JPS59137512A - Production of high-strength carbon fiber - Google Patents

Production of high-strength carbon fiber

Info

Publication number
JPS59137512A
JPS59137512A JP925983A JP925983A JPS59137512A JP S59137512 A JPS59137512 A JP S59137512A JP 925983 A JP925983 A JP 925983A JP 925983 A JP925983 A JP 925983A JP S59137512 A JPS59137512 A JP S59137512A
Authority
JP
Japan
Prior art keywords
fiber
density
inert atmosphere
carbon fiber
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP925983A
Other languages
Japanese (ja)
Inventor
Yoshiteru Tasaka
田坂 義照
Yoshitaka Imai
今井 義隆
Soji Nakatani
中谷 宗嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP925983A priority Critical patent/JPS59137512A/en
Publication of JPS59137512A publication Critical patent/JPS59137512A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:Acrylonitrile synthetic fiber is treated to give preoxidized fiber of a specific density and the fiber is heat treated stepwise under tension in an inert atmosphere, then heat treated at high temperature to produce the titled carbon fiber with high orientation, uniformity and performance without yarn defects. CONSTITUTION:Acrylonitrile synthetic fiber is treated so that its density becomes 1.25-1.37g/cm<3> to give preoxidized fiber and the resultant fiber is heat treated under tension in an inert atmosphere to adjust its density to 1.40- 1.57g/cm<3>. Further, the tension is increased and the heat treatment is continued until the density reaches 1.57-1.70g/cm<3>, subsequently the heat treatment is conducted in an inert atmosphere over 800 deg.C to give the objective high-strength carbon fiber. The preoxidation temperature at the first step preferably ranges 250-600 deg.C and at the second step, 400-800 deg.C.

Description

【発明の詳細な説明】 本発明は、アクリロニトリル系合成繊維を熱処理するこ
とによシ高強度炭素繊維を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-strength carbon fibers by heat treating acrylonitrile-based synthetic fibers.

炭素繊維は、比強度、比弾性率が高く航空、宇宙関係、
レジャー用品、及び工業用材料等への各種複合材料の強
化材として広く用いられている。
Carbon fiber has high specific strength and specific modulus, and is used in aviation, space, and other industries.
It is widely used as a reinforcing material in various composite materials for leisure goods and industrial materials.

しかし、未だその強度は十分であるとぼ言い難く、高強
度炭素繊維の開発が望まれるところである。
However, it is still difficult to say that its strength is sufficient, and the development of high-strength carbon fiber is desired.

従来開発されてきた高性能炭素繊維の製造法としては、
例えば特開昭F14−147222号が知られている。
Conventionally developed methods for producing high-performance carbon fiber include:
For example, Japanese Patent Application Laid-open No. Sho F14-147222 is known.

この方法は繊維密度1.30〜1.42.97c&とし
た耐炎化繊維を、不活性雰囲気下300〜800Cの温
度領域に於て25%までの範囲で伸長しながら炭素化処
理し、引き続いて8000以上の温度で熱処理すること
により炭素繊維とするものである。耐炎化糸’1i80
0C以上の温度で定荷重下に熱処理すると、繊維はその
密度変化に対応し第1因に示す如き糸長変化をきたすこ
と男フ知られておp、繊維密度が1.60付近となる熱
処理領域に於ては著るしい物理的変化を繊維自体が受け
、糸条の構造変化が複雑であるため、従来の炭素繊維の
製造方法に於ては、この熱処理領域に於ける糸切れなど
のトラブル発生を防止するため、糸長が収縮するような
張力下で熱処理する方法がとられてきたのである。しか
しこのような方法では前記公開特許、の発明で述べられ
ている如く高強明     細     書 1、発明の名称 高強度炭素繊維の製造法 2、特許請求の範囲 アクリロニトリル系合成繊維を密度がL2fi〜1、8
711 / an?となるように処理した耐炎化繊維を
、不活性雰囲気の緊張下で熱処理を行ない密度をL 4
01 / c−以上1. R71/ caF未満に至ら
しめた後、不活性雰囲気中で緊張を加え熱処理を行ない
、密度tl−Lfi7〜1.7011 / Qni’に
至らしめ、さらに、その後800C以上の不活性雰囲気
下で熱処理を行なうことを特徴とする高強度炭素繊維の
製造法。
In this method, flame-resistant fibers with a fiber density of 1.30 to 1.42.97c are carbonized in an inert atmosphere at a temperature of 300 to 800C while being stretched up to 25%, and then It is made into carbon fiber by heat treatment at a temperature of 8,000 or higher. Flame resistant thread '1i80
It is well known that when heat treated under a constant load at a temperature of 0C or higher, the fiber length changes as shown in the first factor in response to the change in density. The fiber itself undergoes significant physical changes in this heat treatment area, and the structural changes in the yarn are complex. In order to prevent problems from occurring, methods have been used in which the yarn is heat-treated under tension that causes the yarn to shrink in length. However, in such a method, as described in the invention of the above-mentioned published patent, high-strength specification 1, title of the invention: Method for producing high-strength carbon fiber 2, claims: acrylonitrile-based synthetic fiber with a density of L2fi~1. , 8
711/an? The flame-retardant fibers were heat-treated under tension in an inert atmosphere to reduce the density to L4.
01/c- or above 1. After reaching R71/caF or less, heat treatment is performed by applying tension in an inert atmosphere to reach a density tl-Lfi7~1.7011/Qni', and then heat treatment is performed in an inert atmosphere at 800C or higher. A method for producing high-strength carbon fiber, which is characterized by:

a 発明の詳細な説明 本発明は、アクリロニトリル系合成繊維を熱処理するこ
とによシ高強度炭素繊維を製造する方法に関する。
a Detailed Description of the Invention The present invention relates to a method for producing high-strength carbon fibers by heat treating acrylonitrile-based synthetic fibers.

炭素繊維は、比強度、比弾性率が高く航空、宇宙関係、
レジャー用品、及び工業用材料等への各種複合材料の強
化材として広く用いられている。
Carbon fiber has high specific strength and specific modulus, and is used in aviation, space, and other industries.
It is widely used as a reinforcing material in various composite materials for leisure goods and industrial materials.

しかし、未だその強度は十分であるとぼ言い難く、高強
度炭素繊維の開発が望まれるところである。
However, it is still difficult to say that its strength is sufficient, and the development of high-strength carbon fiber is desired.

従来開発されてきた高性能炭素繊維の製造法としては、
例えば特開昭F14−147222号が知られている。
Conventionally developed methods for producing high-performance carbon fiber include:
For example, Japanese Patent Application Laid-open No. Sho F14-147222 is known.

この方法は繊維密度1.30〜1.42.97c&とし
た耐炎化繊維を、不活性雰囲気下300〜800Cの温
度領域に於て25%までの範囲で伸長しながら炭素化処
理し、引き続いて8000以上の温度で熱処理すること
により炭素繊維とするものである。耐炎化糸’1i80
0C以上の温度で定荷重下に熱処理すると、繊維はその
密度変化に対応し第1因に示す如き糸長変化をきたすこ
と男フ知られておp、繊維密度が1.60付近となる熱
処理領域に於ては著るしい物理的変化を繊維自体が受け
、糸条の構造変化が複雑であるため、従来の炭素繊維の
製造方法に於ては、この熱処理領域に於ける糸切れなど
のトラブル発生を防止するため、糸長が収縮するような
張力下で熱処理する方法がとられてきたのである。しか
しこのような方法では前記公開特許、の発明で述べられ
ている如く高強度の炭素繊維を作ることはできなかった
のであるが、前記発明はこの領域で25%までの伸長を
施すことによシその目的を達成してきているのである。
In this method, flame-resistant fibers with a fiber density of 1.30 to 1.42.97c are carbonized in an inert atmosphere at a temperature of 300 to 800C while being stretched up to 25%, and then It is made into carbon fiber by heat treatment at a temperature of 8,000 or higher. Flame resistant thread '1i80
It is well known that when heat treated under a constant load at a temperature of 0C or higher, the fiber length changes as shown in the first factor in response to the change in density. The fiber itself undergoes significant physical changes in this heat treatment area, and the structural changes in the yarn are complex. In order to prevent problems from occurring, methods have been used in which the yarn is heat-treated under tension that causes the yarn to shrink in length. However, with this method, it was not possible to produce high-strength carbon fibers as described in the invention of the above-mentioned published patent; It has achieved its purpose.

しかし当該方法では全伸長率を25%まで伸長する際の
糸長変化は激しく、均一な伸長処理を施すことができな
いため、常に均一で高い性能を示す炭素繊維を製造する
ことは極めて難しい。
However, in this method, the yarn length changes drastically when elongating to a total elongation rate of 25%, and uniform elongation cannot be performed, so it is extremely difficult to produce carbon fibers that are always uniform and exhibit high performance.

そこで本発明者等は高性能炭素繊維を常に得るための製
造方法を見出すべく検討した結果本発明を完成した。
Therefore, the present inventors conducted research to find a manufacturing method that would consistently obtain high-performance carbon fibers, and as a result, they completed the present invention.

本発明の要旨とするところは、アクリロニトリル合成繊
維を密度が1.“25〜1.8711 / c−となる
ようにし几耐炎化処理繊維を不活性雰囲気中緊張下で熱
処理を行ない密度Kl” 1−4011 / crTI
′以上1、 Fl 79 / c♂未満としfc(以下
前炭素化第1工程と称す)後、不活性雰囲気中で緊張を
加え熱処理を行ない、密度を1,57〜1.70 & 
/ c−に至らしめ(以下前炭素化第2工程と称す)、
さらにその後、800C以上の不活性雰囲気中で炭素化
を完結せしめることを特徴とする高強度炭素繊維全製造
する方法にある。
The gist of the present invention is to use acrylonitrile synthetic fibers with a density of 1. "25 ~ 1.8711/c-" 1-4011/crTI
After fc (hereinafter referred to as the first pre-carbonization step), the density is set to 1,57~1.70 &
/ c- (hereinafter referred to as pre-carbonization second step),
Furthermore, there is a method for completely producing high-strength carbon fibers, which is characterized in that carbonization is then completed in an inert atmosphere at 800C or higher.

本発明で用いる耐炎化糸製造用プレカーサーはアクリロ
ニトリル系繊維が好ましく、とくにポリアクリロニトリ
ル、又は85重量%以上のアクリロニトリルと他の共重
合可能な単量体、例えば、アクリル酸メチル、アクリル
酸エチル等のアクリル酸エチル、あるいは、メタクリル
酸、アクリル酸、イタコン酸等の不飽和カルボン酸、さ
らに塩化ビニル、スチレン、アクリルアミド、ジアセト
ンアクリルアミド、アリルスルホン酸等を適宜共重合せ
しめた重合体を溶媒に溶解した後、湿式法あるいは乾式
法によって繊維化せしめたものであることが好ましい。
The precursor for producing flame-resistant yarn used in the present invention is preferably an acrylonitrile fiber, particularly polyacrylonitrile, or a monomer copolymerizable with 85% by weight or more of acrylonitrile, such as methyl acrylate, ethyl acrylate, etc. Ethyl acrylate, or an unsaturated carboxylic acid such as methacrylic acid, acrylic acid, itaconic acid, etc., and a polymer obtained by appropriately copolymerizing vinyl chloride, styrene, acrylamide, diacetone acrylamide, allylsulfonic acid, etc., was dissolved in a solvent. It is preferable that the fibers are then made into fibers by a wet method or a dry method.

本発明を実施するに際しては、まず、アクリロニトリル
系合成繊維を酸化性雰囲気中で、加熱処理、とくに20
0〜aoocで耐炎化処理し、1.25〜L 871!
’/ c−の密度とする。この耐炎化処理系の繊維密度
がL 2511 / c−未満の場合には以後の工程で
耐炎化処理系が軟化を呈し、後の処理工程に於て糸切れ
等の不都合を生じる。一方、密度が1.871./ c
−以上の場合には、後の熱処理工程で大きな伸長を加え
ることが工きず、炭素繊維引張強度の向上が図れない。
When carrying out the present invention, first, acrylonitrile synthetic fibers are heat treated in an oxidizing atmosphere, especially at 20%
Flame resistant treated at 0~aooc, 1.25~L 871!
'/c- density. If the fiber density of the flame resistant treatment system is less than L2511/c-, the flame resistant treatment system will soften in subsequent steps, causing problems such as thread breakage in subsequent treatment steps. On the other hand, the density is 1.871. /c
- In the above cases, it is not possible to apply a large elongation in the subsequent heat treatment step, and the carbon fiber tensile strength cannot be improved.

よって、本発明を実施するに際して用いる耐炎化処理系
の繊維密度は、1.25〜1.877i’ 、/ c&
な七ことが必要である。
Therefore, the fiber density of the flame-retardant treatment system used in carrying out the present invention is 1.25 to 1.877 i', / c &
Seven things are necessary.

続く不活性雰囲気中での耐炎化糸の前炭素化第1工程及
び前炭素化第2工程に於ては第1図に示す如く、繊維構
造の変化が最も激しく起り、この熱処理工程での糸処理
が適切に行われなかった場合には高性能炭素繊維が得ら
れないばかりでなく、糸切れなどの糸欠陥の1発生につ
ながる。そこで本発明に於ては、不活性雰囲気下で、繊
維に緊張を与えながら繊維密度がL40g/C−以上1
. Fl 7 g/C−未満となるように前炭素化第1
工程によって熱処理した後、更に繊維密度が1.571
 / c♂以上1.・701 / c−以下となるよう
に繊維に緊張を与えて前炭素化第2工程によって熱処理
することによシ、前述した如き不都合の発生を防止する
と共に高性能炭素繊維を製造することに成功したのであ
る。
As shown in Figure 1, in the subsequent first pre-carbonization step and second pre-carbonization step of the flame-retardant yarn in an inert atmosphere, the fiber structure changes most drastically, and the yarn in this heat treatment step If the treatment is not carried out properly, not only will high-performance carbon fiber not be obtained, but it will also lead to the occurrence of yarn defects such as yarn breakage. Therefore, in the present invention, under an inert atmosphere, while applying tension to the fibers, the fiber density is L40g/C-1 or more.
.. Pre-carbonization first so that Fl is less than 7 g/C-
After heat treatment in the process, the fiber density is further increased to 1.571.
/ C♂ or above 1.・By applying tension to the fiber so that it is 701/c- or less and heat-treating it in the second pre-carbonization step, it was possible to prevent the above-mentioned disadvantages and to produce high-performance carbon fiber. That's what I did.

前炭素化第1工程の処理を行なうに際して加えられる緊
張とは、この熱処理工程で受ける繊維の伸長が15−以
下、とくに5〜10%となるようにする緊張処理をいう
。この伸長工程での伸長率が余シ小さいと高性能とくに
高強度の炭素繊維を作ることが難しく、一方、余り伸長
率が大きくなると糸切れなどのトラブル発生を伴うよう
になる    □ので好ましくない。また、この熱処理
工程に於ては数個のニップロールの使用によって、その
伸張率を細部にわたって規制することによシ更に均一性
の優れた炭素繊維とすることができる。
The tension applied during the first pre-carbonization step refers to a tension treatment such that the elongation of the fibers during this heat treatment step is 15% or less, particularly 5 to 10%. If the elongation rate in this elongation step is too small, it will be difficult to produce high-performance, especially high-strength, carbon fibers.On the other hand, if the elongation rate is too high, troubles such as thread breakage will occur, which is undesirable. Furthermore, by using several nip rolls in this heat treatment step, the elongation rate can be controlled in detail, thereby making it possible to obtain carbon fibers with even better uniformity.

また、前炭素化第2工程の実施に際して加える緊張とは
、この熱処理工程に於て糸長が1〜20チなる伸長を受
ける処理をいう。この熱処理工程で糸張が収縮するよう
な張力下に熱処理したものでは高い性能を有する炭素繊
維を作ることが難しく、一方余シ伸長率が高くなると糸
切れ等のトラブルが発生するようになる。
Furthermore, the tension applied when carrying out the second pre-carbonization step refers to a process in which the yarn length is stretched by 1 to 20 inches in this heat treatment step. It is difficult to produce carbon fibers with high performance if the carbon fibers are heat-treated under tension that causes the yarn to shrink during this heat treatment process.On the other hand, if the elongation rate of the remaining fibers becomes high, problems such as yarn breakage will occur.

また、この熱処理工程に於ける熱処理温度は250〜8
00Cの範囲、とくに前炭素化第1工程処理の温度は2
.50〜600Cの範囲にあるように、前炭素化第2工
程処理の温度は400〜800Cの範囲とす、るのがよ
い。
In addition, the heat treatment temperature in this heat treatment step is 250 to 8
00C range, especially the temperature of the first step of pre-carbonization is 2
.. The temperature of the pre-carbonization second step treatment is preferably in the range of 400 to 800C.

上述した如く、耐炎化糸を特定の緊張下で特定の繊維密
度となるように処理した繊維は、糸欠陥がなく、その配
向性が従来開発されてきた熱処理系に比べ一段と良好な
ものとなっているため、後に行なう800C以上、とく
に1000〜3000Cの不活性雰囲気下での炭素化処
理工程に於てもその構造が良好に保持されるため常に均
一で高い性能を有する炭素繊維とすることができるので
ある。
As mentioned above, the fibers obtained by treating flame-retardant yarn to a specific fiber density under a specific tension are free from yarn defects and have better orientation than conventionally developed heat treatment systems. Because of this, its structure is well maintained even during the subsequent carbonization process in an inert atmosphere at 800C or higher, especially 1000 to 3000C, making it possible to produce carbon fibers that are always uniform and have high performance. It can be done.

以下実施例によυ本発明を更に具体的に説明するが、強
度は次に示す方法によって求めたものである。
The present invention will be explained in more detail with reference to Examples below, and the strength was determined by the method shown below.

エポキシ樹脂(シェル化学社製:エピコート528)e
含浸硬化処理せしめた炭素繊維束を試技220uL、引
張速度5 ML/ minなる条件で引張り破断試験法
によシ求めた。
Epoxy resin (manufactured by Shell Chemical Co., Ltd.: Epicoat 528) e
The carbon fiber bundle that had been impregnated and hardened was subjected to a tensile rupture test method under the conditions of 220 μL trial and 5 ML/min tensile rate.

実施例1゜ アクリロニトリル/メチルアクリレート/メタクリル酸
=95/4/1なる共重合体を湿式紡糸法によシ繊維化
してフィラメント数6000本、単糸テニールL5dの
マルチフィラメントを得た。
Example 1 A copolymer of acrylonitrile/methyl acrylate/methacrylic acid = 95/4/1 was made into fibers by wet spinning to obtain a multifilament with 6000 filaments and a single tenier L5d.

この繊維束を220〜260Cの温度勾配をもつ空気中
で伸長することによシ耐炎化処理を行なったO 表1に各工程の処理条件、及び得られた炭素繊維の性能
評価結果を示す。ここで、前炭素化第1工程の雰囲気温
度は、250〜600cで処理時間は、3分前炭素化第
2工程の雰囲気温度は4F10〜800Cで処理時間は
3分である。また炭素化は窒素雰囲気下800〜180
0t;’なる条件で行った。
This fiber bundle was subjected to flame-retardant treatment by being stretched in air with a temperature gradient of 220 to 260 C. Table 1 shows the treatment conditions of each step and the performance evaluation results of the obtained carbon fibers. Here, the ambient temperature in the first pre-carbonization step is 250-600C and the treatment time is 3 minutes.The ambient temperature in the second pre-carbonization step is 4F10-800C and the treatment time is 3 minutes. In addition, carbonization is carried out under a nitrogen atmosphere at a temperature of 800 to 180
The test was carried out under the conditions of 0t;'.

表1のAa  Aa、は、本発明の方法によるものであ
シ、41.  A5−及びAaは、従来から行なわれて
きた前炭素化工程が1段だけの場合である。
Aa Aa in Table 1 was obtained by the method of the present invention, 41. A5- and Aa are cases where only one stage of pre-carbonization step has been conventionally performed.

このことから、本発明の方法が有効であることがわかる
。また、A 2.4.7及びA 9.10は、本発明の
条件と異なる場合を示しており、本発明を実施するに際
しては、本発明で規定する範囲内にあることが必要であ
る。
This shows that the method of the present invention is effective. Further, A 2.4.7 and A 9.10 indicate cases where the conditions are different from the conditions of the present invention, and when implementing the present invention, it is necessary that the conditions are within the range specified by the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、耐炎化処理系を熱処理した際の糸長の変化を
縦軸に、密度を横軸にとり、連続的に耐炎化処理系を昇
温熱処理したときの繊維の長さ変化を示したものである
。 特許出願人 三菱レイヨン株式会社 代理人 弁理士  1)村 武 敷 用1図 復慮(9/crn’1 手  続  補  正  書 (方式)%式% 1、事件の表示 昭和58年特許願第9259号 2、発明の名称 高強度炭素繊維の製造法 3、補正をする者 事件との関係 特許出願人 東京都中央区京橋二丁目3番19号 (603)三菱レイヨン株式会社 取締役社長  金 澤 脩 三 4、代理人 東京都港区虎ノ門二丁目8番1号 昭和58年4月26日付発送 6、補正の対象
Figure 1 shows the change in fiber length when the flame-retardant system was heat-treated, with the vertical axis representing the change in yarn length and the horizontal axis representing the density. It is something that Patent Applicant Mitsubishi Rayon Co., Ltd. Agent Patent Attorney 1) Takeshi Mura 1 Figure Review (9/Crn'1 Procedure Amendment (Method) % Formula % 1, Indication of Case 1988 Patent Application No. 9259 No. 2, Name of the invention Process for producing high-strength carbon fibers 3, Relationship with the amended person's case Patent applicant Osamu Kanazawa, President and CEO of Mitsubishi Rayon Co., Ltd., 2-3-19 Kyobashi, Chuo-ku, Tokyo (603) 4. Agent: 2-8-1 Toranomon, Minato-ku, Tokyo Sent on April 26, 1982 6. Subject to amendment

Claims (1)

【特許請求の範囲】[Claims] アクリロニトリル系合成繊維を密度がL2fi〜1、8
711 / an?となるように処理した耐炎化繊維を
、不活性雰囲気の緊張下で熱処理を行ない密度をL 4
01 / c−以上1. R71/ caF未満に至ら
しめた後、不活性雰囲気中で緊張を加え熱処理を行ない
、密度tl−Lfi7〜1.7011 / Qni’に
至らしめ、さらに、その後800C以上の不活性雰囲気
下で熱処理を行なうことを特徴とする高強度炭素繊維の
製造法。
Acrylonitrile synthetic fiber with density L2fi~1,8
711/an? The flame-retardant fibers were heat-treated under tension in an inert atmosphere to reduce the density to L4.
01/c- or above 1. After reaching R71/caF or less, heat treatment is performed by applying tension in an inert atmosphere to reach a density tl-Lfi7~1.7011/Qni', and then heat treatment is performed in an inert atmosphere at 800C or higher. A method for producing high-strength carbon fiber, which is characterized by:
JP925983A 1983-01-25 1983-01-25 Production of high-strength carbon fiber Pending JPS59137512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP925983A JPS59137512A (en) 1983-01-25 1983-01-25 Production of high-strength carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP925983A JPS59137512A (en) 1983-01-25 1983-01-25 Production of high-strength carbon fiber

Publications (1)

Publication Number Publication Date
JPS59137512A true JPS59137512A (en) 1984-08-07

Family

ID=11715421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP925983A Pending JPS59137512A (en) 1983-01-25 1983-01-25 Production of high-strength carbon fiber

Country Status (1)

Country Link
JP (1) JPS59137512A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150116A (en) * 1983-02-10 1984-08-28 Mitsubishi Rayon Co Ltd Production of high-strength carbon fiber
US4609540A (en) * 1984-05-18 1986-09-02 Mitsubishi Rayon Co., Ltd. Process for producing carbon fibers
WO1987002391A1 (en) * 1985-10-09 1987-04-23 Mitsubishi Rayon Co., Ltd. Process for producing carbon fibers
US4671950A (en) * 1984-11-14 1987-06-09 Toho Beslon Co., Ltd. High-strength carbonaceous fiber
JPH01306619A (en) * 1988-05-30 1989-12-11 Toray Ind Inc High-strength and high elastic modulus carbon fiber
JPH0274621A (en) * 1988-09-08 1990-03-14 Toray Ind Inc Graphitized fiber having low density and high elastic modulus
US4917836A (en) * 1985-11-18 1990-04-17 Toray Industries, Inc. Process for producing high-strength, high-modulus carbon fibers
CN110106585A (en) * 2019-05-20 2019-08-09 中国科学院山西煤炭化学研究所 A kind of polyacrylonitrile-based carbon fibre and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150116A (en) * 1983-02-10 1984-08-28 Mitsubishi Rayon Co Ltd Production of high-strength carbon fiber
US4609540A (en) * 1984-05-18 1986-09-02 Mitsubishi Rayon Co., Ltd. Process for producing carbon fibers
US4671950A (en) * 1984-11-14 1987-06-09 Toho Beslon Co., Ltd. High-strength carbonaceous fiber
WO1987002391A1 (en) * 1985-10-09 1987-04-23 Mitsubishi Rayon Co., Ltd. Process for producing carbon fibers
US4780301A (en) * 1985-10-09 1988-10-25 Mitsubishi Rayon Co., Ltd. Process for producing carbon fiber
US4917836A (en) * 1985-11-18 1990-04-17 Toray Industries, Inc. Process for producing high-strength, high-modulus carbon fibers
JPH01306619A (en) * 1988-05-30 1989-12-11 Toray Ind Inc High-strength and high elastic modulus carbon fiber
JPH0274621A (en) * 1988-09-08 1990-03-14 Toray Ind Inc Graphitized fiber having low density and high elastic modulus
CN110106585A (en) * 2019-05-20 2019-08-09 中国科学院山西煤炭化学研究所 A kind of polyacrylonitrile-based carbon fibre and preparation method thereof

Similar Documents

Publication Publication Date Title
US4069297A (en) Process for producing carbon fibers
CN109518309B (en) Carbon fiber bundle and method for producing carbon fiber bundle
JPS6352134B2 (en)
EP0159365A1 (en) Carbon fibers with high strength and high modulus, and process for their production
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
US3775520A (en) Carbonization/graphitization of poly-acrylonitrile fibers containing residual spinning solvent
JPS59137512A (en) Production of high-strength carbon fiber
JPS6211089B2 (en)
US4576810A (en) Carbon fiber production
US4526770A (en) Method of producing carbon fiber and product thereof
JPH0345708A (en) Forming method for melt spinning acrylic fiber adapted for heat conversion to high strength carbon fiber
JPS62257422A (en) Production of carbon fiber
JPS59150116A (en) Production of high-strength carbon fiber
US3954950A (en) Production of high tenacity graphitic fibrous materials
JP2013181264A (en) Carbon fiber bundle
GB2084975A (en) Carbon fibres
JP2002146681A (en) Method of producing carbon fiber and precursor thereof and method of applying finishing oil
JPH0310724B2 (en)
JPS62215018A (en) Production of carbon fiber
US4364916A (en) Process for the production of stabilized acrylic fibers which are particularly suited for thermal conversion to carbon fibers
JPS6127487B2 (en)
JP2004060126A (en) Carbon fiber and method for producing the same
JPS6233817A (en) Production of acrylic fiber having high tenacity and modulus
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
JP3303424B2 (en) Method for producing acrylic carbon fiber