
- 1983-02-10 JP JP2126683A patent/JPS59150116A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54147222A (en) * | 1978-05-08 | 1979-11-17 | Mitsubishi Rayon Co Ltd | Production of high-performance carbon fiber |
JPS5721521A (en) * | 1980-07-14 | 1982-02-04 | Mitsubishi Rayon Co Ltd | Production of carbon fiber of high strength and elongation |
JPS5725419A (en) * | 1980-07-16 | 1982-02-10 | Mitsubishi Rayon Co Ltd | Preparation of carbon fiber |
JPS57121622A (en) * | 1981-01-19 | 1982-07-29 | Mitsubishi Rayon Co Ltd | Preparation of carbon fiber |
JPS59137512A (en) * | 1983-01-25 | 1984-08-07 | Mitsubishi Rayon Co Ltd | Production of high-strength carbon fiber |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61119717A (en) * | 1984-11-14 | 1986-06-06 | Toho Rayon Co Ltd | Bundle of water-absorbing carbon fiber of high performance |
WO1987002391A1 (en) * | 1985-10-09 | 1987-04-23 | Mitsubishi Rayon Co., Ltd. | Process for producing carbon fibers |
US4780301A (en) * | 1985-10-09 | 1988-10-25 | Mitsubishi Rayon Co., Ltd. | Process for producing carbon fiber |
US5023414A (en) * | 1989-03-28 | 1991-06-11 | Matsushita Electric Works, Ltd. | Electrical switch for detecting positions of an automatic transmission of an automobile |
JP2004091961A (en) * | 2002-08-30 | 2004-03-25 | Toho Tenax Co Ltd | Method for producing carbon fiber |
JP2004277972A (en) * | 2003-03-19 | 2004-10-07 | Toho Tenax Co Ltd | High strength carbon fiber and method for producing the same |
JP2019214819A (en) * | 2015-07-14 | 2019-12-19 | 三菱ケミカル株式会社 | Manufacturing method of carbon material |
CN110106585A (en) * | 2019-05-20 | 2019-08-09 | 中国科学院山西煤炭化学研究所 | A kind of polyacrylonitrile-based carbon fibre and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4069297A (en) | Process for producing carbon fibers | |
JP5720783B2 (en) | Carbon fiber bundle and method for producing carbon fiber bundle | |
EP1016740B1 (en) | Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and its use for forming a carbon fiber | |
US5051216A (en) | Process for producing carbon fibers of high tenacity and modulus of elasticity | |
JP2006299439A (en) | Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same | |
JPS6328132B2 (en) | ||
JPS59150116A (en) | Production of high-strength carbon fiber | |
JPS6211089B2 (en) | ||
US4397831A (en) | Production of carbon fibers from acrylonitrile based fibers | |
JPS59137512A (en) | Production of high-strength carbon fiber | |
JPS62257422A (en) | Production of carbon fiber | |
KR890005273B1 (en) | Process for producing carbon fibers | |
US5281477A (en) | Carbon fibers having high tenacity and high modulus of elasticity and process for producing the same | |
JP4138361B2 (en) | Carbon fiber strand and method for producing the same | |
JPS6127487B2 (en) | ||
JPS62215018A (en) | Production of carbon fiber | |
JP2869085B2 (en) | Precursor for carbon fiber production | |
JPH0219513A (en) | Production of carbon fiber having high strength and high modulus of elasticity | |
JPH055224A (en) | Production of carbon fiber having excellent uniformity | |
JPH0931758A (en) | Carbon fiber | |
US3650668A (en) | Thermally stabilized acrylic fibers produced by sulfation and heating in an oxygen-containing atmosphere | |
JPH0317925B2 (en) | ||
KR870000534B1 (en) | Carbon fiber and it's making method | |
JPS63196722A (en) | Production of high-strength carbon yarn | |
JPS62125017A (en) | Carbon fiber |