JPS6254889B2 - - Google Patents

Info

Publication number
JPS6254889B2
JPS6254889B2 JP57098348A JP9834882A JPS6254889B2 JP S6254889 B2 JPS6254889 B2 JP S6254889B2 JP 57098348 A JP57098348 A JP 57098348A JP 9834882 A JP9834882 A JP 9834882A JP S6254889 B2 JPS6254889 B2 JP S6254889B2
Authority
JP
Japan
Prior art keywords
temperature
yarn
weight
heating
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57098348A
Other languages
Japanese (ja)
Other versions
JPS58214535A (en
Inventor
Minoru Yoshinaga
Nobuyuki Matsubara
Ryuichi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9834882A priority Critical patent/JPS58214535A/en
Publication of JPS58214535A publication Critical patent/JPS58214535A/en
Publication of JPS6254889B2 publication Critical patent/JPS6254889B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアクリル系炭素繊維の製造法に係り、
さらに詳しくは、焼成、特に耐炎化時間の短縮さ
れた高物性、高品質炭素繊維の製造法に関するも
のである。 従来、比強度、比弾性率に優れたアクリル系炭
素繊維は該繊維を補強材とする各種の複合材料と
して、航空、宇宙用材料、釣竿、テニスラケツ
ト、ゴルフシヤフト等のスポーツ用材料などに広
く使用され、さらに自動車、船舶等の素材として
利用されようとしている。 この炭素繊維の製造法としては一般にアクリル
系繊維を前駆体繊維(プレカーサ)として、200
〜400℃の空気に代表される酸化雰囲気中で加熱
して酸化もしくは耐炎化繊維に転換した後、少く
とも1000℃の窒素、アルゴン、ヘリウム等の不活
性ガス雰囲気中で加熱して炭化乃至黒鉛化する方
法が採用されてきた。 しかるに、上記炭素繊維の製造法において、プ
レカーサを酸化雰囲気中で加熱する酸化工程にお
いては、該プレカーサの酸化反応に伴つて有害な
分解ガスやタールもしくはピツチ状物が生成し、
該プレカーサを汚染し、この汚染もしくは汚染に
起因する単糸相互間の融着が得られる炭素繊維の
物性を低下させるし、また、該酸化工程における
プレカーサの化学反応の発熱に伴う部分的蓄熱が
炭素繊維の物性に少なからざる悪影響を及ぼすと
云われている。加えて上記プレカーサの酸化工程
は数時間にも亘る長い加熱時間を要し、炭素繊維
製造における生産性の向上に大きなマイナスとな
つており、前記炭素繊維の物性を低下せしめるこ
となく、酸化に要する時間を短縮することが炭素
繊維製造における大きな問題であると云われてい
る(特開昭57−21521号公報)。 このようなアクリル系炭素繊維の製造における
酸化時間の短縮方法として特公昭53−22576号公
報にはアクリル系繊維を酸化性雰囲気中で予備熱
処理した後、300〜500℃に保たれた酸素含有量が
10%以下の不活性雰囲気中で0.3分以上加熱する
ことにより、炭化に要する時間が短く、相対的に
炭化収率の低下のない炭化可能な繊維が得られる
ことが開示されている。 しかしながら、本発明者らの検討によると上記
方法は、確かに炭化時間の短縮並びに炭化収率の
向上には有効であるが、酸化雰囲気中での予備熱
処理に長時間を要し、工業的な炭素繊維の製造法
としては不十分であることが判明し、鋭意検討を
進めて本発明を為すに到つたものである。 すなわち、本発明の目的とするところは、アク
リル系炭素繊維の製造において、炭素繊維の品
質、性能上最も影響の大きい酸化性雰囲気下での
加熱時間を短縮せんとするにある。他の目的は、
このような酸化時間の短縮によつて得られる炭素
繊維の力学的物性の損われることのない方法を提
供するにある。 本発明に用いられるプレカーサのアクリル系繊
維糸条は引張強度が少くとも6g/d、好ましく
は6.3〜7.8g/dおよび初期引張弾性率が100g/d
以上、好ましくは120〜150g/dの範囲内である
ことが必要であり、このような力学的性質を有す
るアクリル系繊維を用いることによつてはじめて
得られる炭素繊維の力学的性質を目的とする高水
準に保持することが可能となる。そして該アクリ
ル系繊維糸条に具備されるべき特性として、250
℃におけるタール分生成量が該糸条重量当り5重
量%以下であることが重要である。すなわち、該
アクリル系繊維糸条のタール分生成量が5%を越
えるときは後述する酸化工程における糸条の強度
低下あるいは毛羽の発生が著しく、品質性能にす
ぐれた炭素繊維の製造が難しくなるのである。 こゝで、上記250℃におけるタール分生成量は
前駆体繊維(プレカーサ)のアクリル系繊維糸条
を250℃の酸化性雰囲気中で5分間加熱した際の
繊維の重量減をアクリル系繊維糸条重量を基準に
重量%で表わした値である。 また、上記本発明に用いるアクリル系繊維糸条
の製造法としては、次のような製糸工程およびそ
の条件が採用される。 すなわち、アクリロニトリル(AN)を98重量
%、該ANとイタコン酸2重量%以下とからなる
AN系共重合体溶液を湿式もしくは乾湿式紡糸し
凝固、水洗後延伸(もしくは延伸後水洗)し油剤
を付与した後乾燥緻密化し、次いで加圧スチーム
中で二次延伸し、トータル延伸倍率が11〜16倍の
延伸糸条を作成する。かくして得られたアクリル
系繊維糸条を150〜240℃の表面温度を有する加熱
ロール上で2秒〜3分間接触させ、熱処理を施
す。 かくして得られた強度が少くとも6g/d、初
期引張弾性率が100g/d以上のアクリル系繊維糸
条は、先ず約200〜300℃の酸化性雰囲気中におけ
る暴走反応開始温度(Tf)よりも10〜30℃低温
に保たれた酸化性雰囲気中で酸化処理され、次い
で前記酸化性雰囲気温度よりも高温で、かつ300
〜380℃の温度範囲内の不活性雰囲気中で加熱さ
れて、炭化可能な繊維、すなわちいわゆる耐炎化
糸条に転換される。 この場合に、本発明においては、前記酸化性ガ
ス雰囲気温度を前記温度範囲内であつて、アクリ
ル系繊維糸条の暴走反応開始温度(Tf)よりも
10乃至30℃低温の温度に保つことが重量であり、
このような雰囲気温度に設定することにより、前
記酸化性ガス雰囲気および不活性雰囲気中で糸条
を加熱し、炭化可能な繊維に転換するに要する時
間(耐炎化時間)の大巾な短縮が可能なる。特に
該酸化性雰囲気中での加熱時間を10〜30分の範囲
内にすることができ、前述したアクリル系繊維糸
条のタール分生成量が5%以下ということにも関
連して、該酸化性雰囲気中での糸条の分解ガスや
タール状物などに起因する物性低下を著しく抑制
することができる。 こゝで、糸条の暴走反応開始温度(Tf)は次
のごとき測定法によつて求められる値である。予
じめ、デニールを測定した長さが約30mmのアクリ
ル系繊維糸条に針状の熱電対を挿入、狭持させ
せ、酸化性雰囲気炉内に懸吊させる。懸吊された
糸条の繊維軸方向に対して直角に風速約2m/秒
の熱風をあてながら約50℃/分の昇温速度で炉内
を昇温してゆき、熱電対で該糸条の温度を測定す
る。糸条の温度は雰囲気温度の上昇に伴い、徐々
に上昇してゆくが、ある雰囲気温度を超えた時点
で糸条温度は急激に雰囲気温度よりも高温にな
る。この糸条温度が酸化雰囲気温度よりも10℃高
温に達した時の雰囲気温度を測定し、この温度を
該糸条の暴走反応開始温度(Tf)とする。 このTfは糸条の太さおよび糸条の熱履歴をあ
らわす平衡水分率等によつて相違する。たとえ
ば、第1図および第2図はそれぞれ、プレカーサ
を酸化性雰囲気中に曝した場合の時間と平衡水分
率との関係および平衡水分率とその平衡水分率に
おけるTfとの関係を示す図(グラフ)である。
図に示すように、酸化もしくは耐炎化反応の進行
とともに、糸条の平衡水分率は増加するが、それ
に伴いTfの値は大きくなつてゆくことがわか
る。したがつて、耐炎化時間の短縮、すなわち、
高速耐炎化を行うためには、Tf値の変化ととも
に酸化性雰囲気の温度を変更することができる多
段耐炎化を行うのが有利である。この多段耐炎化
を行う場合も本発明に規定する酸化性雰囲気温度
を平衡水分率におけるTfよりも10〜30℃低い温
度にコントロールすることによつて、力学的性質
に優れた炭素繊維を安定して製造することができ
る。 次に、上記230〜300℃の温度範囲内である酸化
性雰囲気中での熱処理によつて得られる繊維糸条
は平衡水分率が5〜7重量%の範囲内にあつて、
耐炎化糸としては酸化が不十分な不完全耐炎化糸
に相当するので、さらに該酸化性雰囲気温度より
も高温で、かつ300〜380℃の温度範囲内の不活性
雰囲気中で加熱し、炭化可能な繊維にする必要が
ある。そして前述のような酸化性雰囲気中で短時
間熱処理することによつて得られた不完全耐炎化
糸は驚くべきことに約1〜3分間の不活性雰囲気
での加熱によつて炭化可能な繊維に転換すること
ができ、該酸化性および不活性雰囲気全体を通し
て最大30分間の熱処理によつて炭化可能な繊維に
転換することができるのである。 さらに、かくして得られる炭化可能な繊維は引
張強度が1〜3g/d、伸度が4〜6%弾性率が
80〜120g/dの範囲内にあり、1400℃の窒素雰囲
気中で加熱し、炭化した場合の加熱減量が48〜55
%の範囲内にあり、高温に於ける安定性がよく炭
化工程における工程通過性にすぐれ、毛羽、糸切
れなどの発生が少なく、品質、性能を向上させる
ことができる。即ち、炭素繊維の物性はこのため
には該炭化可能な繊維は少くとも1000℃の高温不
活性雰囲気中で緊張乃至伸張下に加熱することが
望ましいが、本発明においてはかかる高温雰囲気
下での緊張乃至伸度下で加熱しても毛羽や糸切れ
の発生が少ないのである。しかも、一般に炭素繊
維の製造においてはその製造コストあるいは生産
性の上で炭化収率がより大きいことが望ましいけ
れども、本発明においては前記1400℃の窒素雰囲
気中での加熱減量が約48〜55%であつて、通常の
短時間、耐炎化プロセスを採用する方法としては
達成し得ない炭化収率の向上が可能になるのであ
る。 該炭化可能な繊維糸条の炭化乃至黒鉛化方法及
び条件は特に限定されるものではなく、公知の各
種の方法及び条件、たとえば1000〜2000℃の窒
素、ヘリウム、アルゴン等の不活性雰囲気中で約
0.1〜0.5g/dの張力下に保持して昇温速度200〜
1600℃/分で加熱し、炭化する方法および得られ
た炭素繊維を少くとも2500℃の前記不活性雰囲気
中で1000〜7000℃/分の昇温速度で緊張下に黒鉛
化する方法などがある。 本発明によれば、アクリル系繊維の生産性及び
品質性能上、最も影響の大きい、いわゆる耐炎化
時間を著しく短縮することができ、しかも耐炎化
による品質、性能の低下が小さいこと、得られる
耐炎化糸の物性が相対的に優れており、炭化工程
において緊張乃至伸長を施しても毛羽、糸切れな
どのトラブルが少なく高物性の炭素繊維を安定的
に再現性よく装置することができることさらに平
均水準以上の炭化収率を示すことなどアクリル系
炭素繊維の工業的製造法として卓越した効果を示
す。 さらに、本発明で得られる炭素繊維の物性は前
記耐炎化時間の著しい短縮にも拘わらず、引張強
度が300Kg/mm以上伸度1.2以上弾性率20ton/mm以
上あるアクリル系炭素繊維としての優れた物性を
十分に保有しているのである。 以下、本発明をさらに具体的に実施例により説
明する。 実施例 1 アクリロニトリル(AN)99重量%、イタコン
酸1重量%からなるAN系共重合体の20%ジメチ
ルスルホキシド(DMSO)溶液を紡糸原液とし
て、60%DMSO―水系凝固浴中に吐出し、凝固、
水洗した後、100℃の熱水中で6倍に延伸し、乾
燥緻密化し、120〜150℃の加圧スチーム中で二次
延伸し、トータル延伸倍率が14倍、単糸繊度
1d、単糸本数3000本の延伸糸条を作成した。 このアクリル系繊維糸条を240℃の表面温度を
有する加熱ロール上で2%の収縮を与えながら約
2分間熱処理し、次の物性を有するアクリル系前
駆体繊維糸条(プレカーサ)を得た。 引張強度 6.2g/d 引張伸度 10.1% 初期引張弾性率 120g/d タール分生成量 3.1% Tf 277℃ このプレカーサをまず260℃の空気中で0.7g/d
の張力を与えながら、加熱時間を変更して加熱し
平衡水分率の異なる6種類の予備酸化処理糸を作
成し、得られた予備酸化処理糸をそれぞれ350℃
の窒素雰囲気中で2分間加熱した後、1300℃の窒
素雰囲気中で0.6g/dの張力下に炭化した。かく
して得られた炭素繊維の物性を第1表に示す。
The present invention relates to a method for producing acrylic carbon fiber,
More specifically, the present invention relates to a method for producing high-quality carbon fibers with high physical properties and shortened firing time, particularly flame resistance. Conventionally, acrylic carbon fiber, which has excellent specific strength and specific modulus, has been widely used as a variety of composite materials that use the fiber as a reinforcing material, such as aviation and space materials, and sports materials such as fishing rods, tennis rackets, and golf shafts. Furthermore, it is being used as a material for automobiles, ships, etc. The manufacturing method for this carbon fiber is generally to use acrylic fiber as a precursor fiber (precursor),
After being heated in an oxidizing atmosphere such as air at a temperature of ~400°C to convert it into oxidized or flame-resistant fiber, it is heated in an inert gas atmosphere such as nitrogen, argon, helium, etc. at a temperature of at least 1000°C to carbonize or convert it into graphite. methods have been adopted. However, in the above carbon fiber manufacturing method, in the oxidation step in which the precursor is heated in an oxidizing atmosphere, harmful decomposition gas, tar, or pitch-like substances are generated as a result of the oxidation reaction of the precursor.
This contaminates the precursor and deteriorates the physical properties of the carbon fiber resulting in fusion between single fibers due to this contamination or contamination, and partial heat accumulation due to the heat generated by the chemical reaction of the precursor in the oxidation process. It is said that this has a considerable adverse effect on the physical properties of carbon fiber. In addition, the oxidation process of the precursor requires a long heating time of several hours, which is a big disadvantage in improving productivity in carbon fiber production. It is said that shortening the time is a major problem in carbon fiber production (Japanese Patent Laid-Open No. 57-21521). As a method for shortening the oxidation time in the production of such acrylic carbon fibers, Japanese Patent Publication No. 53-22576 describes a method for preheating acrylic fibers in an oxidizing atmosphere and then maintaining the oxygen content at 300 to 500°C. but
It is disclosed that by heating for 0.3 minutes or more in an inert atmosphere of 10% or less, carbonizable fibers can be obtained in a short time required for carbonization and with relatively no decrease in carbonization yield. However, according to the studies of the present inventors, although the above method is certainly effective in shortening the carbonization time and improving the carbonization yield, it requires a long time for preliminary heat treatment in an oxidizing atmosphere, making it difficult for industrial use. It was found that this method was insufficient as a method for producing carbon fibers, and after extensive research, the present invention was developed. That is, an object of the present invention is to shorten the heating time in an oxidizing atmosphere, which has the greatest influence on the quality and performance of carbon fibers, in the production of acrylic carbon fibers. Other purposes are
The object of the present invention is to provide a method in which the mechanical properties of carbon fibers obtained by shortening the oxidation time are not impaired. The precursor acrylic fiber yarn used in the present invention has a tensile strength of at least 6 g/d, preferably 6.3 to 7.8 g/d, and an initial tensile modulus of 100 g/d.
The above is preferably within the range of 120 to 150 g/d, and the purpose is to achieve the mechanical properties of carbon fiber that can only be obtained by using acrylic fibers having such mechanical properties. This makes it possible to maintain high standards. The characteristics that the acrylic fiber yarn should have are 250
It is important that the amount of tar produced at °C is 5% by weight or less based on the weight of the yarn. In other words, when the amount of tar generated in the acrylic fiber yarn exceeds 5%, the strength of the yarn decreases significantly or fuzz occurs in the oxidation process described below, making it difficult to produce carbon fiber with excellent quality performance. be. Here, the amount of tar produced at 250°C is calculated by calculating the weight loss of the acrylic fiber yarn when heating the precursor fiber (precursor) in an oxidizing atmosphere at 250°C for 5 minutes. It is a value expressed in weight % based on weight. Further, as a method for manufacturing the acrylic fiber yarn used in the present invention, the following yarn spinning process and its conditions are employed. That is, it consists of 98% by weight of acrylonitrile (AN), the AN and 2% by weight or less of itaconic acid.
The AN-based copolymer solution is wet-spun or dry-wet-spun, coagulated, washed with water, stretched (or washed with water after stretching), applied with an oil agent, dried and densified, and then subjected to secondary stretching in pressurized steam, resulting in a total stretching ratio of 11. Create ~16x drawn yarn. The thus obtained acrylic fiber yarn is brought into contact with a heating roll having a surface temperature of 150 to 240° C. for 2 seconds to 3 minutes to undergo heat treatment. The thus obtained acrylic fiber yarn having a strength of at least 6 g/d and an initial tensile modulus of 100 g/d or more is first heated above the runaway reaction initiation temperature (T f ) in an oxidizing atmosphere of about 200 to 300°C. It is also oxidized in an oxidizing atmosphere kept at a low temperature of 10 to 30 degrees Celsius, and then oxidized at a temperature higher than the oxidizing atmosphere temperature and 300 degrees Celsius.
It is heated in an inert atmosphere within a temperature range of ~380°C to convert it into carbonizable fibers, ie so-called flame-resistant yarns. In this case, in the present invention, the oxidizing gas atmosphere temperature is within the above temperature range and is lower than the runaway reaction initiation temperature (T f ) of the acrylic fiber yarn.
It is important to keep the temperature at a low temperature of 10 to 30 degrees Celsius,
By setting the ambient temperature in this manner, it is possible to significantly shorten the time required to heat the yarn in the oxidizing gas atmosphere and inert atmosphere and convert it into carbonizable fibers (flame resistance time). Become. In particular, the heating time in the oxidizing atmosphere can be kept within the range of 10 to 30 minutes, and in connection with the aforementioned fact that the amount of tar produced in the acrylic fiber yarn is 5% or less, the oxidizing It is possible to significantly suppress the deterioration of physical properties caused by decomposed gases, tar-like substances, etc. of the yarn in a hostile atmosphere. Here, the runaway reaction initiation temperature (T f ) of the yarn is a value determined by the following measurement method. A needle-shaped thermocouple is inserted into an acrylic fiber thread having a length of about 30 mm, whose denier has been measured in advance, and the thread is held between the needles and suspended in an oxidizing atmosphere furnace. While blowing hot air at a speed of about 2 m/sec perpendicular to the fiber axis direction of the suspended yarn, the temperature inside the furnace is raised at a rate of about 50°C/min, and the yarn is heated with a thermocouple. Measure the temperature of. The temperature of the yarn gradually increases as the ambient temperature increases, but when the ambient temperature exceeds a certain point, the yarn temperature suddenly becomes higher than the ambient temperature. The ambient temperature when the yarn temperature reaches 10° C. higher than the oxidizing atmosphere temperature is measured, and this temperature is defined as the runaway reaction start temperature (T f ) of the yarn. This T f varies depending on the thickness of the yarn, the equilibrium moisture content representing the thermal history of the yarn, etc. For example, FIGS. 1 and 2 are diagrams showing the relationship between time and equilibrium moisture content when a precursor is exposed to an oxidizing atmosphere, and the relationship between equilibrium moisture content and T f at that equilibrium moisture content, respectively ( graph).
As shown in the figure, as the oxidation or flame resistance reaction progresses, the equilibrium moisture content of the yarn increases, but the value of T f increases accordingly. Therefore, the flame resistance time is shortened, i.e.
In order to carry out rapid flameproofing, it is advantageous to carry out multistage flameproofing in which the temperature of the oxidizing atmosphere can be changed as the T f value changes. Even when performing this multi-stage flameproofing, carbon fibers with excellent mechanical properties can be stabilized by controlling the oxidizing atmosphere temperature specified in the present invention to a temperature 10 to 30°C lower than T f at the equilibrium moisture content. It can be manufactured by Next, the fiber yarn obtained by heat treatment in an oxidizing atmosphere within the temperature range of 230 to 300°C has an equilibrium moisture content of 5 to 7% by weight,
Since the flame-resistant yarn corresponds to an incompletely flame-resistant yarn that is insufficiently oxidized, it is further heated in an inert atmosphere at a temperature higher than the oxidizing atmosphere temperature and within the temperature range of 300 to 380°C to carbonize it. It is necessary to make the fiber possible. Surprisingly, the incomplete flame-retardant yarn obtained by short heat treatment in an oxidizing atmosphere as described above is a fiber that can be carbonized by heating in an inert atmosphere for about 1 to 3 minutes. can be converted into carbonizable fibers by heat treatment for up to 30 minutes throughout the oxidizing and inert atmosphere. Furthermore, the carbonizable fiber thus obtained has a tensile strength of 1 to 3 g/d, an elongation of 4 to 6%, and a modulus of elasticity of 4 to 6%.
It is within the range of 80 to 120g/d, and the heating loss when carbonized by heating in a nitrogen atmosphere at 1400℃ is 48 to 55.
%, has good stability at high temperatures, has excellent passability in the carbonization process, has little occurrence of fuzz, thread breakage, etc., and can improve quality and performance. That is, in order to improve the physical properties of carbon fibers, it is desirable that the carbonizable fibers be heated under tension or tension in an inert atmosphere at a high temperature of at least 1000°C. Even when heated under tension or elongation, there is little occurrence of fuzz or thread breakage. Moreover, in the production of carbon fibers, it is generally desirable to have a higher carbonization yield in terms of production cost or productivity, but in the present invention, the loss on heating in a nitrogen atmosphere at 1400°C is approximately 48 to 55%. This makes it possible to improve the carbonization yield, which cannot be achieved using conventional short-time flame-retardant processes. The method and conditions for carbonizing or graphitizing the carbonizable fiber yarn are not particularly limited, and various known methods and conditions may be used, for example, in an inert atmosphere of nitrogen, helium, argon, etc. at 1000 to 2000°C. about
Hold under tension of 0.1~0.5g/d and heat up rate 200~
Examples include a method of heating and carbonizing at 1600°C/min, and a method of graphitizing the obtained carbon fiber under tension at a heating rate of 1000 to 7000°C/min in the inert atmosphere at at least 2500°C. . According to the present invention, it is possible to significantly shorten the so-called flame resistance time, which has the greatest impact on the productivity and quality performance of acrylic fibers, and the quality and performance degradation due to flame resistance is small. The physical properties of carbonized fibers are relatively excellent, and even when tensioned or stretched during the carbonization process, there are no problems such as fluffing or yarn breakage, and carbon fibers with high physical properties can be manufactured stably and with good reproducibility. This method exhibits outstanding effects as an industrial manufacturing method for acrylic carbon fibers, such as exhibiting carbonization yields that exceed standards. Furthermore, the physical properties of the carbon fiber obtained by the present invention are excellent as an acrylic carbon fiber having a tensile strength of 300 Kg/mm or more and an elongation of 1.2 or more and an elastic modulus of 20 ton/mm or more, despite the remarkable shortening of the flame resistance time. It possesses sufficient physical properties. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 A 20% dimethyl sulfoxide (DMSO) solution of an AN copolymer consisting of 99% by weight of acrylonitrile (AN) and 1% by weight of itaconic acid was discharged as a spinning stock solution into a 60% DMSO-water coagulation bath and coagulated. ,
After washing with water, it is stretched 6 times in hot water at 100℃, dried and densified, and then subjected to secondary stretching in pressurized steam at 120-150℃, with a total stretching ratio of 14 times and single yarn fineness.
1d, drawn yarn with 3000 single yarns was created. This acrylic fiber thread was heat-treated for about 2 minutes while giving 2% shrinkage on a heating roll having a surface temperature of 240°C to obtain an acrylic precursor fiber thread (precursor) having the following physical properties. Tensile strength 6.2g/d Tensile elongation 10.1% Initial tensile modulus 120g/d Tar production 3.1% T f 277℃ This precursor was first heated to 0.7g/d in air at 260℃.
While applying a tension of
After heating for 2 minutes in a nitrogen atmosphere at 1300° C., carbonization was performed under a tension of 0.6 g/d in a nitrogen atmosphere at 1300°C. The physical properties of the carbon fiber thus obtained are shown in Table 1.

【表】 比較例 1 実施例1において、AN98重量%とメタクリル
酸2重量%のAN系共重合体の20%DMSO溶液を
紡糸原液として使用し、他の条件は実施例1と同
様にしてアクリル系繊維束を作成した。この繊維
束の物性を測定した結果、次の通りであつた。 引張強度(g/d) 5.6 引張伸度(%) 10.8 初期弾性率(g/d) 90 タール分生成率(%) 2.5 繊度(d) 1 フイラメント数(本) 1000 次いで、この繊維束を実施例1に準じて21分間
酸化処理して、平衡水分率が6%の酸化繊維束を
作成し、他は実施例1と同様に窒素雰囲気中で加
熱後、炭化した。得られた炭素繊維は次の物性を
有していた。 引張強度(Kg/mm2) 280 伸度(%) 1.5 弾性率(ton/mm2) 18.5 炭化収率(%) 53.2 比較例 2 実施例1において、240℃の表面温度を有する
加熱ロールによつて熱処理する前(未熱処理)の
アクリル系繊維束の物性を測定した結果、次の通
りであつた。 引張強度(g/d) 6.2 引張伸度(%) 10.3 初期弾性率(g/d) 124 タール分生成量(%) 5.8 この糸条を実施例1と同様に酸化処理、窒素雰
囲気中熱処理および炭化処理した。得られた炭素
繊維の物性は次の通りであつた。 引張強度(Kg/mm2) 255 〃伸度(%) 1.1 弾性率(ton/mm2) 23.2 炭化収率(%) 53.8 実施例 2 実施例1において、酸化処理温度および時間を
第2表に示す通り変更し、他は同様にして焼成し
て5種類の炭素繊維を得た。これらの炭素繊維の
物性および炭化収率を第2表に示す。
[Table] Comparative Example 1 In Example 1, a 20% DMSO solution of an AN-based copolymer containing 98% by weight of AN and 2% by weight of methacrylic acid was used as the spinning stock solution, and the other conditions were the same as in Example 1. A system fiber bundle was created. The physical properties of this fiber bundle were measured, and the results were as follows. Tensile strength (g/d) 5.6 Tensile elongation (%) 10.8 Initial modulus (g/d) 90 Tar production rate (%) 2.5 Fineness (d) 1 Number of filaments (pieces) 1000 Next, this fiber bundle was processed. Oxidation treatment was carried out for 21 minutes according to Example 1 to produce an oxidized fiber bundle having an equilibrium moisture content of 6%, and the rest was heated in a nitrogen atmosphere and carbonized in the same manner as in Example 1. The obtained carbon fiber had the following physical properties. Tensile strength (Kg/mm 2 ) 280 Elongation (%) 1.5 Elastic modulus (ton/mm 2 ) 18.5 Carbonization yield (%) 53.2 Comparative example 2 In Example 1, a heating roll with a surface temperature of 240°C was used. The physical properties of the acrylic fiber bundle before heat treatment (non-heat treatment) were measured, and the results were as follows. Tensile strength (g/d) 6.2 Tensile elongation (%) 10.3 Initial elastic modulus (g/d) 124 Tar production amount (%) 5.8 This yarn was subjected to oxidation treatment, heat treatment in a nitrogen atmosphere, and Carbonized. The physical properties of the obtained carbon fiber were as follows. Tensile strength (Kg/mm 2 ) 255 Elongation (%) 1.1 Elastic modulus (ton/mm 2 ) 23.2 Carbonization yield (%) 53.8 Example 2 In Example 1, the oxidation treatment temperature and time are shown in Table 2. Five types of carbon fibers were obtained by changing as shown and firing in the same manner except for the following. Table 2 shows the physical properties and carbonization yield of these carbon fibers.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアクリル系前駆体繊維糸条を240℃の
酸化性雰囲気中で加熱した場合の加熱時間とそれ
に対応する平衡水分率の関係を示す図および第2
図は該糸条の平衡水分率とそれに対応するTf
の関係を示す図である。
Figure 1 shows the relationship between the heating time and the corresponding equilibrium moisture content when acrylic precursor fiber yarn is heated in an oxidizing atmosphere at 240°C, and Figure 2 shows the relationship between the heating time and the corresponding equilibrium moisture content.
The figure shows the relationship between the equilibrium moisture content of the yarn and the corresponding T f .

Claims (1)

【特許請求の範囲】[Claims] 1 アクリロニトリル98重量%以上と、イタコン
酸2重量%以下とから構成するアクリロニトリル
系共重合体溶液を湿式もしくは乾湿式紡糸し、そ
の凝固糸条に水洗、延伸、油剤付与を施した後、
乾燥緻密化し、次いで加圧スチーム中、全延伸倍
率11〜16の二次延伸を施し、しかる後表面温度が
150〜240℃の加熱ロールに接触させることによつ
て得られる、引張強度が少くとも6g/d、初期
引張弾性率が100g/d以上および250℃における
タール分生成量が5%以下であるアクリロニトリ
ル系繊維糸条を230〜300℃の酸化性雰囲気中にお
ける該糸条の暴走反応開始温度(Tf)よりも10
〜30℃低温下に7〜30分間加熱して平衡水分率が
5〜7重量%の耐炎化糸に転換した後、前記酸化
雰囲気温度よりも高温で300〜380℃の温度範囲内
にある不活性雰囲気中、1〜3分間加熱して炭化
可能な繊維糸条に転換し、しかる後炭化乃至黒鉛
化することを特徴とするアクリル系炭素繊維の製
造法。
1 Wet or dry-wet spin an acrylonitrile copolymer solution composed of 98% by weight or more of acrylonitrile and 2% by weight or less of itaconic acid, and after washing the coagulated yarn with water, stretching, and applying an oil agent,
After drying and densification, secondary stretching was performed in pressurized steam at a total stretching ratio of 11 to 16, and after that the surface temperature
Acrylonitrile having a tensile strength of at least 6 g/d, an initial tensile modulus of 100 g/d or more, and a tar production amount of 5% or less at 250°C, obtained by contacting with a heating roll at 150 to 240°C. 10 below the runaway reaction initiation temperature (T f ) of the yarn in an oxidizing atmosphere of 230 to 300°C.
After heating at a low temperature of ~30℃ for 7 to 30 minutes to convert it into a flame-resistant yarn with an equilibrium moisture content of 5 to 7% by weight, it is heated at a temperature of 300 to 380℃ at a temperature higher than the oxidizing atmosphere temperature. 1. A method for producing acrylic carbon fibers, which comprises heating in an active atmosphere for 1 to 3 minutes to convert the fibers into carbonizable fiber threads, followed by carbonization or graphitization.
JP9834882A 1982-06-08 1982-06-08 Production of acrylic type carbon fiber Granted JPS58214535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9834882A JPS58214535A (en) 1982-06-08 1982-06-08 Production of acrylic type carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9834882A JPS58214535A (en) 1982-06-08 1982-06-08 Production of acrylic type carbon fiber

Publications (2)

Publication Number Publication Date
JPS58214535A JPS58214535A (en) 1983-12-13
JPS6254889B2 true JPS6254889B2 (en) 1987-11-17

Family

ID=14217390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9834882A Granted JPS58214535A (en) 1982-06-08 1982-06-08 Production of acrylic type carbon fiber

Country Status (1)

Country Link
JP (1) JPS58214535A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185813A (en) * 1984-03-01 1985-09-21 Nikkiso Co Ltd Spinning of acrylic fiber for making carbon fiber
JPS6197422A (en) * 1984-10-16 1986-05-15 Nikkiso Co Ltd High-strength carbon fiber and its production
CN102392329B (en) * 2011-09-15 2013-08-14 西安康本材料有限公司 Method for pre-oxidizing polyacrylonitrile-based protofilament

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957118A (en) * 1972-10-11 1974-06-03
JPS4981626A (en) * 1972-12-11 1974-08-06
JPS5048228A (en) * 1973-09-08 1975-04-30
JPS5175124A (en) * 1974-12-25 1976-06-29 Toray Industries TANSOSENINOSEIZOHOHO
JPS53139824A (en) * 1977-05-06 1978-12-06 Mitsubishi Rayon Co Ltd Production of acrylonitrile fiber for carbon fiber production
JPS5742926A (en) * 1980-08-22 1982-03-10 Mitsubishi Rayon Co Ltd Continuous production of carbon fiber
JPS5742925A (en) * 1980-08-22 1982-03-10 Toho Rayon Co Ltd Production of high-performance carbon fiber strand

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957118A (en) * 1972-10-11 1974-06-03
JPS4981626A (en) * 1972-12-11 1974-08-06
JPS5048228A (en) * 1973-09-08 1975-04-30
JPS5175124A (en) * 1974-12-25 1976-06-29 Toray Industries TANSOSENINOSEIZOHOHO
JPS53139824A (en) * 1977-05-06 1978-12-06 Mitsubishi Rayon Co Ltd Production of acrylonitrile fiber for carbon fiber production
JPS5742926A (en) * 1980-08-22 1982-03-10 Mitsubishi Rayon Co Ltd Continuous production of carbon fiber
JPS5742925A (en) * 1980-08-22 1982-03-10 Toho Rayon Co Ltd Production of high-performance carbon fiber strand

Also Published As

Publication number Publication date
JPS58214535A (en) 1983-12-13

Similar Documents

Publication Publication Date Title
US3529934A (en) Process for the preparation of carbon fibers
US4284615A (en) Process for the production of carbon fibers
JP5722991B2 (en) Carbon fiber manufacturing method and carbon fiber precursor fiber
US4113847A (en) Process for producing carbon fibers
US4452860A (en) Carbon fibers and process for producing the same
US3533743A (en) Process for the manufacture of continuous high modulus carbon yarns and monofilaments
JP2013023778A (en) Method for manufacturing carbon fiber bundle
US4009991A (en) Process for producing carbon fibers
JPS6254889B2 (en)
JP5072668B2 (en) Precursor fiber, and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JP3002549B2 (en) Manufacturing method of graphite fiber
US4295844A (en) Process for the thermal stabilization of acrylic fibers
JP4088500B2 (en) Carbon fiber manufacturing method
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JPS58214525A (en) Production of carbon fiber
WO1987002391A1 (en) Process for producing carbon fibers
GB1578492A (en) Production of carbon fibres
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JP4919410B2 (en) Carbon fiber manufacturing method
JP2930166B2 (en) Carbon fiber production method
JPS58174630A (en) Production of acrylic carbon fiber
JP2007332498A (en) Method for producing carbon fiber bundle
JPH026847B2 (en)
JP3002698B2 (en) Manufacturing method of graphite fiber