JPS62257422A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPS62257422A
JPS62257422A JP9478386A JP9478386A JPS62257422A JP S62257422 A JPS62257422 A JP S62257422A JP 9478386 A JP9478386 A JP 9478386A JP 9478386 A JP9478386 A JP 9478386A JP S62257422 A JPS62257422 A JP S62257422A
Authority
JP
Japan
Prior art keywords
fiber
flame
density
fibers
retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9478386A
Other languages
Japanese (ja)
Inventor
Yoshitaka Imai
今井 義隆
Jinko Izumi
仁子 泉
Soji Nakatani
中谷 宗嗣
Toa Kobayashi
東亜 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP9478386A priority Critical patent/JPS62257422A/en
Publication of JPS62257422A publication Critical patent/JPS62257422A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a carbon fiber having high strength and elastic modulus, by carrying out a multi-stage flame-resisting treatment of an acrylonitrile fiber in an oxidizing atmosphere while controlling the stretching ratio at a specific level and carbonizing the treated fiber. CONSTITUTION:An acrylonitrile fiber bundle having a single filament fineness of 0.3-1.5d and total fiber fineness of 1,000-20,000d is introduced into a flame- resisting treatment furnace consisting of plural furnaces maintained at respective different temperatures and containing oxidizing atmosphere and is stretched under a condition satisfying the formula [k is total stage number of the flame- resisting treatment furnace; rhoo, rhok and rhon are fiber densities (g/ml) of the fed fiber, fiber after the completion of the flame-resisting treatment and fiber after the completion of the n-th treatment, respectively; tn* is treating time (min) in the n-th stage furnace] while suppressing the stretching ratio to <=30 until the fiber density reaches 1.22g/ml. The stretching is continued keeping the total stretching ratio to <=50 until the fiber density reaches 1.26g/ml. Thereafter, the fiber is treated in a manner to get a fiber density of 1.34-1.40g/ml while suppressing the shrinkage of the fiber. The produced flame-resistant fiber is carbonized in an inert gas atmosphere..

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高強度かつ高弾性である炭素fJ、碓の製法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing carbon fj, which has high strength and high elasticity.

〔背景技術〕[Background technology]

近年、炭素繊維複合材料は、スポーツ用途、宇宙航空用
途、工業用途等に幅広く応用されつつありその量的拡大
はめざましい。このような状況に対応して、使用される
炭素繊維の性能も飛耀的に向上しつつある。弾性率に着
目すると、10年前には20 t、on/M2であった
ものが数年前には23〜24 ton/mm2が標準と
なり、さらに最近は30 ton7mm2前後のものが
指向されつつあり、今後はこれが主流となる可能性も指
摘されている。
In recent years, carbon fiber composite materials have been widely applied to sports, aerospace, industrial applications, etc., and their quantitative expansion is remarkable. In response to this situation, the performance of the carbon fibers used is also rapidly improving. Focusing on the modulus of elasticity, ten years ago it was 20 tons, on/M2, but a few years ago, 23-24 tons/mm2 became the standard, and more recently, the trend has been towards around 30 tons, 7 mm2. It has been pointed out that this may become mainstream in the future.

しかしこのような弾性率の向上が、炭素繊維の強度を一
定にしたままで達成されるならば、当然のことながら炭
素繊維の伸度の低下をもたらすこととなり、炭素繊維複
合材料を脆弱なものとすることとなる。
However, if such an improvement in the elastic modulus is achieved while the strength of the carbon fiber remains constant, it will naturally lead to a decrease in the elongation of the carbon fiber, making the carbon fiber composite material brittle. This will be the case.

したがって高弾性高伸度の炭素像維、すなわち高伸度で
あると同時に高強度である炭素繊維が強く要望されてい
る。
Therefore, there is a strong demand for carbon fibers with high elasticity and high elongation, that is, carbon fibers that have both high elongation and high strength.

従来の弾性率の向上方法は炭素化温度すなわち最終熱処
理温度を上昇させることであった。
The conventional method for improving the elastic modulus has been to increase the carbonization temperature, that is, the final heat treatment temperature.

しかしこの方法では弾性率の向上と共に強度が低下し、
したがって炭素繊維の伸度が低下するという欠点があっ
た。例えば28ton/膿2の弾性率を保とうとすれば
炭素化温度は約1800℃が必要であるが、この温度で
は1600℃に比較して強度は100 kg/ran2
以上低下し、高強度は到底達成できない。炭素化温度の
上昇に伴うこのような強度の低下は、密度の低下とよく
対応しており、炭素化温度上昇の過程で、強度の低下を
もたらす微小な空孔が繊維中に発生するためと推定され
る。また、全繊維繊度1000〜20000デニールの
アクリロニトリル系重合体繊維束を耐炎化処理したのち
炭素化処理する場合は、その炭素化工程で繊維束の毛羽
立ちや糸切れが多発するものは、高強度、高伸度、の炭
素繊維束とすることはできない。その理由としては、炭
素化工程に供される耐炎化繊維束を構成する単鍼維間の
耐炎死斑及び1本の耐炎化繊維の長手方向の斑が大きい
こと、耐炎化糸自体中に微小な欠陥を有していることな
どがあげられる。
However, with this method, the strength decreases as the elastic modulus increases,
Therefore, there was a drawback that the elongation of the carbon fiber was reduced. For example, in order to maintain an elastic modulus of 28 tons/ran2, the carbonization temperature must be approximately 1800°C, but at this temperature, the strength is 100 kg/ran2 compared to 1600°C.
With this, high strength cannot be achieved at all. This decrease in strength as the carbonization temperature increases corresponds well to the decrease in density, and is likely due to the generation of micropores in the fibers that cause a decrease in strength during the process of increasing the carbonization temperature. Presumed. In addition, when acrylonitrile polymer fiber bundles with a total fiber fineness of 1,000 to 20,000 deniers are subjected to flame-retardant treatment and then carbonized, fiber bundles that frequently fluff or break during the carbonization process must have high strength, It cannot be made into a carbon fiber bundle with high elongation. The reasons for this are that flame-resistant dead spots between the single fibers that make up the flame-resistant fiber bundle to be subjected to the carbonization process and spots in the longitudinal direction of each flame-resistant fiber are large, and that there are small flame-resistant spots in the flame-resistant fiber itself. Examples include having defects.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

従来、高弾性繊維を得る場合は、1800℃以上の高温
で炭素化処理を行っているが、この方法では高強度で高
伸度の炭素繊維を得ることは極めて困難である。
Conventionally, when obtaining high elastic fibers, carbonization treatment is performed at a high temperature of 1800° C. or higher, but it is extremely difficult to obtain high strength and high elongation carbon fibers using this method.

点 〔問題、を解決するための手段〕 本発明者らは高強度かつ高弾性の炭素繊維の製法につい
て研究を進めた結果、本発明を完成した。
[Means for Solving the Problem] The present inventors completed the present invention as a result of conducting research on a method for producing high-strength and high-elastic carbon fiber.

本発明は、単繊維繊度0.3〜1.5デニール、全繊維
繊度1000〜20000デニールのアクリロニトリル
系重合体繊維束を、酸化性雰囲気に保たれた酸化処理温
度の異なる複数個の炉よりなる耐炎化処理炉に供給し、
各耐炎化炉を通過した繊維の密度が次式 〔式中ρ。はアクリロニトリル系重合体繊維の密度C&
/mlり、〜7は耐炎化処理完結糸の密度(g/ me
 )、ρ。はn段目の耐炎化処理炉通過後の繊維の密度
CEI/ml)、tnはn段目の炉の耐炎化処理時間(
分)、kは耐炎化処理炉の総段数を示す〕を満足する条
件下で、耐炎化処理系の繊維密度が1.22 i /m
lに到達するまでは伸長率を60%以下に抑えて伸長し
、次いで繊維密度が1.26 i / mlに到達する
まで総伸長率が50%以内となる範囲で伸長し、以後は
繊維の収縮を実質的に抑え、耐炎化終了時の繊維密度が
1.34〜1.40 !9/111となるように耐炎化
処理し、得られた耐炎化繊維を不活性ガス雰囲気下で炭
素化することを特徴とする炭素繊維の製法である。
In the present invention, acrylonitrile polymer fiber bundles having a single fiber fineness of 0.3 to 1.5 denier and a total fiber fineness of 1000 to 20000 denier are processed in a plurality of furnaces maintained in an oxidizing atmosphere at different oxidation treatment temperatures. Supplied to flame retardant treatment furnace,
The density of the fibers passed through each flameproofing furnace is calculated by the following formula [where ρ is]. is the density of acrylonitrile polymer fiber C &
/ml, ~7 is the density of the flame-resistant treated yarn (g/me
), ρ. is the density of the fiber after passing through the n-th flame-retardant furnace (CEI/ml), and tn is the flame-retardant treatment time in the n-th furnace (
minutes), k indicates the total number of stages of the flame-retardant treatment furnace], the fiber density of the flame-retardant treatment system was 1.22 i / m
The elongation is carried out with the elongation rate kept below 60% until the fiber density reaches 1.26 i/ml, and then the elongation is carried out within a range where the total elongation rate is within 50% until the fiber density reaches 1.26 i/ml. Shrinkage is substantially suppressed, and the fiber density at the end of flame resistance is 1.34 to 1.40! This is a method for producing carbon fibers, which is characterized by subjecting the fibers to flame resistance so that the fibers become 9/111, and carbonizing the obtained flame-resistant fibers in an inert gas atmosphere.

本発明に用いられるアクリロニトリル系重合体繊維は、
アクリロニトリル90重量%以上と他の共重合可能なビ
ニルモノマ−1o重量%以下から得られる(共)重合体
を紡糸することにより製造できる。
The acrylonitrile polymer fiber used in the present invention is
It can be produced by spinning a (co)polymer obtained from 90% by weight or more of acrylonitrile and 10% by weight or less of another copolymerizable vinyl monomer.

他の共重合可能なビニルモノマーは、アクリロニトリル
系重合体繊維の耐炎化反応を促進し、耐炎化時間の短縮
化に寄与する成分であり、例えばヒドロキシエチルアク
リロニトリル、メチルビニルケトン、メチルアクリレー
ト、アクリル酸、メタクリル酸、イタコン酸、t−ブチ
ルメタクリレートなどが用いられる。アクリロニトリル
の重合単位は90重量%以上、好ましくは95重量%以
上である。アクリロニトリル単位が90重量%未満の重
合体から得られる繊維は、耐炎化反応性が低いため、耐
炎化開始温度を高める必要があり、耐炎化反応が、開始
されると逆に暴走反応を起こし易い。
Other copolymerizable vinyl monomers are components that promote the flame resistance reaction of acrylonitrile polymer fibers and contribute to shortening the flame resistance time, such as hydroxyethyl acrylonitrile, methyl vinyl ketone, methyl acrylate, and acrylic acid. , methacrylic acid, itaconic acid, t-butyl methacrylate, etc. are used. The polymerized units of acrylonitrile are 90% by weight or more, preferably 95% by weight or more. Fibers obtained from polymers containing less than 90% by weight of acrylonitrile units have low flame retardant reactivity, so it is necessary to raise the flame retardant initiation temperature, and once the flame retardant reaction is initiated, it is likely to cause a runaway reaction. .

アクリロニトリル系重合体は通常、湿式紡糸法又は乾−
湿式紡糸法にて紡糸し、単繊維繊度0.3〜1.5デニ
ール、全繊維繊度1000〜20000デニールのアク
リロニトリル系重合体繊維束とする。単繊維繊度が0.
3デニ一ル未満の繊維はその強度が不足しがちであるの
で好ましくなく、一方、単繊維輝度が1.5デニールを
越える繊維は、その耐炎化工程での耐炎化に要する時間
が異常に長くなることはさけられず、本発明の目的を達
成しに(いものとなる。全繊維繊度が20000デニー
ルを越えるアクリロニトリル系繊維束は耐炎化処理工程
で繊維束内部への酸素拡散速度が遅くなり、耐炎化を終
了した繊維束の内外面にある繊維の繊維密度に大きな差
が生ずるようになり、このような耐炎化繊維束は炭素化
工程で毛羽立ち糸切れが生じ易くなり、高性能炭素繊維
を得ることが困難である。
Acrylonitrile polymers are usually produced by wet spinning or dry spinning.
The fibers are spun using a wet spinning method to obtain an acrylonitrile polymer fiber bundle having a single fiber fineness of 0.3 to 1.5 deniers and a total fiber fineness of 1000 to 20000 deniers. Single fiber fineness is 0.
Fibers with a single fiber brightness of less than 3 denier tend to lack strength and are therefore undesirable.On the other hand, fibers with single fiber brightness exceeding 1.5 denier require an abnormally long time to become flame resistant in the flame resistant process. In order to achieve the object of the present invention, it is unavoidable that the acrylonitrile fiber bundle has a total fiber fineness of more than 20,000 deniers. After flame-retardant fiber bundles, there is a large difference in fiber density between the inner and outer surfaces of the fiber bundles, and such flame-retardant fiber bundles tend to become fluffy and break during the carbonization process, making it difficult to use high-performance carbon fibers. is difficult to obtain.

本発明を実施するに際しては、前記のアクリロニトリル
系重合体繊維束を、200〜350℃の酸化性雰囲気に
保たれ、処理温度の異なる複数個の段より構成された耐
炎化処理炉に供給する。
In carrying out the present invention, the acrylonitrile polymer fiber bundle is maintained in an oxidizing atmosphere at 200 to 350°C and fed to a flameproofing furnace composed of a plurality of stages having different treatment temperatures.

複数個の炉より構成された耐炎化処理炉としては、2以
上好ましくは3〜6段の炉を有する耐炎化処理炉が用い
られる。耐炎化処理炉の段数が多すぎると装置が巨大化
し、操作性が低下   ゛するので好ましくない。炉内
を酸化性雰囲気に保つため、通常は空気が用いられるが
、−酸化窒素、亜硫酸ガスなどを用いることもできる。
As the flame-retardant furnace composed of a plurality of furnaces, a flame-retardant furnace having two or more stages, preferably three to six stages, is used. If the number of stages in the flameproofing furnace is too large, the equipment will become bulky and operability will decrease, which is undesirable. In order to maintain an oxidizing atmosphere inside the furnace, air is usually used, but -nitrogen oxide, sulfur dioxide gas, etc. can also be used.

こうして供給された繊維束を、繊維密度が1゜2’1g
/mlに達するまでは伸長率を30%以下とし、次いで
繊維密度が1.26fi/mlになるまでは総伸長率が
50%以下となる範囲で伸長し、各段を通過した繊維の
密度(tn)が前記式を満足する条件下で、かつ耐炎化
終了時の繊維密度が1.34〜1.40 l /mlと
なるように耐炎化処理する。
The fiber bundle thus supplied has a fiber density of 1゜2'1g.
The elongation rate is set to 30% or less until the fiber density reaches 1.26fi/ml, and then elongation is performed within a range where the total elongation rate is 50% or less until the fiber density reaches 1.26fi/ml, and the density of the fibers passing through each stage ( Flame-retardant treatment is carried out under conditions such that tn) satisfies the above formula and the fiber density at the end of flame-retardation is 1.34 to 1.40 l/ml.

耐炎化繊維密度と処理時間の関係を図面により説明する
The relationship between flame resistant fiber density and treatment time will be explained with reference to the drawings.

従来、アクリロニトリル系重合体繊維を高速度で耐炎化
処理するには図中の曲線1に示すように耐炎化処理の初
期の昇温勾配を高め、耐炎化処理後半での昇温勾配を低
くする方法すなわち 一Σ、tn とする方法が例えば特公昭47−35938号公報等に
示されているが、この方法ではアクリロニトリル系合成
繊維間に融着現象及び膠着現象が認められ、不都合な場
合には耐炎化処理反応が暴走し、処理繊維に着火するこ
ともある。
Conventionally, in order to flame-proof acrylonitrile-based polymer fibers at high speed, as shown in curve 1 in the figure, the temperature rise gradient at the beginning of the flame-proofing treatment is increased, and the temperature rise gradient in the latter half of the flame-proofing treatment is lowered. For example, Japanese Patent Publication No. Sho 47-35938 discloses a method in which 1Σ, tn is used, but in this method, fusion and sticking phenomena are observed between acrylonitrile synthetic fibers, and in inconvenient cases, The flame retardant treatment reaction may go out of control and the treated fibers may catch fire.

こうして得た耐炎化処理系は糸欠陥が多数含まれている
ため、炭素化工程で毛羽、糸切れが多発すると共にボイ
ドの多い炭素繊維となり易く高性能炭素繊維とすること
は難しい。一方、図中の曲線2に示すように耐炎化処理
の初期の昇温勾配を低めに押え、その後半での昇温勾配
を高めて処理する方法、すなわち とする方法が、例えば特開昭58−163729号公報
に示されているが、この耐炎化方法は、繊維間融着のな
い不完全耐炎化糸をまず造り、次いで急速に高度耐炎化
処理を行うものであるため、得られる肝炎化糸の繊維間
及び繊維の長手方向での耐炎化度の斑が大きくなり、や
はり炭素化工程で毛羽や糸切れが発生し効率的な炭素化
処理を施すことができず、高性能炭素繊維を得ることが
できない。
Since the flame-retardant treatment system thus obtained contains many yarn defects, fuzz and yarn breakage occur frequently during the carbonization process, and carbon fibers tend to have many voids, making it difficult to produce high-performance carbon fibers. On the other hand, as shown by curve 2 in the figure, there is a method in which the temperature increase gradient at the initial stage of the flameproofing treatment is kept low and the temperature increase gradient in the latter half is increased. -163729, this flame-retardant method first produces an incompletely flame-retardant yarn with no interfiber fusion, and then rapidly performs a highly flame-retardant treatment. The degree of flame resistance increases between the fibers of the yarn and in the longitudinal direction of the fibers, and fluff and yarn breakage occur during the carbonization process, making it impossible to carry out efficient carbonization treatment, making it difficult to use high-performance carbon fibers. can't get it.

これに対し、本発明においてはアクリロニトリル系重合
体繊維束を式(1)を満足するような条件下で耐炎化処
理する方法とすることにより、図中の直線乙に示すよう
に、アクリロニトリル系合成繊維の密度増加と耐炎化処
理時間との関係をほぼ直線関係を保つものである。これ
によって、アクリロニトリル系重合体繊維の耐炎化工程
での急激な耐炎化反応の立上り部が生ずることを防止し
得たため、アクリロニトリル系繊維内への酸素拡散速度
及びアクリル系繊維束内への酸素拡散速度を従来法に比
べ著しく均一化することができ得たため、アクリル系繊
維間の融着や膠着などの不都合な現象及び急激な熱分解
によるボイド等の繊維白欠陥の発生を防止することがで
きる。またこうして得られた耐炎化繊維束は、炭素化工
程に供しても毛羽や糸切れの発生がなく、極めて高性能
な炭素繊維とすることができる。
In contrast, in the present invention, acrylonitrile-based polymer fiber bundles are flame-retardant treated under conditions that satisfy formula (1). This maintains a nearly linear relationship between the increase in fiber density and the flame-retardant treatment time. As a result, it was possible to prevent the rapid rise of the flame-retardant reaction from occurring during the flame-retardant process of acrylonitrile-based polymer fibers, thereby reducing the rate of oxygen diffusion into the acrylonitrile-based fibers and the oxygen diffusion into the acrylic fiber bundles. Since the speed can be made significantly more uniform compared to conventional methods, it is possible to prevent inconvenient phenomena such as fusion and sticking between acrylic fibers and the occurrence of fiber white defects such as voids due to rapid thermal decomposition. . Furthermore, the flame-resistant fiber bundle thus obtained does not generate fuzz or thread breakage even when subjected to a carbonization process, and can be made into extremely high-performance carbon fiber.

また本発明の耐炎化処理方法によると、アクリロニ) 
IJル系合成繊維束の耐炎化処理時間を90分以内、特
に60分以内と従来法では決して考え得なかった程に短
時間化しても何等の不都合を生ずることな(その耐炎化
を行うことができる。
Furthermore, according to the flame-retardant treatment method of the present invention, acryloni)
Even if the flame-retardant treatment time for IJ-type synthetic fiber bundles is shortened to within 90 minutes, especially within 60 minutes, which was unimaginable with conventional methods, there will be no inconvenience. Can be done.

また繊維密度が1.22 i / rneに達するまで
は伸長率を30%以下とし、繊維密度が1.26 j;
1/ mlに達するまで総伸長率が50%以下となる範
囲で伸長しなから耐炎化処理することが必要である。
In addition, the elongation rate is kept below 30% until the fiber density reaches 1.22 i / rne, and the fiber density reaches 1.26 j;
It is necessary to elongate it within a range where the total elongation rate is 50% or less until it reaches 1/ml, and then apply flame-retardant treatment.

高性能炭素繊維となし得る耐炎化処理系とは、グラファ
イト網面の形成し易い高配向構造を有するものである。
A flame-retardant treatment system that can be used as a high-performance carbon fiber is one that has a highly oriented structure that facilitates the formation of a graphite network surface.

アクリロニトリル系重合体繊維の密度は通常1.18 
g/ml程度であり、この繊維の密度が1.22117
m1に達するまでは50%程度の伸長が可能であるが、
伸長率が30%を越えると、得られる耐炎化繊維の斑が
大きくなると共に糸欠陥が生じることがある。また繊維
密度が1.26 g/;nlとなるまで総伸長率が50
%以下となる割合で伸長することにより、炭素化工程に
おいてグラファイト結晶構造が発達しやすくなり、高度
に配向され、かつ欠陥の無い炭素繊維が得られる。
The density of acrylonitrile polymer fiber is usually 1.18
g/ml, and the density of this fiber is 1.22117
It is possible to elongate about 50% until reaching m1, but
If the elongation rate exceeds 30%, the flame-resistant fibers obtained may have larger irregularities and yarn defects may occur. In addition, the total elongation rate was 50 until the fiber density reached 1.26 g/;nl.
% or less, the graphite crystal structure is likely to develop in the carbonization process, and highly oriented and defect-free carbon fibers can be obtained.

なお繊維密度が1.26i/mlを越える領域では、繊
維に実質的な伸長が起こらないような条件下で耐炎化処
理することが必要である。この領域で繊維に実質的な伸
長が起こると、炭素繊維中にミクロボイドが多数台まれ
、繊維の性能が劣化する。またこの工程で繊維に収縮が
起こると、耐炎化繊維の微細構造の乱れを誘導し、得ら
れる炭素繊維の強度が低下する。
In addition, in a region where the fiber density exceeds 1.26 i/ml, it is necessary to carry out flameproofing treatment under conditions that do not cause substantial elongation of the fibers. If substantial elongation of the fiber occurs in this region, many microvoids will be embedded in the carbon fiber, degrading the performance of the fiber. Furthermore, if the fibers shrink during this step, the fine structure of the flame-resistant fibers will be disturbed, and the strength of the resulting carbon fibers will decrease.

繊維に伸長を与える方法としては、例えば繊維を多数個
の回転ロールと接触させ、密度が1゜’16g/mlに
達するまではロール速度を暫時増加させ、以降はロール
速度を一定に保てばよい。
A method for elongating the fibers is, for example, by bringing the fibers into contact with a number of rotating rolls, increasing the roll speed for a while until the density reaches 1°'16 g/ml, and then keeping the roll speed constant. good.

さらに耐炎化完結時の繊維密度ρ7ゆ1.34〜1、4
09好ml好ましくは1.345〜1.385 g/ 
mlの範囲とすることが必要である。ρえが1.34 
g/ rn1未満の耐炎化繊維は、炭素化工程において
急激な熱分解現象を呈し、糸切れ及び毛羽が多発して効
率的な炭素化処理を行うことができず、かつ炭素繊維の
性能も劣る。またρえが1゜4 Q g/ mlを越え
る耐炎化繊維は、炭素化工程で配向操作を加えることが
できず、引張強度が400 kg/+uc2を越える高
性能炭素繊維とすることはできない。
Furthermore, the fiber density ρ7 when flame resistance is completed is 1.34 to 1,4
09 ml preferably 1.345-1.385 g/
It is necessary to set it in the range of ml. ρega 1.34
Flame-resistant fibers with g/rn of less than 1 exhibit rapid thermal decomposition during the carbonization process, resulting in frequent thread breakage and fuzzing, making it impossible to carry out efficient carbonization treatment, and the performance of the carbon fibers is also poor. . Furthermore, flame-resistant fibers with a rho value exceeding 1°4 Q g/ml cannot be subjected to orientation during the carbonization process, and cannot be made into high-performance carbon fibers with a tensile strength exceeding 400 kg/+uc2.

次いで耐炎化繊維を窒素ガス、アルゴンガス等の不活性
ガス雰囲気中1600〜1800℃の温度で炭素化処理
する。この炭素化処理に先立ち、300〜800℃の温
度範囲において第1次炭素化処理を行うことにより、続
いて行う高温での炭素化処理を更に効率よく行うことが
できる。
Next, the flame-resistant fiber is carbonized at a temperature of 1600 to 1800° C. in an atmosphere of an inert gas such as nitrogen gas or argon gas. By performing the primary carbonization treatment in the temperature range of 300 to 800° C. prior to this carbonization treatment, the subsequent carbonization treatment at a high temperature can be performed more efficiently.

第1次炭素化処理に引き続き、第2次炭素化処理すなわ
ち最終熱処理が不活性ガス雰囲気中1300〜1800
℃の温度範囲で緊張下に数十秒ないし数分間性われる。
Following the first carbonization treatment, the second carbonization treatment, that is, the final heat treatment, is performed at 1300 to 1800 ℃ in an inert gas atmosphere.
They are kept under tension at a temperature range of 10°C for tens of seconds to several minutes.

該熱処理において処理過程における最高温度が1300
℃未満であれば所定の弾性率を得ることができない。一
方、最高温度が1800℃を越えると強度ならびに密度
が低下し、所定の値以下となる。また、熱処理時におけ
る温度プロファイルは1000℃前後よりなだらかに上
昇して最高温度に到達するように設定されることが好ま
しい。また、熱処理時において繊維に与えられる張力は
250m97デニ一ル以上、好ましくは350m9/デ
ニ一ル以上である必要がある。張力がこの値より低い場
合は、所定の弾性率を得ることは困難となる。
In the heat treatment, the maximum temperature in the treatment process is 1300℃.
If the temperature is less than 0.degree. C., a predetermined elastic modulus cannot be obtained. On the other hand, when the maximum temperature exceeds 1800°C, the strength and density decrease and become below a predetermined value. Further, it is preferable that the temperature profile during the heat treatment is set such that the temperature rises gradually from around 1000° C. to reach the maximum temperature. Further, the tension applied to the fibers during heat treatment must be at least 250 m97 denier, preferably at least 350 m9/denier. If the tension is lower than this value, it will be difficult to obtain a predetermined elastic modulus.

〔本発明の効果〕[Effects of the present invention]

本発明方法によれば、繊維束の内外面の繊維の耐炎化度
の均一化/及び繊維軸方向の耐炎化度の均一化を行うと
共に、この耐炎化工程で特定の伸長操作を加えることに
よって欠陥構造がなく、かつ高度に配向されたグラファ
イト結晶構造の発達し易い耐炎化繊維構造のものとなし
得たため、引張強度450 kg/ran2以上、弾性
率27bon /−2以上の高性能炭素繊維を極めて高
生産性下に生産することができる。
According to the method of the present invention, the degree of flame resistance of the fibers on the inner and outer surfaces of the fiber bundle is made uniform, and the degree of flame resistance in the fiber axis direction is made uniform, and a specific elongation operation is applied in this flame resistance process. Because it has a flame-resistant fiber structure with no defect structure and a highly oriented graphite crystal structure that is easy to develop, we have created a high-performance carbon fiber with a tensile strength of 450 kg/ran2 or higher and an elastic modulus of 27 bon/-2 or higher. It can be produced with extremely high productivity.

本発明で得られた炭素繊維は、高弾性かつ高強度である
ため、航空機−次構造材、釣竿、ゴルフシャフト等のス
ポーツ用途、高速遠心分離機、ロボット等の工業用途、
地上高速輸送体等広範囲な用途に使用することが可能で
ある。
The carbon fiber obtained by the present invention has high elasticity and high strength, so it can be used for sports applications such as aircraft secondary structural materials, fishing rods, golf shafts, and industrial applications such as high-speed centrifuges and robots.
It can be used in a wide range of applications such as ground high-speed transportation vehicles.

下記実施例中のストランド強度及びストランド弾性率は
J!SR7601の方法により測定した。
The strand strength and strand elastic modulus in the following examples are J! It was measured by the method of SR7601.

また密度は密度勾配管法により測定した。Moreover, the density was measured by the density gradient tube method.

フィラメント数12000本からなるアクリロニトリル
重合体繊維束を、温度区域が5段で、各段の処理長が1
段目から4段目までは各8m、5段目が5.3mからな
る熱風循環式多段耐炎化炉を用い、処理時間45分で、
かつ耐炎化終了時の密度が1.36 fi/mlとなる
ように耐炎化処理する場合の各膜処理後の密度範囲を式
(1)を用いて求めると第1表に示す範囲であった。
An acrylonitrile polymer fiber bundle consisting of 12,000 filaments was processed in 5 temperature zones, each with a processing length of 1.
Using a hot air circulation multi-stage flameproofing furnace consisting of 8m each for the 4th to 4th tiers and 5.3m for the 5th tier, the treatment time was 45 minutes.
When flame-retardant treatment is performed so that the density at the end of flame-retardation is 1.36 fi/ml, the density range after each film treatment is calculated using formula (1) and is in the range shown in Table 1. .

次にあらかじめ求めておいた種々の温度における、一定
温度条件下での耐炎化処理時間に対する密度変化の曲線
から前記の計算密度範囲にするための処理温度を読み取
った。求めた温度条件を第1表に示す。この温度条件下
でアクリロニトリル重合体繊維束50本を繊維束間の幅
が約5.2Bになるように配列し、引取速度ζ0m/時
間にて第1段目で20%、第2段目で8%の伸長を付与
し、かつ処理時間が45分の耐炎化処理を行った。
Next, the treatment temperature for achieving the above calculated density range was read from the curve of density change versus flameproofing treatment time under constant temperature conditions at various temperatures determined in advance. The determined temperature conditions are shown in Table 1. Under this temperature condition, 50 acrylonitrile polymer fiber bundles were arranged so that the width between the fiber bundles was approximately 5.2B, and at a take-up speed of 0 m/hour, 20% in the first stage and 20% in the second stage. A flame-retardant treatment was performed to give an elongation of 8% and a treatment time of 45 minutes.

耐炎化炉内送行中の繊維束は、実質的に隙間がなくシー
ト状であった。この耐炎化処理を24時間連続で実施し
たが、反応暴走による着火もなく、また得られた耐炎化
繊維束は融着も毛羽もなく、満足できるものであった。
The fiber bundle being conveyed through the flameproofing furnace was in the form of a sheet with virtually no gaps. This flame-retardant treatment was carried out continuously for 24 hours, but there was no ignition due to runaway reaction, and the flame-retardant fiber bundle obtained was satisfactory, with no fusion or fuzz.

24時間運転後、各膜処理後の繊維から試料を採り、密
度勾配管により密度を測定した結果、第1表に示すよう
に全ての段における密度も計算密度の範囲内にあった。
After 24 hours of operation, samples were taken from the fibers after each membrane treatment and the densities were measured using a density gradient tube.As shown in Table 1, the densities at all stages were within the range of the calculated densities.

得られた耐炎化繊維束を、引き続いて窒素雲囲気下に最
高温度600°Cの炭素化炉及び最高温度1500℃の
炭素化炉を連続的に通過させて、炭素化処理を行った。
The obtained flame-resistant fiber bundle was subsequently carbonized by passing continuously through a carbonization furnace with a maximum temperature of 600° C. and a carbonization furnace with a maximum temperature of 1500° C. under a nitrogen cloud atmosphere.

この際600℃の炭素化炉における伸長率を毛羽が発生
するまで変化させたところ、20%までは全く毛羽はな
く、22%にしてわずかに毛羽が観察された。次に60
0℃炭素化炉の伸長率を8%にして、続いて4%の収縮
を与えつつ1600’Cで炭素化処理を行った。得らn
た炭素繊維は非常に毛羽が少なく、性能は引張強度5 
!15 k’i/mrtt2及び弾性率28.5 ”、
on /@112と非常に高性能であった。
At this time, when the elongation rate in the carbonization furnace at 600° C. was varied until fluff was generated, there was no fluff at all up to 20%, and slight fluff was observed at 22%. then 60
The elongation rate in the 0°C carbonization furnace was set to 8%, and then carbonization treatment was performed at 1600'C while applying 4% shrinkage. obtained n
Carbon fiber has very little fuzz and has a tensile strength of 5.
! 15 k'i/mrtt2 and modulus of elasticity 28.5'',
on /@112, which was a very high performance.

第1表 比較例1 実施例1において、温度条件を第2表に示す温度に変更
して耐炎化処理を行った。耐炎化処理は毛羽も融着もな
く安定であった。次いで実施例1と同様にして炭素化処
理を行ったが、最高温度600°Cの炭素化炉において
毛羽が多発し、全く伸長を付与することができなかった
Table 1 Comparative Example 1 In Example 1, flameproofing treatment was carried out by changing the temperature conditions to the temperatures shown in Table 2. The flame-retardant treatment was stable with no fuzz or fusion. Next, carbonization treatment was performed in the same manner as in Example 1, but fluffing occurred frequently in the carbonization furnace with a maximum temperature of 600°C, and no elongation could be imparted.

また伸長率を零にして炭素化炉を通したが炭素化炉で毛
羽が多発し、得られた炭素繊維は評価に耐えないもので
あった。
Furthermore, although the fibers were passed through a carbonization furnace with the elongation rate set to zero, a large amount of fuzz occurred in the carbonization furnace, and the obtained carbon fibers could not be evaluated.

なお、耐炎化各段処理後の繊維密度を実施例1と同様の
方法で測定した結果、第2表に示すように、第1段から
第3段目の繊維密度は第1表に記した計算密度範囲より
ずれた値であった。
In addition, as a result of measuring the fiber density after each stage of flameproofing treatment in the same manner as in Example 1, as shown in Table 2, the fiber densities of the first to third stages are as shown in Table 1. The value was outside the calculated density range.

第  2  表 実施例2 実施例1と同様に処理し、ただし耐炎化処理系の繊維密
度が1.22 ji / mlに到達するまで第1段で
20%の伸長を付与したのち、繊維密度が1.269 
/ mlに到達するまで第2段でさらに15%の伸長を
付与し、耐炎化での総伸長率を38%とした。得られた
炭素繊維の性能は引張強度555 kFl/mrx2及
び弾性率29.2 ton/Hg”であった。
Table 2 Example 2 The process was carried out in the same manner as in Example 1, except that 20% elongation was applied in the first stage until the fiber density of the flame-retardant treated system reached 1.22 ji/ml, and then the fiber density was 1.269
An additional 15% elongation was applied in the second stage until reaching /ml, resulting in a total elongation rate of 38% for flame resistance. The properties of the obtained carbon fiber were a tensile strength of 555 kFl/mrx2 and an elastic modulus of 29.2 ton/Hg''.

比較例2 実施例1において、耐炎化処理系の繊維密度が1.22
f!/mlに到達するまで第1段で38%の伸長を付与
したところ、その伸長領域で毛羽の多発さらには繊維束
の切断が生じた。
Comparative Example 2 In Example 1, the fiber density of the flame-resistant treated system was 1.22.
f! When elongation of 38% was applied in the first stage until reaching /ml, frequent fluffing and breakage of fiber bundles occurred in the elongated region.

比較例3 実施例1と同様に処理し、ただし耐炎化処理系の繊維密
度が1.22g/mlに到達するまで第1段で30%の
伸長を付与したのち、繊維密度が1.26 g/mlに
到達するまで第2段でさらに15%の伸長を付与し、耐
炎化での総伸長率を50%とした。その結果、耐炎化過
程で若干の毛羽が観察され、得られた炭素繊維の性能$
骨皮525 kg/mrn2及び弾性率29.6 to
n/mu2と低下した。
Comparative Example 3 Processed in the same manner as in Example 1, except that 30% elongation was applied in the first stage until the fiber density of the flame-retardant treated system reached 1.22 g/ml, and then the fiber density reached 1.26 g/ml. An additional 15% elongation was applied in the second stage until reaching /ml, making the total elongation rate for flame resistance 50%. As a result, some fuzz was observed during the flame-retardant process, and the performance of the obtained carbon fiber was
Osteoderm 525 kg/mrn2 and elastic modulus 29.6 to
It decreased to n/mu2.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の詳細な説明するための耐炎化繊維密度と
耐炎化処理時間の間係を示すグラフであって、曲線1は
従来法により初期の昇温勾配を高め、後半の昇温勾配を
低(した場合、曲線2は初期の昇温勾配を低くし、後半
の昇温勾配を高くした場合、直線3は本発明方法により
処理した場合を示す。
The drawing is a graph showing the relationship between the flame-retardant fiber density and the flame-retardant treatment time for detailed explanation of the present invention. Curve 1 shows a conventional method in which the initial temperature increase gradient is increased and the latter half temperature increase gradient is increased. Curve 2 shows the case where the temperature increase gradient in the initial stage is low and the temperature increase gradient in the latter half is high.

Claims (1)

【特許請求の範囲】 単繊維繊度0.3〜1.5デニール、全繊維繊度100
0〜20000デニールのアクリロニトリル系重合体繊
維束を、酸化性雰囲気に保たれた酸化処理温度の異なる
複数個の炉よりなる耐炎化処理炉に供給し、各耐炎化炉
を通過した繊維の密度が次式 (ρ_O−0.0.1)+(ρ_k−ρ_O)(Σ^n
_n_=_1t_n)/(Σ^k_n_=_1t_n≦
ρ_n≦(ρ_O+0.01)+(ρ_k−ρ_O)(
Σ^n_n_=_1t_n)/(Σ^k_n_=_1t
_n)(1)〔式中ρ_Oはアクリロニトリル系重合体
繊維の密度(g/ml)、ρ_kは耐炎化処理完結糸の
密度(g/ml)、ρ_nはn段目の耐炎化処理炉通過
後の繊維の密度(g/ml)、t_nはn段目の炉の耐
炎化処理時間(分)、には耐炎化処理炉の総段数を示す
〕を満足する条件で、耐炎化処理糸の繊維密度が1.2
2g/mlに到達するまでは伸長率を30%以下に抑え
て伸長し、次いで繊維密度が1.26g/mlに到達す
るまで総伸長率が50%以内となる範囲で伸長し、以後
は繊維の収縮を実質的に抑え、耐炎化終了時の繊維密度
が1.34〜1.40g/mlとなるように耐炎化処理
し、得られた耐炎化繊維を不活性ガス雰囲気下で炭素化
することを特徴とする炭素繊維の製法。
[Claims] Single fiber fineness 0.3 to 1.5 denier, total fiber fineness 100
An acrylonitrile polymer fiber bundle of 0 to 20,000 deniers is supplied to a flameproofing furnace consisting of multiple furnaces maintained in an oxidizing atmosphere with different oxidation treatment temperatures, and the density of the fibers passing through each flameproofing furnace is determined. The following formula (ρ_O-0.0.1) + (ρ_k-ρ_O) (Σ^n
_n_=_1t_n)/(Σ^k_n_=_1t_n≦
ρ_n≦(ρ_O+0.01)+(ρ_k−ρ_O)(
Σ^n_n_=_1t_n)/(Σ^k_n_=_1t
_n) (1) [In the formula, ρ_O is the density of the acrylonitrile polymer fiber (g/ml), ρ_k is the density of the flame-retardant finished yarn (g/ml), and ρ_n is after passing through the n-th flame-retardant furnace. The fiber density of the flame-retardant yarn (g/ml), t_n is the flame-retardant treatment time of the n-th furnace (minutes), and t_n is the total number of stages of the flame-retardant furnace. Density is 1.2
The elongation is carried out with the elongation rate kept below 30% until the fiber density reaches 2 g/ml, and then the elongation is carried out within a range where the total elongation rate is within 50% until the fiber density reaches 1.26 g/ml. The flame resistant fibers are subjected to flame resistant treatment so that the shrinkage of the fibers is substantially suppressed and the fiber density is 1.34 to 1.40 g/ml at the end of flame resistant flame resistant fibers, and the obtained flame resistant fibers are carbonized in an inert gas atmosphere. A carbon fiber manufacturing method characterized by:
JP9478386A 1986-04-25 1986-04-25 Production of carbon fiber Pending JPS62257422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9478386A JPS62257422A (en) 1986-04-25 1986-04-25 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9478386A JPS62257422A (en) 1986-04-25 1986-04-25 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS62257422A true JPS62257422A (en) 1987-11-10

Family

ID=14119680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9478386A Pending JPS62257422A (en) 1986-04-25 1986-04-25 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS62257422A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994533A (en) * 1988-04-27 1991-02-19 The Dow Chemical Company Poly(aryl ether)-poly(aryl carbonate) block copolymers and their preparation
WO2009125832A1 (en) 2008-04-11 2009-10-15 東レ株式会社 Carbon-fiber precursor fiber, carbon fiber, and processes for producing these
US7749479B2 (en) 2006-11-22 2010-07-06 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8822029B2 (en) 2006-10-18 2014-09-02 Toray Industries, Inc. Polyacrylonitrile polymer, method of producing the same, method of producing precursor fiber used for producing carbon fiber, carbon fiber and method of producing the same
WO2017204026A1 (en) 2016-05-24 2017-11-30 東レ株式会社 Carbon fiber bundle and method for manufacturing same
US10023979B2 (en) 2014-10-29 2018-07-17 Toray Industries, Inc. Bundle of carbon fibers and method of manufacturing the same
WO2019087766A1 (en) 2017-10-31 2019-05-09 東レ株式会社 Carbon fiber bundle and method for producing same
US10407802B2 (en) 2015-12-31 2019-09-10 Ut-Battelle Llc Method of producing carbon fibers from multipurpose commercial fibers

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994533A (en) * 1988-04-27 1991-02-19 The Dow Chemical Company Poly(aryl ether)-poly(aryl carbonate) block copolymers and their preparation
US8822029B2 (en) 2006-10-18 2014-09-02 Toray Industries, Inc. Polyacrylonitrile polymer, method of producing the same, method of producing precursor fiber used for producing carbon fiber, carbon fiber and method of producing the same
US9677195B2 (en) 2006-11-22 2017-06-13 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US10151051B2 (en) 2006-11-22 2018-12-11 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8734754B2 (en) 2006-11-22 2014-05-27 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US7749479B2 (en) 2006-11-22 2010-07-06 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8871172B2 (en) 2006-11-22 2014-10-28 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9121112B2 (en) 2006-11-22 2015-09-01 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9340905B2 (en) 2006-11-22 2016-05-17 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8591859B2 (en) 2006-11-22 2013-11-26 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9938643B2 (en) 2006-11-22 2018-04-10 Hexel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8674045B2 (en) 2008-04-11 2014-03-18 Toray Industries, Inc. Carbon-fiber precursor fiber, carbon fiber, and processes for producing these
WO2009125832A1 (en) 2008-04-11 2009-10-15 東レ株式会社 Carbon-fiber precursor fiber, carbon fiber, and processes for producing these
EP3425091A1 (en) 2014-10-29 2019-01-09 Toray Industries, Inc. Bundle of carbon fibers
US10023979B2 (en) 2014-10-29 2018-07-17 Toray Industries, Inc. Bundle of carbon fibers and method of manufacturing the same
US10407802B2 (en) 2015-12-31 2019-09-10 Ut-Battelle Llc Method of producing carbon fibers from multipurpose commercial fibers
US10961642B2 (en) 2015-12-31 2021-03-30 Ut-Battelle, Llc Method of producing carbon fibers from multipurpose commercial fibers
WO2017204026A1 (en) 2016-05-24 2017-11-30 東レ株式会社 Carbon fiber bundle and method for manufacturing same
KR20190011720A (en) 2016-05-24 2019-02-07 도레이 카부시키가이샤 Carbon fiber bundle and its manufacturing method
US11313054B2 (en) 2016-05-24 2022-04-26 Toray Industries, Inc. Carbon fiber bundle
WO2019087766A1 (en) 2017-10-31 2019-05-09 東レ株式会社 Carbon fiber bundle and method for producing same
KR20200040797A (en) 2017-10-31 2020-04-20 도레이 카부시키가이샤 Carbon fiber bundle and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8236273B2 (en) Method of producing pre-oxidation fiber and carbon fiber
CN109154109B (en) Carbon fiber bundle and method for producing same
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
US3533743A (en) Process for the manufacture of continuous high modulus carbon yarns and monofilaments
JPS62257422A (en) Production of carbon fiber
JPS6211089B2 (en)
JPS58136838A (en) Production of high-performance carbon fiber
JPS62215018A (en) Production of carbon fiber
WO1987002391A1 (en) Process for producing carbon fibers
JP2005060871A (en) Method for producing flame-proofed fiber and method for producing carbon fiber
JPS59137512A (en) Production of high-strength carbon fiber
JP2008019526A (en) Method for producing carbon fiber
JPS59150116A (en) Production of high-strength carbon fiber
JPS62257424A (en) Production of carbon fiber having high strength and elastic modulus
JPS62231026A (en) Production of carbon fiber
JPS6127487B2 (en)
JPS62231027A (en) Production of carbon fiber
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
JPH0424446B2 (en)
JPH0551686B2 (en)
JPS6250574B2 (en)
JPS62257423A (en) Production of high-performance carbon fiber
JPS6254889B2 (en)
JPH02259118A (en) Graphite fiber having high tensile strength
JPS5887321A (en) Continuous production of carbon fiber