JP2008019526A - Method for producing carbon fiber - Google Patents

Method for producing carbon fiber Download PDF

Info

Publication number
JP2008019526A
JP2008019526A JP2006191975A JP2006191975A JP2008019526A JP 2008019526 A JP2008019526 A JP 2008019526A JP 2006191975 A JP2006191975 A JP 2006191975A JP 2006191975 A JP2006191975 A JP 2006191975A JP 2008019526 A JP2008019526 A JP 2008019526A
Authority
JP
Japan
Prior art keywords
acrylonitrile
fiber
flameproofing
tow
precursor fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006191975A
Other languages
Japanese (ja)
Other versions
JP5081409B2 (en
Inventor
Takahiko Kunisawa
考彦 國澤
Naoki Sugiura
直樹 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006191975A priority Critical patent/JP5081409B2/en
Publication of JP2008019526A publication Critical patent/JP2008019526A/en
Application granted granted Critical
Publication of JP5081409B2 publication Critical patent/JP5081409B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing carbon fiber, by which the carbon fiber having good quality can be produced in high productivity while being a thick tow. <P>SOLUTION: The method for producing the carbon fiber has a step for carrying out flame retardant treatment of an acrylonitrile-based precursor fiber of a straight tow having a filament count of ≥49,000 and a crimp number of ≤5/25 mm in oxidative atmosphere at 200-300°C, and a step for carrying out carbonization treatment of the fiber subjected to the flame retardant treatment in an inert atmosphere at ≥1,000°C. The time for the flame retardant treatment is ≤100 min and the width W of the tow of the acrylonitrile-based precursor fiber under the flame retardant treatment is regulated according to the density of the acrylonitrile-based precursor fiber. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は炭素繊維の製造方法に関するものである。   The present invention relates to a method for producing carbon fiber.

炭素繊維の製造方法は、一般的に、アクリロニトリル系前駆体繊維を200〜300℃の酸化性雰囲気中で加熱処理する耐炎化工程によって耐炎化繊維にした後、引き続いて1,000℃以上の不活性雰囲気中で加熱処理する炭素化工程によって炭素繊維を製造する。このようにして得られた炭素繊維は、その優れた力学的性質により、航空宇宙用途を始め、スポーツ・レジャー用途等の高性能複合材料の補強繊維素材として広く利用されている。また、近年では自動車、船舶、建材用途等の一般産業分野の用途への要求が増加している。   In general, a carbon fiber is produced by making an acrylonitrile-based precursor fiber into a flame-resistant fiber by a flame-proofing process in which heat treatment is performed in an oxidizing atmosphere at 200 to 300 ° C. Carbon fibers are produced by a carbonization process in which heat treatment is performed in an active atmosphere. The carbon fiber thus obtained is widely used as a reinforcing fiber material for high-performance composite materials for aerospace use, sports / leisure use, etc. due to its excellent mechanical properties. In recent years, demands for applications in general industrial fields such as automobiles, ships, and building materials are increasing.

しかしながら、従来のスモールトウ(総繊度21,000dtex未満)の炭素繊維は物性、品質的には優れているが、価格が高いために、コストを重視する産業用途分野での多用化は十分に実現できていない状況であった。一方、太物トウであるラージトウ炭素繊維は、価格は低く設定されているものの、性能、品質の面から、やはり産業用途分野での使用は、限定されるものであった。したがって、高品質と低価格が両立する炭素繊維は、多くの市場で望まれているものである。   However, the conventional small tow (total fineness less than 21,000 dtex) carbon fiber is excellent in physical properties and quality, but because of its high price, it can be fully used in industrial applications where cost is important. It was not possible. On the other hand, large tow carbon fiber, which is a thick tow, is set at a low price, but its use in the industrial application field is still limited in terms of performance and quality. Accordingly, carbon fibers that achieve both high quality and low price are desired in many markets.

炭素繊維の低コスト化のためには、製造工程中の処理時間の最も長い耐炎化工程の生産性を向上することが必要である。しかし、耐炎化工程においては、アクリロニトリル系前駆体繊維の酸化反応による激しい発熱があるためにアクリロニトリル系前駆体繊維内部に蓄熱し、処理温度に対して、アクリロニトリル系前駆体繊維内部の温度が極端に高くなる。そのため、スモーク等の問題が発生しやすくなり、耐炎化処理温度を下げて生産を行わなければならず、したがって十分に耐炎化の進行した耐炎化繊維を得るのに時間を要していた。   In order to reduce the cost of carbon fibers, it is necessary to improve the productivity of the flameproofing process having the longest processing time during the manufacturing process. However, in the flameproofing process, there is intense heat generation due to the oxidation reaction of the acrylonitrile precursor fiber, so heat is stored inside the acrylonitrile precursor fiber, and the temperature inside the acrylonitrile precursor fiber is extremely higher than the processing temperature. Get higher. For this reason, problems such as smoke are likely to occur, and production must be carried out at a reduced flameproofing temperature. Therefore, it takes time to obtain flameproofed fibers that have been sufficiently flameproofed.

炭素繊維の低価格化の手法として、太物タイプのアクリル繊維を効率良く焼成することを挙げることができる。しかしながら太物トウではスモールトウよりも蓄熱が多くなるためにスモールトウより耐炎化処理温度を下げて生産を行わなければならず、十分な耐炎化繊維を得るためには100分を越えるような長時間の処理が必要であった。したがって、太物トウを効率良く焼成することは、スモールトウより困難が伴うものであった。   As a method for reducing the price of carbon fibers, it is possible to efficiently fire thick-type acrylic fibers. However, thick tow has more heat storage than small tow, so it must be produced at a lower flameproofing temperature than small tow, and in order to obtain sufficient flameproof fiber, it takes longer than 100 minutes. Time processing was needed. Therefore, it has been more difficult to fire thick tow efficiently than small tow.

太物トウにおけるこのような問題点を解決すべく、特開平10−266024号公報(特許文献1)には、耐炎化処理時におけるアクリロニトリル系前駆体繊維の断面形状を、糸幅/糸厚み比で規定される平均扁平率を略矩形に保つ方法が開示されているが、得られる引張強度は低く高性能とは言い難い。   In order to solve such problems in the thick tow, Japanese Patent Application Laid-Open No. 10-266024 (Patent Document 1) describes the cross-sectional shape of the acrylonitrile-based precursor fiber at the time of the flameproofing treatment as the yarn width / yarn thickness ratio. Is disclosed, but the tensile strength obtained is low and it is difficult to say high performance.

また、炭素繊維の製造において、1000℃を超える温度で熱処理をする炭素化炉の設備およびその維持費、さらに動力費は、製造コストを上昇させる大きな要因であり、炭素化炉のコンパクト化はコスト削減に非常に効果があるものと考えられる。
特開平10−266024号公報
In addition, in the production of carbon fiber, the equipment of the carbonization furnace that heat-treats at a temperature exceeding 1000 ° C., its maintenance cost, and the power cost are the major factors that increase the production cost, and the downsizing of the carbonization furnace is a cost. The reduction is considered to be very effective.
Japanese Patent Laid-Open No. 10-266024

本発明は、太物トウでありながらも、品質の良い炭素繊維を生産性よく得ることができる炭素繊維の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the carbon fiber which can obtain a high quality carbon fiber with sufficient productivity, though it is a thick tow.

本発明は、フィラメント数49,000以上の捲縮が5山/25mm以下のトウからなるアクリロニトリル系前駆体繊維を、酸化性雰囲気中200〜300℃で耐炎化処理する工程と、耐炎化処理された繊維を不活性雰囲気中1,000℃以上で炭素化処理する工程を有する炭素繊維の製造方法であって、
前記耐炎化処理の時間が100分以下であり、かつ
前記耐炎化処理中のアクリロニトリル系前駆体繊維のトウ幅Wの制御を、アクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間は、下記式(1)に従って制御し、1.25〜1.30g/cm3である間は下記式(2)に従って制御し、1.30〜1.40g/cm3である間は下記式(3)に従って制御する炭素繊維の製造方法を提供するものである。
The present invention includes a step of flameproofing an acrylonitrile-based precursor fiber composed of tow having a number of filaments of 49,000 or more and 5 threads / 25 mm or less in an oxidizing atmosphere at 200 to 300 ° C. A method for producing carbon fiber comprising a step of carbonizing the treated fiber at 1,000 ° C. or higher in an inert atmosphere,
The flameproofing treatment time is 100 minutes or less, and the control of the tow width W of the acrylonitrile precursor fiber during the flameproofing treatment, the density of the acrylonitrile precursor fiber is 1.15 to 1.25 g / cm. during a 3 controls according to the following formula (1), while a 1.25~1.30g / cm 3 controls according to the following formula (2), is 1.30~1.40g / cm 3 In the meantime, a method for producing a carbon fiber controlled according to the following formula (3) is provided.

0.065×A1/2≦W≦0.083×A1/2 式(1)
0.053×A1/2≦W≦0.075×A1/2 式(2)
0.040×A1/2≦W≦0.063×A1/2 式(3)
(式中、Aはアクリロニトリル系前駆体繊維の総繊度(dtex)を表す。)
また本発明は、フィラメント数49,000以上の捲縮が5山/25mm以下のトウからなるアクリロニトリル系前駆体繊維を、酸化性雰囲気中200〜300℃で耐炎化処理する工程と、耐炎化処理された繊維を不活性雰囲気中1,000℃以上で炭素化処理する工程を有する炭素繊維の製造方法であって、
前記耐炎化処理の時間が100分以下であり、かつ
前記耐炎化処理中のアクリロニトリル系前駆体繊維のトウ幅Wの制御を、アクリロニトリル系前駆体繊維の密度(ρ)が1.15〜1.40g/cm3の範囲において、下記式(4)に従って行う炭素繊維の製造方法を提供するものである。
0.065 × A 1/2 ≦ W ≦ 0.083 × A 1/2 Formula (1)
0.053 × A 1/2 ≦ W ≦ 0.075 × A 1/2 formula (2)
0.040 × A 1/2 ≦ W ≦ 0.063 × A 1/2 formula (3)
(In the formula, A represents the total fineness (dtex) of the acrylonitrile-based precursor fiber.)
The present invention also includes a step of flameproofing an acrylonitrile-based precursor fiber composed of tows having a number of filaments of 49,000 or more and 5 threads / 25 mm or less in an oxidizing atmosphere at 200 to 300 ° C., and flameproofing treatment. A method for producing carbon fiber comprising a step of carbonizing the produced fiber at 1,000 ° C. or higher in an inert atmosphere,
The flameproofing treatment time is 100 minutes or less, and the tow width W of the acrylonitrile precursor fiber during the flameproofing treatment is controlled by adjusting the density (ρ) of the acrylonitrile precursor fiber to 1.15 to 1.5. In the range of 40 g / cm 3, the present invention provides a carbon fiber production method carried out according to the following formula (4).

Figure 2008019526
Figure 2008019526

(式中、dはアクリロニトリル系前駆体繊維の単繊維繊度(dtex)、Aはアクリロニトリル系前駆体繊維のトウ総繊度(dtex)、ρは耐炎化工程糸の密度(g/cm3)を表す。)
また本発明は、前記耐炎化処理において、多数のアクリロニトリル系前駆体繊維を並列にしたシート状物を複数の耐炎化炉を通過させ、
最初に耐炎化炉に導入する際の前記シート物の幅Sw1と、最終の耐炎化炉から出る前記シート状物の幅Sw2との比(Sw2/Sw1)が下式(5)の範囲にある前記のいずれかの製造方法を提供するものである。
(Where d is the single fiber fineness (dtex) of the acrylonitrile-based precursor fiber, A is the tow total fineness (dtex) of the acrylonitrile-based precursor fiber, and ρ is the density (g / cm 3 ) of the flameproofing process yarn. .)
Further, in the flameproofing treatment, the present invention allows a plurality of acrylonitrile-based precursor fibers arranged in parallel to pass through a plurality of flameproofing furnaces,
The ratio (Sw2 / Sw1) of the width Sw1 of the sheet material when initially introduced into the flameproofing furnace and the width Sw2 of the sheet material coming out of the final flameproofing furnace is in the range of the following formula (5). Any one of the manufacturing methods described above is provided.

0.50≦Sw2/Sw1≦0.85 式(5)
さらに本発明は、前記耐炎化処理において、トウ幅Wの均一性を示す下記式により得られるCV値が10%以下である上記のいずれかの炭素繊維の製造方法を提供するものである。
0.50 ≦ Sw2 / Sw1 ≦ 0.85 Formula (5)
Furthermore, the present invention provides a method for producing any one of the above carbon fibers, wherein the CV value obtained by the following formula showing the uniformity of the tow width W is 10% or less in the flameproofing treatment.

CV値(%)=(標準偏差/平均値)×100         CV value (%) = (standard deviation / average value) × 100

本発明によれば、太物トウ(ラージトウ)でありながらも、高品質の炭素繊維を製造でき、かつ生産性の高い炭素繊維の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, although it is thick tow | toe (large tow), a high quality carbon fiber can be manufactured and the manufacturing method of carbon fiber with high productivity can be provided.

本発明のアクリロニトリル系前駆体繊維は、アクリロニトリル系重合体として、アクリロニトリル90質量%以上を含有する重合体を使用することが好ましい。アクリロニトリルは95質量%以上であることがより好ましい。このアクリロニトリルの単独重合体または共重合体あるいはこれらの重合体の混合したものを使用できる。アクリロニトリル共重合体は、アクリロニトリルと共重合し得る単量体とアクリロニトリルとの共重合生成物である。アクリロニトリルと共重合し得る単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、(メタ)アクリル酸、イタコン酸、クロトン酸等の重合性の二重結合を有する酸類およびそれらの塩類、マレイン酸イミド、フェニルマレイミド等のイミド系不飽和単量体、(メタ)アクリルアミド等のアミド系不飽和単量体、スチレン、α−メチルスチレン等のスチレン系単量体、酢酸ビニル等のビニル系単量体、更にはスチレンスルホン酸ソーダ、アリルスルホン酸ソーダ、β−スチレンスルホン酸ソーダ、メタアリルスルホン酸ソーダ等のスルホン基を含む重合性不飽和単量体、2−ビニルピリジン、2−メチル−5−ビニルピリジン等のピリジン基を含む重合性不飽和単量体等が挙げられるが、これらに限定されるものではない。   In the acrylonitrile-based precursor fiber of the present invention, a polymer containing 90% by mass or more of acrylonitrile is preferably used as the acrylonitrile-based polymer. The acrylonitrile is more preferably 95% by mass or more. A homopolymer or copolymer of acrylonitrile or a mixture of these polymers can be used. The acrylonitrile copolymer is a copolymerized product of a monomer that can be copolymerized with acrylonitrile and acrylonitrile. Monomers that can be copolymerized with acrylonitrile include (meth) acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate. , Vinyl halides such as vinyl chloride, vinyl bromide, vinylidene chloride, acids having polymerizable double bonds such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts, maleic acid imide, phenylmaleimide Imide unsaturated monomers such as (meth) acrylamide, styrene monomers such as styrene and α-methylstyrene, vinyl monomers such as vinyl acetate, Styrene sulfonic acid soda, allyl sulfonic acid soda, β-styrene sulfonic acid soda, methallyl sulphone Examples thereof include polymerizable unsaturated monomers containing a sulfone group such as sodium phonate, and polymerizable unsaturated monomers containing a pyridine group such as 2-vinylpyridine and 2-methyl-5-vinylpyridine. It is not limited to.

重合方法としては、例えば水溶液におけるレドックス重合、不均一系における懸濁重合、分散剤を使用した乳化重合等が挙げられるが、これらに限定されるものではない。   Examples of the polymerization method include, but are not limited to, redox polymerization in an aqueous solution, suspension polymerization in a heterogeneous system, and emulsion polymerization using a dispersant.

アクリロニトリル系重合体溶液は、湿式紡糸、乾湿式紡糸等の公知のアクリロニトリル系前駆体繊維の紡糸方法を利用することによって製造することができる。例えば、通常の湿式紡糸においては、紡糸、延伸、水洗、油剤処理、乾燥緻密化の後で、必要に応じて乾熱延伸、スチーム延伸等の後延伸を施す。   The acrylonitrile polymer solution can be produced by utilizing a known acrylonitrile precursor fiber spinning method such as wet spinning or dry wet spinning. For example, in normal wet spinning, after spinning, stretching, washing with water, oil agent treatment, and drying densification, post-stretching such as dry heat stretching and steam stretching is performed as necessary.

本発明におけるアクリロニトリル系前駆体繊維は、不純物、内部ボイド、クレーズやクラック等の表面欠陥ができる限り少ないことが好ましい。   The acrylonitrile-based precursor fiber in the present invention preferably has as few surface defects as possible such as impurities, internal voids, crazes and cracks.

また、本発明におけるアクリロニトリル系前駆体繊維は、捲縮が5山/25mm以下のトウを使用する。捲縮が5山/25mmを超えるとクリンプと称される座屈変形が付与され、この座屈変形は本質的にアクリロニトリル系前駆体繊維へ機械的ダメージを与えるものである。すなわち、捲縮は、炭素繊維製造工程において単糸切れによる毛羽の発生を誘発し、ロールへの巻き付き等のトラブルや得られる炭素繊維の品位、性能の低下を招く。   In addition, the acrylonitrile-based precursor fiber in the present invention uses a tow having a crimp of 5 peaks / 25 mm or less. When the crimp exceeds 5 crests / 25 mm, a buckling deformation called a crimp is imparted, and this buckling deformation essentially gives mechanical damage to the acrylonitrile-based precursor fiber. That is, crimping induces generation of fluff due to single yarn breakage in the carbon fiber production process, leading to troubles such as winding around a roll, and deterioration of the quality and performance of the obtained carbon fiber.

本発明におけるアクリロニトリル系前駆体繊維の単糸繊度(単繊維繊度)は0.5〜1.3dtexであることが好ましい。単糸繊度が低すぎるとアクリロニトリル系前駆体繊維を安定して紡糸することが難しくなる。逆に単糸繊度が高すぎると断面二重構造が顕著となり、高性能である炭素繊維が得られにくい。好ましい単糸繊度の範囲は、0.6〜1.25dtexであり、より好ましくは0.7〜1.20dtexである。   The single yarn fineness (single fiber fineness) of the acrylonitrile-based precursor fiber in the present invention is preferably 0.5 to 1.3 dtex. If the single yarn fineness is too low, it becomes difficult to stably spin the acrylonitrile-based precursor fiber. On the other hand, if the single yarn fineness is too high, a double cross-sectional structure becomes remarkable and it is difficult to obtain high-performance carbon fibers. The range of a preferable single yarn fineness is 0.6-1.25 dtex, More preferably, it is 0.7-1.20 dtex.

本発明におけるアクリロニトリル系前駆体繊維のフィラメント数は、49,000本以上であることが必要であり、これにより生産性が向上できる。   In the present invention, the number of filaments of the acrylonitrile-based precursor fiber needs to be 49,000 or more, which can improve productivity.

一般に炭素繊維製造用のアクリロニトリル系前駆体繊維を製造する工程の速度と、そのアクリロニトリル系前駆体繊維を焼成して炭素繊維にする焼成工程の速度とは大幅に異なるために、アクリロニトリル系前駆体繊維は一旦ボビンに巻き上げられた状態、又は、箱の中に折りたたみ積層されて収容された状態(ケンス収容という)で、焼成工程に供給される。   In general, the speed of the process for producing acrylonitrile-based precursor fibers for producing carbon fibers is significantly different from the speed of the firing process for firing the acrylonitrile-based precursor fibers into carbon fibers. Is supplied to the firing process once wound up on the bobbin or in a state of being folded and stacked in a box (referred to as cans accommodation).

本発明におけるアクリロニトリル系前駆体繊維は、ケンス収容時には1本のトウの形態を保ち、容器から引き出して使用するときには複数本の小トウに分割可能な幅方向における分割能を有するものであってもよい。   The acrylonitrile-based precursor fiber in the present invention maintains the form of a single tow when containing cans, and has a splitting ability in the width direction that can be divided into a plurality of small tows when used by being pulled out from a container. Good.

このようにして得られたアクリロニトリル系前駆体繊維は、酸化性雰囲気の例えば熱風循環型加熱炉からなる耐炎化炉に供給され耐炎化処理を施される。この耐炎化処理が炭素繊維の製造工程中で最も処理時間が長いため、本発明では、炭素繊維製造の低コスト化のために、耐炎化処理を短時間で行い、さらに、その処理に投入する前駆体繊維のトウ幅を耐炎化中の繊維の密度に応じて制御し、生産性を向上することを図った。   The acrylonitrile-based precursor fiber thus obtained is supplied to a flameproofing furnace composed of, for example, a hot air circulation type heating furnace in an oxidizing atmosphere and subjected to a flameproofing treatment. Since this flameproofing treatment takes the longest processing time in the production process of carbon fiber, in the present invention, in order to reduce the cost of carbon fiber production, the flameproofing treatment is carried out in a short time and further input into the treatment. The tow width of the precursor fiber was controlled in accordance with the density of the fiber being flame-resistant to improve productivity.

耐炎化処理では、耐炎化中の繊維糸条はそれ自体が発熱することにより、その繊維内部で急激に蓄熱される。そこで、耐炎化中の繊維がこれによって切断しないように、耐炎化中の繊維にあてる熱風の温度は、耐炎化中の繊維糸条の蓄熱切断温度より低い温度にコントロールしなければならない。   In the flameproofing treatment, the fiber yarn being flameproofed itself generates heat so that heat is rapidly stored inside the fiber. Therefore, the temperature of the hot air applied to the fiber being flame-resistant must be controlled to be lower than the heat storage cutting temperature of the fiber yarn being flame-resistant so that the fiber being flame-resistant does not cut by this.

一方、蓄熱切断温度は、耐炎化反応が進行した繊維ほど高くなり、また、その蓄熱切断温度は、耐炎化処理の工程糸の密度と相関し、密度が高くなるに従い高くなる。さらに、耐炎化中の繊維の蓄熱切断温度は、繊維の投入密度(単位トウ幅あたりの繊度)にも依存し、投入密度が高い、すなわちトウ幅が狭いほど蓄熱切断温度は低下する。   On the other hand, the heat storage cutting temperature becomes higher as the fiber in which the flameproofing reaction has progressed, and the heat storage cutting temperature correlates with the density of the process yarn of the flameproofing treatment, and increases as the density increases. Furthermore, the heat storage cutting temperature of the fiber during flame resistance also depends on the input density (fineness per unit tow width) of the fiber, and the higher the input density, that is, the narrower the tow width, the lower the heat storage cutting temperature.

以上のように、耐炎化の反応速度は温度が高いほど大きく、投入密度が高いほど大きい。したがって、耐炎化反応を促進して耐炎化時間を短縮するには、耐炎化中の繊維の蓄熱切断温度より低いが、なるべく高い温度で、投入密度を高くして耐炎化中の繊維を耐炎化処理することが重要となる。   As described above, the reaction rate of flame resistance increases as the temperature increases and increases as the input density increases. Therefore, in order to accelerate the flameproofing reaction and shorten the flameproofing time, it is lower than the thermal storage cutting temperature of the fiber being flameproofed, but at a temperature as high as possible, the input density is increased to make the fiber being flameproofed flameproof. It is important to process.

耐炎化処理時間の短縮は、耐炎化炉の設備のコンパクト化や動力費の低減の効果が期待でき、製造コストの削減に寄与すると考えられるが、炭素繊維の性能発現においても重要である。耐炎化処理が長すぎる場合、炭素繊維の強度が低下することが知られている。太物トウは、フィラメントの集合組織が大きいため、蓄熱がし易く、その結果として耐炎化処理時間を長く設定せざるをえなかった。性能発現性の観点から、耐炎化処理時間は、100分以下が好ましく、より好ましくは95分以下、より好ましくは90分以下である。   The shortening of the flameproofing treatment time can be expected to have the effect of reducing the equipment of the flameproofing furnace and reducing the power cost, and is thought to contribute to the reduction of the manufacturing cost. However, it is also important in the performance of the carbon fiber. It is known that when the flameproofing treatment is too long, the strength of the carbon fiber is reduced. Since the thick tow has a large texture of filaments, it is easy to store heat, and as a result, the flameproof treatment time has to be set longer. From the viewpoint of performance development, the flameproofing treatment time is preferably 100 minutes or less, more preferably 95 minutes or less, more preferably 90 minutes or less.

本発明は、耐炎化中の密度が高くなり、耐炎化中の繊維の蓄熱切断温度が上昇していくのに併せて、耐炎化中の繊維の投入密度を高くすることにより、生産性が向上し且つ炭素繊維の性能が発現しやすい耐炎化時間内で、フィラメント数49,000以上の太物トウの形態を有するアクリロニトリル系前駆体繊維を、焼成(耐炎化)できることを見出したものである。   The present invention increases the density during flameproofing and increases the heat storage cutting temperature of the fiber being flameproofed, and at the same time increases the input density of the fiber being flameproofed, thereby improving productivity. In addition, the present inventors have found that acrylonitrile-based precursor fibers having a shape of thick tow having 49,000 or more filaments can be fired (flame-resistant) within a flame-proofing time in which the performance of carbon fibers is easy to develop.

耐炎化処理中のアクリロニトリル系前駆体繊維の密度が、1.15〜1.25g/cm3である間は、トウ幅Wを下記式(1)に従って制御し、1.25〜1.30g/cm3である間はトウ幅Wを下記式(2)に従って制御し、1.30〜1.40g/cm3である間はトウ幅Wを下記式(3)に従って制御する。 While the density of the acrylonitrile-based precursor fiber during the flameproofing treatment is 1.15 to 1.25 g / cm 3 , the tow width W is controlled according to the following formula (1), and 1.25 to 1.30 g / while in cm 3 controls the tow width W according to the following equation (2), while a 1.30~1.40G / cm 3 for controlling tow width W according to the following equation (3).

0.065×A1/2≦W≦0.083×A1/2 式(1)
0.053×A1/2≦W≦0.075×A1/2 式(2)
0.040×A1/2≦W≦0.063×A1/2 式(3)
ここで、式中、Aはアクリロニトリル系前駆体繊維の総繊度(dtex)を表している。
0.065 × A 1/2 ≦ W ≦ 0.083 × A 1/2 Formula (1)
0.053 × A 1/2 ≦ W ≦ 0.075 × A 1/2 formula (2)
0.040 × A 1/2 ≦ W ≦ 0.063 × A 1/2 formula (3)
Here, in the formula, A represents the total fineness (dtex) of the acrylonitrile-based precursor fiber.

式中のA1/2は、前駆体繊維トウの大きさを表す指標である。前駆体繊維トウの形状は円、或いは円に非常に近い楕円である。すなわち、前駆体繊維トウの密度をρPCとすると、A/ρPCは1万m当たりのトウ体積であり、さらにこの値は、トウの断面積を表す指標となっている。したがって、(A/ρPC1/2は、長さを次元とするトウの断面の大きさを表す指標と考えられるものであり、つまりは上式のA1/2は、長さを次元とするトウの断面の大きさを表す指標であるといえる。このような理由から、耐炎化工程における適正なトウ幅を考える際に、A1/2を指標に用いることは理にかなったものとなり、その結果、適正なトウ幅を制御する範囲を限定するのに非常に有効な指標になりえるものとなっている。 A 1/2 in the formula is an index representing the size of the precursor fiber tow. The shape of the precursor fiber tow is a circle or an ellipse very close to the circle. That is, assuming that the density of the precursor fiber tow is ρ PC , A / ρ PC is a tow volume per 10,000 m, and this value is an index representing the cross-sectional area of the tow. Therefore, (A / ρ PC ) 1/2 is considered to be an index representing the size of the cross-section of the tow with the length as a dimension. In other words, A 1/2 in the above expression is the dimension as a length. It can be said that it is an index representing the size of the cross section of the tow. For this reason, when considering an appropriate tow width in the flameproofing process, it makes sense to use A 1/2 as an index, and as a result, limit the range for controlling the appropriate tow width. It can be a very effective index.

それぞれの密度領域に有する耐炎化処理中のアクリロニトリル系前駆体繊維のトウ幅が左辺未満であると蓄熱による暴走反応により、糸切れ、スモーク等が起こりやすくなる。一方、トウ幅が右辺を超えると、耐炎化炉機幅に対する処理トウの数量が減少し、設備生産性が低下し、目的とする製造コストの削減効果を得ることはできなくなる。   If the tow width of the acrylonitrile-based precursor fiber in the flame resistance treatment in each density region is less than the left side, runaway reaction due to heat accumulation tends to cause yarn breakage, smoke, and the like. On the other hand, if the tow width exceeds the right side, the number of processing tows with respect to the flameproof furnace width decreases, the equipment productivity decreases, and it becomes impossible to obtain the intended effect of reducing the manufacturing cost.

また、耐炎化処理中のアクリロニトリル系前駆体繊維の密度(ρ)が、1.15〜1.40g/cm3の範囲において、トウ幅Wを下記式(4)で制御することでも目的を達成することができる。 Further, when the density (ρ) of the acrylonitrile-based precursor fiber during the flameproofing treatment is in the range of 1.15 to 1.40 g / cm 3 , the object can be achieved by controlling the tow width W by the following formula (4). can do.

Figure 2008019526
Figure 2008019526

d:アクリロニトリル系前駆体繊維の単繊維(フィラメント)繊度(dtex)
A:アクリロニトリル系前駆体繊維のトウ総繊度(dtex)
ρ:耐炎化工程糸の密度(g/cm3)。
d: Single fiber (filament) fineness (dtex) of acrylonitrile-based precursor fiber
A: Tow total fineness (dtex) of acrylonitrile-based precursor fiber
ρ: density of the flameproofing process yarn (g / cm 3 ).

以下に式(4)の変数について説明をする。   The variable of Formula (4) is demonstrated below.

(1)d-1/2について
耐炎化反応は、熱風伝熱による加熱による環化反応と酸素のフィラメント内部への拡散により生ずる酸化反応により進行する。したがって、単位重量当たりの表面積は耐炎化反応性を考える上で非常に重要である。単繊維繊度が小さい前駆体繊維ほど単位重量当たりの表面積が大きく、その結果発熱反応が急激に生じ易い傾向がある。このような状況下、耐炎化工程における前駆体繊維の発熱性の指標としては、フィラメント断面の周長さと断面積との比を用いることが非常に有効であると考えられる。フィラメントの断面は凡そ丸形状をしていることから、半径をrとすると断面の周長さと断面積の比は、2r-1/2と表せる。ここで、d1/2は一次の長さを有するフィラメントの形状因子である。したがって、前駆体繊維の発熱性の指標はd-1/2を用いることが有用である。
(1) d −1/2 The flameproofing reaction proceeds by a cyclization reaction by heating with hot air heat transfer and an oxidation reaction caused by diffusion of oxygen into the filament. Therefore, the surface area per unit weight is very important in considering flame resistance reactivity. A precursor fiber having a smaller single fiber fineness has a larger surface area per unit weight, and as a result, an exothermic reaction tends to occur rapidly. Under such circumstances, it is considered to be very effective to use the ratio of the peripheral length of the filament cross section to the cross sectional area as an index of the heat generation property of the precursor fiber in the flameproofing process. Since the filament has a substantially round cross section, if the radius is r, the ratio of the circumference of the cross section to the cross sectional area can be expressed as 2r −1/2 . Here, d 1/2 is a form factor of a filament having a primary length. Therefore, it is useful to use d −1/2 as an index of the exothermic property of the precursor fiber.

(2)(A/ρ)1/2について
先に述べたように、(A/ρ)1/2は、耐炎化処理中の工程糸の長さを次元とするトウの断面の大きさを表す指標となっている。
(2) About (A / ρ) 1/2 As mentioned above, (A / ρ) 1/2 is the size of the cross-section of the tow whose dimension is the length of the process yarn during the flameproofing treatment. It is an indicator to represent.

(3)exp(−ρ)について
蓄熱切断温度は、耐炎化処理の工程糸の密度と相関し、密度が高くなるに従い高くなる。耐炎化反応性と密度の相関を取ると、アウレニウス型に比較的良く合致する。そこで、耐炎化反応性の指標として、exp(−ρ)を用いることとした。
(3) About exp (-ρ) The thermal storage cutting temperature correlates with the density of the process yarn of the flameproofing treatment, and increases as the density increases. The correlation between flame resistance and density matches relatively well with the Aurenius type. Therefore, exp (−ρ) is used as an index of flame resistance reactivity.

それぞれの密度領域に有する耐炎化処理中のアクリロニトリル系前駆体繊維のトウ幅が左辺未満であると蓄熱による暴走反応により、糸切れ、スモーク等が起こりやすくなる。一方、トウ幅が右辺を超えると、耐炎化炉機幅に対する処理トウの数量が減少し、設備生産性が低下し、所望の製造コストの削減効果を得ることはできなくなる。   If the tow width of the acrylonitrile-based precursor fiber in the flame resistance treatment in each density region is less than the left side, runaway reaction due to heat accumulation tends to cause yarn breakage, smoke, and the like. On the other hand, if the tow width exceeds the right side, the number of treated tows with respect to the flameproof furnace width decreases, equipment productivity decreases, and a desired manufacturing cost reduction effect cannot be obtained.

より好ましい制御するトウ幅Wは、式(6)の範囲である。   More preferable tow width W to be controlled is in the range of equation (6).

Figure 2008019526
Figure 2008019526

多数のアクリロニトリル系前駆体繊維を特定の間隔で並列にしたシート状物を、最初に耐炎化炉に導入する際のシート幅Sw1と、最終の耐炎化炉から出る並列にしたシート状物の幅Sw2において、Sw2/Sw1の値が下式(5)の範囲であることが商業生産において好ましい。ここで商業生産とは、設備投資が小さく、ランニングコストも小さく更に、高品質な炭素繊維を高生産で製造できることを意味する。   A sheet width Sw1 when the sheet-like material in which a large number of acrylonitrile-based precursor fibers are arranged in parallel at a specific interval is first introduced into the flame-proofing furnace, and the width of the sheet-like material arranged in parallel from the final flame-proofing furnace In Sw2, it is preferable in commercial production that the value of Sw2 / Sw1 is in the range of the following formula (5). Here, the commercial production means that the capital investment is small, the running cost is small, and furthermore, high-quality carbon fibers can be produced with high production.

0.50≦Sw2/Sw1≦0.85 式(5)。       0.50 ≦ Sw2 / Sw1 ≦ 0.85 Formula (5).

耐炎化炉を出た繊維が並列したシートは、引き続き炭素化炉で処理される。炭素繊維の製造において、1000℃を超える温度で熱処理をする炭素化炉の設備およびその維持費、さらに動力費は、製造コストを上昇させる大きな要因の一つであり、炭素化炉のコンパクト化はコスト削減に非常に効果がある。したがって、このシート状物の幅を小さくすることにより、炭素化炉の装置幅を小さく設計することが可能となる。その結果、設備費、稼動費を小さくすることができ、炭素繊維の製造コストを削減することが可能となる。Sw2/Sw1を0.85以下にすることにより、コスト削減効果が顕著となる。一方、Sw2/Sw1が小さすぎると、隣接するトウ同士の絡み合いが大きくなること、トウの走行する糸道の直線性が維持できなくなり、撚などの混入が避けられなくなるなどの問題が生じる。   The sheet in which the fibers exiting the flameproofing furnace are juxtaposed is subsequently processed in the carbonization furnace. In the production of carbon fiber, the equipment of the carbonization furnace that heat-treats at a temperature exceeding 1000 ° C., its maintenance cost, and the power cost are one of the major factors that increase the production cost. Very effective in reducing costs. Therefore, by reducing the width of the sheet material, it is possible to design the apparatus width of the carbonization furnace to be small. As a result, equipment costs and operating costs can be reduced, and the production cost of carbon fibers can be reduced. By making Sw2 / Sw1 0.85 or less, the cost reduction effect becomes remarkable. On the other hand, if Sw2 / Sw1 is too small, the entanglement between adjacent tows becomes large, the linearity of the yarn path on which the tows run cannot be maintained, and problems such as the inevitable mixing of twists and the like arise.

より好ましくは、0.50≦Sw2/Sw1≦0.80の範囲である。さらに好ましくは、0.50≦Sw2/Sw1≦0.75である。   More preferably, it is the range of 0.50 ≦ Sw2 / Sw1 ≦ 0.80. More preferably, it is 0.50 <= Sw2 / Sw1 <= 0.75.

Sw2/Sw1の制御方法としては、公知の技術により繊維の張力によりロールをたわませ制御する方法、アクリロニトリル系前駆体繊維に交絡処理を施し制御する方法等が挙げられるが、これらに限定されるものではない。交絡処理を施し制御する場合は、交絡条件はアクリロニトリル系前駆体繊維の総繊度等により適宜決定される。   Sw2 / Sw1 control methods include, but are not limited to, a method of controlling the deflection of the roll by the tension of the fiber by a known technique, a method of controlling the acrylonitrile-based precursor fiber by entanglement treatment, and the like. It is not a thing. In the case where the entanglement process is performed and controlled, the entanglement condition is appropriately determined depending on the total fineness of the acrylonitrile-based precursor fiber.

耐炎化処理に際して、繊維には16×10-3cN/dTex〜327×10-3cN/dTex、好ましくは32×10-3cN/dTex〜261×10-3cN/dTex、より好ましくは65×10-3cN/dTex〜229×10-3cN/dTexの張力を付与することが望ましい。かかる張力が小さすぎると、繊維に弛みが発生し単糸毛羽がロールに取られやすくなり、張力が大きすぎると耐炎化途中の繊維の一部が切断し始め、毛羽や糸切れが起こりやすくなる。 In the flameproofing treatment, the fiber is subjected to 16 × 10 −3 cN / dTex to 327 × 10 −3 cN / dTex, preferably 32 × 10 −3 cN / dTex to 261 × 10 −3 cN / dTex, more preferably 65. It is desirable to apply a tension of × 10 −3 cN / dTex to 229 × 10 −3 cN / dTex. If the tension is too small, the fibers will loosen and the single yarn fluff will be easily taken up by the roll. If the tension is too high, some of the fibers that are flame resistant will start to cut, and the fluff and yarn breakage will easily occur .

耐炎化炉への繊維の投入密度を制御する方法としては、耐炎化炉外に溝付ロールを設置する方法、コームとフラットロールを設置する方法があるがいずれも用いることができる。   As a method for controlling the density of the fibers fed into the flameproofing furnace, there are a method of installing a grooved roll outside the flameproofing furnace and a method of installing a comb and a flat roll, both of which can be used.

溝付ロールは、耐炎化中の繊維の毛羽、あるいは隣接する繊維同士の干渉により、1つの溝に2錘が入ることによる、所謂合糸が生じたりすることが稀にあり、合糸が生じると投入密度が高くなるばかりでなく、撚りが生じるため、除熱不良による糸切れ、スモーク等が起こりやすくなるので注意が必要である。   The grooved roll rarely generates so-called combined yarn due to fluff of fibers being flame-resistant, or interference between adjacent fibers, and so-called combined yarn is generated due to two spindles entering one groove. Since not only the charging density is increased but also twisting occurs, it is easy to cause yarn breakage, smoke, etc. due to heat removal failure.

一方、フラットロールを用いた場合は、溝飛びによる合糸、撚りの発生がなく工程安定性の点で好ましい。フラットロールの場合は公知の技術によりアクリロニトリル系前駆体繊維に交絡処理を施し制御することが好ましい。交絡処理条件はアクリロニトリル系前駆体繊維の総繊度等により適宜決定される。フラットロールは、耐炎化炉の両側に設置して用いることができる。   On the other hand, the use of a flat roll is preferable in terms of process stability because there is no occurrence of twisting and twisting due to groove jumping. In the case of a flat roll, it is preferable to control the acrylonitrile-based precursor fiber by subjecting it to entanglement by a known technique. The entanglement treatment condition is appropriately determined depending on the total fineness of the acrylonitrile-based precursor fiber. Flat rolls can be installed and used on both sides of the flameproofing furnace.

更に、トウ幅を制御しつつ、耐炎化中の繊維の蓄熱切断温度が上昇していくのに併せて、その温度よりも低いが、なるべく高い温度にコントロールすることが望まれる。耐炎化処理は通常200〜300℃、好ましくは220〜280℃の温度範囲内で行われる。このような温度コントロールは、個別に温度調節可能なゾーンに分けた従来の耐炎化炉を用いて行うことができる。   Furthermore, it is desired to control the temperature as high as possible, although it is lower than that while controlling the tow width, and the heat storage cutting temperature of the fiber being flame-resistant increases. The flameproofing treatment is usually performed within a temperature range of 200 to 300 ° C, preferably 220 to 280 ° C. Such temperature control can be performed using a conventional flameproofing furnace divided into zones whose temperature can be individually adjusted.

温度コントロール可能なゾーンの数が増えれば増えるほど耐炎化時間が短縮可能になり、またゾーンの数の多い時は少ない時と比べて、耐炎化中の繊維の蓄熱切断温度に対し余裕を持って十分に高い温度で耐炎化でき、同じ耐炎化時間でより不具合の生じない運転が可能である。   As the number of temperature controllable zones increases, the flameproofing time can be shortened, and when the number of zones is large, there is an allowance for the heat storage cutting temperature of the fiber being flameproofed compared to when the number of zones is small. Flame resistance can be achieved at a sufficiently high temperature, and operation with less trouble is possible with the same flame resistance time.

しかし、ゾーン数を増やすと、これに伴って耐炎化炉の価格は高額となり、生産性の向上の効果は小さくなっていく。生産性向上の効果を害することなく、細かな温度制御を可能とする観点から、ゾーン数は3〜8とするのが好ましく、3〜5とするのが更に好ましい。   However, as the number of zones increases, the price of the flameproofing furnace increases accordingly, and the effect of improving productivity decreases. From the viewpoint of enabling fine temperature control without impairing the effect of improving productivity, the number of zones is preferably 3 to 8, and more preferably 3 to 5.

耐炎化炉におけるアクリロニトリル系前駆体繊維の通過経路は、1基の耐炎化炉内に複数段設けられているのが好ましく、5〜15パスとするのが好ましく、7〜11パスとするのが更に好ましい。通過経路が少ないと充分にかつ確実な耐炎化反応を進行するのに、耐炎化炉の数が増えるため設備投資が大きくなる、或いは長時間の耐炎化処理を有することになるため高性能な炭素繊維が得られにくい。通過経路が多すぎると、耐炎化炉が大きくなるため、設備投資が大きくなるばかりか、耐炎化炉内の風速、温度斑が大きくなり糸切れ、スモーク等が発生しやすくなる。   The passage path of the acrylonitrile-based precursor fiber in the flameproofing furnace is preferably provided in a plurality of stages in one flameproofing furnace, preferably 5 to 15 passes, and 7 to 11 passes. Further preferred. When there are few passage paths, a sufficient and reliable flameproofing reaction will proceed, but the number of flameproofing furnaces will increase the capital investment, or it will have a long-time flameproofing treatment, so high-performance carbon Fiber is difficult to obtain. When there are too many passage paths, the flameproofing furnace becomes large, so that not only the capital investment increases, but also the wind speed and temperature spots in the flameproofing furnace become large and yarn breakage, smoke, etc. are likely to occur.

1パスの長さは、5〜30mが好ましく、10〜25mが更に好ましい。1パスの長さが短すぎるとパス数或いは耐炎化炉の数が増えることになるため、設備投資が大きくなる。1パスの長さが長すぎると耐炎化炉内の風速、温度斑が大きくなるために、糸切れ、スモーク等が発生しやすくなるばかりか、高性能な炭素繊維が得られ難くなる。   The length of one pass is preferably 5 to 30 m, and more preferably 10 to 25 m. If the length of one pass is too short, the number of passes or the number of flameproofing furnaces increases, so that the capital investment increases. If the length of one pass is too long, the wind speed and temperature spots in the flameproofing furnace increase, so that not only yarn breakage and smoke are likely to occur, but also high-performance carbon fibers are difficult to obtain.

耐炎化炉内の風向きは、多錘の耐炎化中の繊維が形成する面に対して平行であり、かつ耐炎化中の繊維に対して平行である平行流、垂直である直行流、多錘の耐炎化中の繊維が形成する面に対して垂直であり、かつ耐炎化中の繊維に対して垂直である垂直流等が挙げられるが、これらに限定されるものではない。風速は、0.3〜5m/secが好ましい。風速が低すぎると、耐炎化炉内の風による除熱作用が得られにくくなり、除熱不良によるスモークが発生しやすくなる。風速が高すぎると、耐炎化炉内の風による耐炎化中の繊維のバタツキが大きくなり、耐炎化中の繊維の接触による単糸切れが生じやすくなる。   The direction of the wind in the flameproofing furnace is parallel to the plane formed by the multi-pyramidal fibers being flameproofed, and is parallel to the fibers being flameproofed, parallel flow perpendicular to the vertical, Examples thereof include, but are not limited to, a vertical flow that is perpendicular to the surface formed by the flame-resistant fiber and perpendicular to the flame-resistant fiber. The wind speed is preferably 0.3 to 5 m / sec. When the wind speed is too low, it becomes difficult to obtain a heat removal action by the wind in the flameproofing furnace, and smoke due to poor heat removal tends to occur. When the wind speed is too high, fluttering of the fibers being flame-resistant by the wind in the flame-proofing furnace becomes large, and single yarn breakage is likely to occur due to contact of the fibers being flame-resistant.

耐炎化処理終了後の耐炎化繊維糸条の密度は、1.33〜1.40g/cm3が好ましく、1.34〜1.37g/cm3がより好ましい。この密度が低すぎると後の炭素化工程で耐炎化糸条が融着し、毛羽立ちが発生するため、高性能、高品位である炭素繊維が得られにくくなる。この密度が高すぎると、酸素の耐炎化繊維糸条内への過剰導入により強度が低下しやすくなる。 Density of oxidized fiber yarn after oxidization process is completed is preferably 1.33~1.40g / cm 3, more preferably 1.34~1.37g / cm 3. If this density is too low, the flame-resistant yarns are fused in the subsequent carbonization step and fluffing occurs, making it difficult to obtain high-performance and high-quality carbon fibers. If this density is too high, the strength tends to decrease due to excessive introduction of oxygen into the flame-resistant fiber yarn.

耐炎化処理において、アクリロニトリル系前駆体繊維のトウ幅の均一性を示す下記式により得られるCV値が10%以下であることが好ましい。   In the flameproofing treatment, it is preferable that the CV value obtained by the following formula showing the uniformity of the tow width of the acrylonitrile-based precursor fiber is 10% or less.

CV値(%)=(標準偏差/平均値)×100
このCV値が大きすぎると、耐炎化中の隣接するアクリロニトリル系前駆体繊維とマージングし、毛羽立ちが起こりやすくなるばかりか、糸切れ、スモーク等が起こりやすくなる。CV値は5%以下がより好ましく、3%以下が更に好ましい。
CV value (%) = (standard deviation / average value) × 100
If this CV value is too large, the adjacent acrylonitrile-based precursor fibers being flame-resistant are merged, and not only fuzzing is likely to occur, but also yarn breakage, smoke, etc. are likely to occur. The CV value is more preferably 5% or less, still more preferably 3% or less.

上記の方法によって得られた耐炎化繊維糸条は1,000℃以上の不活性雰囲気中で炭素化することが好ましい。1,000℃未満であると高性能である炭素繊維が得られにくくなる。   The flame resistant fiber yarn obtained by the above method is preferably carbonized in an inert atmosphere at 1,000 ° C. or higher. When the temperature is lower than 1,000 ° C., it is difficult to obtain high-performance carbon fibers.

上記の方法によって得られた耐炎化繊維糸条は、耐炎化処理と炭素化処理の間において、300℃〜1,000℃の不活性雰囲気中で熱処理することが好ましく、0.5分以上行うことが好ましい。この熱処理は、耐炎化繊維糸条の毛羽立ちや糸切れを防止し、製品品位が高く、高性能である炭素繊維を得ることを目的として行うことができる。   The flame-resistant fiber yarn obtained by the above method is preferably heat-treated in an inert atmosphere of 300 ° C. to 1,000 ° C. between the flame resistance treatment and the carbonization treatment, and is performed for 0.5 minutes or longer. It is preferable. This heat treatment can be carried out for the purpose of obtaining carbon fibers having high product quality and high performance by preventing fuzz and yarn breakage of the flame resistant fiber yarn.

このようにして得られた炭素繊維は、必要に応じて更に従来公知の技術により表面処理、サイジング付与等を行うことができる。   The carbon fiber thus obtained can be further subjected to surface treatment, sizing application, and the like by a conventionally known technique as necessary.

以下、本発明の炭素繊維の製造方法を、実施例に基づいて具体的に説明する。   Hereinafter, the manufacturing method of the carbon fiber of this invention is demonstrated concretely based on an Example.

尚、トウ幅は、耐炎化工程中のロール上のアクリロニトリル系前駆体繊維を物差しで30分毎に計10回測定した。   In addition, the tow | toe width | variety measured the acrylonitrile type | system | group precursor fiber on the roll in a flameproofing process 10 times in total for every 30 minutes with a ruler.

(実施例1)
湿式紡糸法により、捲縮1山/25mm、単繊維繊度1.0dtex、フィラメント数60,000本のアクリロニトリル系前駆体繊維を得た。
(Example 1)
By wet spinning, an acrylonitrile-based precursor fiber having a crimped crest / 25 mm, a single fiber fineness of 1.0 dtex, and a filament number of 60,000 was obtained.

このアクリロニトリル系前駆体繊維を、耐炎化処理温度を220℃〜260℃で連続的に耐炎化処理を行った。耐炎化工程中のアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を17mm、1.25〜1.30g/cm3である間はトウ幅を14mm、1.30〜1.36g/cm3である間はトウ幅を11mmで制御しながら、かつ、工程張力を136×10-3cN/dTexにして収縮を制限しながら、密度1.36g/cm3の耐炎化繊維糸条を得た。耐炎化処理時間は90分、Sw2/Sw1は0.65、耐炎化工程中のアクリル系前駆体繊維のトウ幅のCV値は、それぞれ1.2%、1.3%、1.3%であった。耐炎化炉の両側に設置されたロールはフラットロールとした。 This acrylonitrile-based precursor fiber was subjected to a flameproofing treatment continuously at a flameproofing treatment temperature of 220 ° C to 260 ° C. Density acrylonitrile based precursor fibers in oxidation step is 1.15~1.25g / cm 3 between the 17mm tow width, while a 1.25~1.30g / cm 3 14mm tow width The density of 1.36 g / cm 3 while controlling the tow width at 11 mm while limiting the shrinkage to a process tension of 136 × 10 −3 cN / dTex while 1.30 to 1.36 g / cm 3. A cm 3 flame-resistant fiber yarn was obtained. The flameproofing treatment time is 90 minutes, Sw2 / Sw1 is 0.65, and the CV values of the tow width of the acrylic precursor fiber during the flameproofing process are 1.2%, 1.3% and 1.3%, respectively. there were. The rolls installed on both sides of the flameproofing furnace were flat rolls.

耐炎化繊維糸条を、300〜700℃の温度分布を有する窒素雰囲気からなる前炭素化炉を通過させ、続いて1,000〜1,300℃の温度分布を有する窒素雰囲気からなる炭素化炉を通過させ、炭素繊維を製造した。   The flame-resistant fiber yarn is passed through a pre-carbonization furnace comprising a nitrogen atmosphere having a temperature distribution of 300 to 700 ° C., and subsequently a carbonization furnace comprising a nitrogen atmosphere having a temperature distribution of 1,000 to 1,300 ° C. The carbon fiber was manufactured.

耐炎化工程通過性は極めて良好であり、更に高次加工においても、開繊性、品質は極めて良好であった。この炭素繊維のストランド強度は4.8GPa、弾性率は255GPaであった。   The flameproofing process passability was very good, and the fiber opening and quality were very good even in higher processing. The carbon fiber had a strand strength of 4.8 GPa and an elastic modulus of 255 GPa.

(実施例2)
以下の事項を除いて実施例1と同様にして炭素繊維を得た。
(Example 2)
A carbon fiber was obtained in the same manner as in Example 1 except for the following items.

耐炎化工程中のアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を19mm、1.25〜1.30g/cm3である間はトウ幅を17mm、1.30〜1.36g/cm3である間はトウ幅を14mmで制御した。耐炎化処理時間は80分、Sw2/Sw1は0.74、耐炎化工程中のアクリル系前駆体繊維のトウ幅のCVは、それぞれ1.2%、1.3%、1.4%であった。 Acrylonitrile between the density of the precursor fiber is 1.15~1.25g / cm 3 is the toe width 19mm in oxidation step, while a 1.25~1.30g / cm 3 17mm tow width The tow width was controlled at 14 mm while 1.30 to 1.36 g / cm 3 . The flameproofing treatment time was 80 minutes, Sw2 / Sw1 was 0.74, and the CV of the tow width of the acrylic precursor fiber during the flameproofing process was 1.2%, 1.3%, and 1.4%, respectively. It was.

耐炎化工程通過性は極めて良好であり、更に高次加工においても、開繊性、品質は極めて良好であった。この炭素繊維のストランド強度は4.9GPa、弾性率は260GPaであった。   The flameproofing process passability was very good, and the fiber opening and quality were very good even in higher processing. The strand strength of this carbon fiber was 4.9 GPa and the elastic modulus was 260 GPa.

(実施例3)
湿式紡糸法により、捲縮1山/25mm、単繊維繊度1.2dtex、フィラメント数50,000本のアクリロニトリル系前駆体繊維を得た。
(Example 3)
By wet spinning, an acrylonitrile-based precursor fiber having a crimped crest / 25 mm, a single fiber fineness of 1.2 dtex, and a filament number of 50,000 was obtained.

このアクリロニトリル系前駆体繊維を用いた以外は、実施例1と同様にして炭素繊維を製造した。Sw2/Sw1は0.65、耐炎化工程中のアクリル系前駆体繊維のトウ幅のCV値は、それぞれ1.3%、1.3%、1.3%であった。   A carbon fiber was produced in the same manner as in Example 1 except that this acrylonitrile-based precursor fiber was used. Sw2 / Sw1 was 0.65, and the CV values of the tow width of the acrylic precursor fiber during the flameproofing process were 1.3%, 1.3%, and 1.3%, respectively.

耐炎化工程通過性は極めて良好であり、更に高次加工においても、開繊性、品質は極めて良好であった。この炭素繊維のストランド強度は4.7GPa、弾性率は235GPaであった。   The flameproofing process passability was very good, and the fiber opening and quality were very good even in higher processing. The carbon fiber had a strand strength of 4.7 GPa and an elastic modulus of 235 GPa.

(実施例4)
以下の事項を除いて実施例3と同様にして炭素繊維を得た。
Example 4
A carbon fiber was obtained in the same manner as in Example 3 except for the following items.

耐炎化工程中のアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を19mm、1.25〜1.30g/cm3である間はトウ幅を17mm、1.30〜1.36g/cm3である間はトウ幅を14mmで制御した。耐炎化処理時間は70分、Sw2/Sw1は0.74、耐炎化工程中のアクリル系前駆体繊維のトウ幅のCV値は、それぞれ1.2%、1.3%、1.4%であった。 Acrylonitrile between the density of the precursor fiber is 1.15~1.25g / cm 3 is the toe width 19mm in oxidation step, while a 1.25~1.30g / cm 3 17mm tow width The tow width was controlled at 14 mm while 1.30 to 1.36 g / cm 3 . The flameproofing treatment time is 70 minutes, Sw2 / Sw1 is 0.74, and the CV values of the tow width of the acrylic precursor fiber during the flameproofing process are 1.2%, 1.3%, and 1.4%, respectively. there were.

耐炎化工程通過性は極めて良好であり、更に高次加工においても、開繊性、品質は極めて良好であった。この炭素繊維のストランド強度は4.8GPa、弾性率は240GPaであった。   The flameproofing process passability was very good, and the fiber opening and quality were very good even in higher processing. The strand strength of this carbon fiber was 4.8 GPa and the elastic modulus was 240 GPa.

(実施例5)
湿式紡糸法により、捲縮1山/25mm、単繊維繊度1.0dtex、フィラメント数80,000本のアクリロニトリル系前駆体繊維を得た。
(Example 5)
Acrylonitrile-based precursor fibers having a crimped crest / 25 mm, a single fiber fineness of 1.0 dtex, and a filament number of 80,000 were obtained by a wet spinning method.

このアクリロニトリル系前駆体繊維を、耐炎化処理温度を220℃〜260℃で連続的に耐炎化処理を行った。耐炎化工程中のアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を23mm、1.25〜1.30g/cm3である間はトウ幅を20mm、1.30〜1.36g/cm3である間はトウ幅を16mmで制御しながら、かつ、工程張力を136×10-3cN/dTexにして収縮を制限しながら、密度1.36g/cm3の耐炎化繊維糸条を得た。耐炎化処理時間は85分、Sw2/Sw1は0.70、耐炎化工程中のアクリル系前駆体繊維のトウ幅のCV値は、それぞれ1.5%、1.6%、1.5%であった。耐炎化炉の両側に設置されたロールはフラットロールとした。 This acrylonitrile-based precursor fiber was subjected to a flameproofing treatment continuously at a flameproofing treatment temperature of 220 ° C to 260 ° C. Density acrylonitrile based precursor fibers in oxidation step is 1.15~1.25g / cm 3 between the 23mm tow width, while a 1.25~1.30g / cm 3 20mm tow width While controlling the tow width at 16 mm while 1.30 to 1.36 g / cm 3 , and limiting the shrinkage by setting the process tension to 136 × 10 −3 cN / dTex, the density is 1.36 g / A cm 3 flame-resistant fiber yarn was obtained. The flameproofing treatment time is 85 minutes, Sw2 / Sw1 is 0.70, and the CV value of the tow width of the acrylic precursor fiber during the flameproofing process is 1.5%, 1.6%, and 1.5%, respectively. there were. The rolls installed on both sides of the flameproofing furnace were flat rolls.

耐炎化繊維糸条を、300〜700℃の温度分布を有する窒素雰囲気からなる前炭素化炉を通過させ、続いて1,000〜1,300℃の温度分布を有する窒素雰囲気からなる炭素化炉を通過させ、炭素繊維を製造した。   The flame-resistant fiber yarn is passed through a pre-carbonization furnace comprising a nitrogen atmosphere having a temperature distribution of 300 to 700 ° C., and subsequently a carbonization furnace comprising a nitrogen atmosphere having a temperature distribution of 1,000 to 1,300 ° C. The carbon fiber was manufactured.

耐炎化工程通過性は極めて良好であり、更に高次加工においても、開繊性、品質は極めて良好であった。この炭素繊維のストランド強度は4.9GPa、弾性率は255GPaであった。   The flameproofing process passability was very good, and the fiber opening and quality were very good even in higher processing. The strand strength of this carbon fiber was 4.9 GPa and the elastic modulus was 255 GPa.

(実施例6)
湿式紡糸法により、捲縮1山/25mm、単繊維繊度0.8dtex、フィラメント数50,000本のアクリロニトリル系前駆体繊維を得た。
(Example 6)
Acrylonitrile-based precursor fibers having a crimped crest / 25 mm, a single fiber fineness of 0.8 dtex, and a filament number of 50,000 were obtained by a wet spinning method.

このアクリロニトリル系前駆体繊維を、耐炎化処理温度を220℃〜260℃で連続的に耐炎化処理を行った。耐炎化工程中のアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を14mm、1.25〜1.30g/cm3である間はトウ幅を12mm、1.30〜1.36g/cm3である間はトウ幅を9mmで制御しながら、かつ、工程張力を136×10-3cN/dTexにして収縮を制限しながら、密度1.36g/cm3の耐炎化繊維糸条を得た。耐炎化処理時間は70分、Sw2/Sw1は0.64、耐炎化工程中のアクリル系前駆体繊維のトウ幅のCV値は、それぞれ1.4%、1.6%、1.5%であった。耐炎化炉の両側に設置されたロールはフラットロールとした。 This acrylonitrile-based precursor fiber was subjected to a flameproofing treatment continuously at a flameproofing treatment temperature of 220 ° C to 260 ° C. Density acrylonitrile based precursor fibers in oxidation step is 1.15~1.25g / cm 3 between the 14mm tow width, while a 1.25~1.30g / cm 3 12mm tow width While controlling the tow width at 9 mm while 1.30 to 1.36 g / cm 3 , and limiting the shrinkage by setting the process tension to 136 × 10 −3 cN / dTex, the density is 1.36 g / A cm 3 flame-resistant fiber yarn was obtained. The flameproofing treatment time is 70 minutes, Sw2 / Sw1 is 0.64, and the CV values of the tow width of the acrylic precursor fiber during the flameproofing process are 1.4%, 1.6% and 1.5%, respectively. there were. The rolls installed on both sides of the flameproofing furnace were flat rolls.

耐炎化繊維糸条を、300〜700℃の温度分布を有する窒素雰囲気からなる前炭素化炉を通過させ、続いて1,000〜1,300℃の温度分布を有する窒素雰囲気からなる炭素化炉を通過させ、炭素繊維を製造した。   The flame-resistant fiber yarn is passed through a pre-carbonization furnace comprising a nitrogen atmosphere having a temperature distribution of 300 to 700 ° C., and subsequently a carbonization furnace comprising a nitrogen atmosphere having a temperature distribution of 1,000 to 1,300 ° C. The carbon fiber was manufactured.

耐炎化工程通過性は極めて良好であり、更に高次加工においても、開繊性、品質は極めて良好であった。この炭素繊維のストランド強度は5.1GPa、弾性率は255GPaであった。   The flameproofing process passability was very good, and the fiber opening and quality were very good even in higher processing. The strand strength of this carbon fiber was 5.1 GPa, and the elastic modulus was 255 GPa.

(実施例7)
以下の事項を除いて実施例6と同様にして炭素繊維を得た。
(Example 7)
A carbon fiber was obtained in the same manner as in Example 6 except for the following items.

耐炎化工程中のアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を19mm、1.25〜1.30g/cm3である間はトウ幅を17mm、1.30〜1.36g/cm3である間はトウ幅を14mmで制御しながら、耐炎化繊維糸条を得た。耐炎化処理時間は60分、Sw2/Sw1は0.74、耐炎化工程中のアクリル系前駆体繊維のトウ幅のCVは、それぞれ1.2%、1.3%、1.4%であった。 Acrylonitrile between the density of the precursor fiber is 1.15~1.25g / cm 3 is the toe width 19mm in oxidation step, while a 1.25~1.30g / cm 3 17mm tow width While being 1.30 to 1.36 g / cm 3 , flame resistant fiber yarns were obtained while controlling the tow width at 14 mm. The flameproofing treatment time was 60 minutes, Sw2 / Sw1 was 0.74, and the CV of the tow width of the acrylic precursor fiber during the flameproofing process was 1.2%, 1.3%, and 1.4%, respectively. It was.

耐炎化工程通過性は極めて良好であり、更に高次加工においても、開繊性、品質は極めて良好であった。この炭素繊維のストランド強度は5.2GPa、弾性率は260GPaであった。   The flameproofing process passability was very good, and the fiber opening and quality were very good even in higher processing. The strand strength of this carbon fiber was 5.2 GPa and the elastic modulus was 260 GPa.

(比較例1)
湿式紡糸法により、捲縮10山/25mm、単繊維繊度1.0dtex、フィラメント数60,000本のアクリロニトリル系前駆体繊維を実施例1と同様に炭素繊維を製造した。
(Comparative Example 1)
Carbon fibers were produced in the same manner as in Example 1 by acrylonitrile-based precursor fibers having a crimped crest of 10/25 mm, a single fiber fineness of 1.0 dtex, and a filament number of 60,000 by the wet spinning method.

耐炎化工程通過性は良好であったが、この炭素繊維のストランド強度は3.9GPa、弾性率は250GPaであった。   Although the flame resistance process passability was good, the strand strength of this carbon fiber was 3.9 GPa and the elastic modulus was 250 GPa.

(比較例2)
耐炎化工程においてアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を12mm、1.25〜1.30g/cm3である間はトウ幅を10mm、1.30〜1.36g/cm3である間はトウ幅を8mmで制御した以外は実施例1と同様に炭素繊維を製造しようとしたところ、耐炎化処理において糸切れが生じてしまい、炭素繊維の製造が行えなかった。
(Comparative Example 2)
During density acrylonitrile based precursor fiber is 1.15~1.25g / cm 3 in the oxidation step 12mm tow width, while a 1.25~1.30g / cm 3 10mm tow width, When carbon fiber was produced in the same manner as in Example 1 except that the tow width was controlled at 8 mm while being 1.30 to 1.36 g / cm 3 , yarn breakage occurred in the flameproofing treatment, and carbon was produced. The fiber could not be manufactured.

(比較例3)
耐炎化工程においてアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を12mm、1.25〜1.30g/cm3である間はトウ幅を10mm、1.30〜1.36g/cm3である間はトウ幅を8mmで制御し、耐炎化処理温度を220℃〜250℃、耐炎化処理時間を110分にした以外は実施例1と同様に炭素繊維を製造した。
(Comparative Example 3)
During density acrylonitrile based precursor fiber is 1.15~1.25g / cm 3 in the oxidation step 12mm tow width, while a 1.25~1.30g / cm 3 10mm tow width, While being 1.30 to 1.36 g / cm 3 , the tow width was controlled at 8 mm, the flameproofing treatment temperature was 220 ° C. to 250 ° C., and the flameproofing treatment time was 110 minutes, as in Example 1. Carbon fiber was produced.

耐炎化工程通過性は良好であったが、この炭素繊維のストランド強度は4.5GPa、弾性率は245GPaであった。   Although the flame resistance process passability was favorable, the strand strength of this carbon fiber was 4.5 GPa and the elastic modulus was 245 GPa.

(比較例4)
耐炎化工程においてアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を14mm、1.25〜1.30g/cm3である間はトウ幅を12mm、1.30〜1.36g/cm3である間はトウ幅を9mmで制御した以外は実施例1と同様に炭素繊維を製造しようとしたところ、耐炎化処理において、毛羽が生じた。
(Comparative Example 4)
During density acrylonitrile based precursor fiber is 1.15~1.25g / cm 3 in the oxidation step 14mm tow width, while a 1.25~1.30g / cm 3 12mm tow width, When carbon fiber was to be produced in the same manner as in Example 1 except that the tow width was controlled at 9 mm while it was 1.30 to 1.36 g / cm 3 , fluff was produced in the flameproofing treatment.

(比較例5)
耐炎化工程においてアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を33mm、1.25〜1.30g/cm3である間はトウ幅を23mm、1.30〜1.36g/cm3である間はトウ幅を15mmで制御した以外は実施例1と同様に炭素繊維を製造しようとしたところ、耐炎化処理において、毛羽が生じた。
(Comparative Example 5)
During density acrylonitrile based precursor fiber in oxidation step is 1.15~1.25g / cm 3 33mm tow width, while a 1.25~1.30g / cm 3 23mm tow width, When carbon fiber was to be produced in the same manner as in Example 1 except that the tow width was controlled at 15 mm while it was 1.30 to 1.36 g / cm 3 , fluff was produced in the flameproofing treatment.

(比較例6)
耐炎化工程においてアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を20mm、1.25〜1.30g/cm3である間はトウ幅を17mm、1.30〜1.36g/cm3である間はトウ幅を9mmで制御した以外は実施例1と同様に炭素繊維を製造しようとしたところ、耐炎化処理において、糸切れが生じてしまい、炭素繊維の製造が行えなかった。
(Comparative Example 6)
During density acrylonitrile based precursor fiber is 1.15~1.25g / cm 3 in the oxidation step 20mm tow width, while a 1.25~1.30g / cm 3 17mm tow width, While trying to produce carbon fiber in the same manner as in Example 1 except that the tow width was controlled at 9 mm while being 1.30 to 1.36 g / cm 3 , yarn breakage occurred in the flameproofing treatment, Carbon fiber could not be manufactured.

(比較例7)
耐炎化工程においてアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を25mm、1.25〜1.30g/cm3である間はトウ幅を12mm、1.30〜1.36g/cm3である間はトウ幅を15mmで制御した以外は、実施例1と同様の条件で炭素繊維を製造した。
(Comparative Example 7)
During density acrylonitrile based precursor fiber is 1.15~1.25g / cm 3 in the oxidation step 25mm tow width, while a 1.25~1.30g / cm 3 12mm tow width, Carbon fibers were produced under the same conditions as in Example 1 except that the tow width was controlled at 15 mm while it was 1.30 to 1.36 g / cm 3 .

耐炎化工程中のアクリル系前駆体繊維のトウ幅のCV値は、それぞれ10.2%、11.5%、11.3%であった。耐炎化工程において、撚の混入が明らかに認められ、通過性は不安定であり、更に高次加工においても、開繊性は不安定であった。   The CV values of the tow width of the acrylic precursor fiber during the flameproofing process were 10.2%, 111.5%, and 11.3%, respectively. In the flameproofing process, twisting was clearly observed, the passage was unstable, and the fiber opening was unstable even in higher processing.

(比較例8)
耐炎化工程においてアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を14mm、1.25〜1.30g/cm3である間はトウ幅を12mm、1.30〜1.36g/cm3である間はトウ幅を10mmで制御した以外は実施例5と同様に炭素繊維を製造しようとしたところ、耐炎化処理において、糸切れが生じてしまい、炭素繊維の製造が行えなかった。
(Comparative Example 8)
During density acrylonitrile based precursor fiber is 1.15~1.25g / cm 3 in the oxidation step 14mm tow width, while a 1.25~1.30g / cm 3 12mm tow width, While trying to produce carbon fibers in the same manner as in Example 5 except that the tow width was controlled at 10 mm while being 1.30 to 1.36 g / cm 3 , yarn breakage occurred in the flameproofing treatment, Carbon fiber could not be manufactured.

(比較例9)
耐炎化工程においてアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を16mm、1.25〜1.30g/cm3である間はトウ幅を14mm、1.30〜1.36g/cm3である間はトウ幅を11mmで制御した以外は実施例5と同様に炭素繊維を製造しようとしたところ、耐炎化処理において、毛羽が生じた。
(Comparative Example 9)
In oxidation step density acrylonitrile based precursor fiber is 1.15~1.25g / cm 3 between the tow width 16 mm, while a 1.25~1.30g / cm 3 14mm tow width, When carbon fiber was to be produced in the same manner as in Example 5 except that the tow width was controlled at 11 mm while it was 1.30 to 1.36 g / cm 3 , fluff was produced in the flameproofing treatment.

(比較例10)
耐炎化工程においてアクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間はトウ幅を11mm、1.25〜1.30g/cm3である間はトウ幅を9mm、1.30〜1.36g/cm3である間はトウ幅を7mmで制御した以外は実施例6と同様に炭素繊維を製造しようとしたところ、耐炎化処理において、毛羽が生じた。
(Comparative Example 10)
During density acrylonitrile based precursor fiber is 1.15~1.25g / cm 3 in the oxidation step 11mm tow width, while a 1.25~1.30g / cm 3 9mm tow width, While carbon fiber was to be produced in the same manner as in Example 6 except that the tow width was controlled at 7 mm while it was 1.30 to 1.36 g / cm 3 , fluff was produced in the flameproofing treatment.

Claims (4)

フィラメント数49,000以上の捲縮が5山/25mm以下のトウからなるアクリロニトリル系前駆体繊維を、酸化性雰囲気中200〜300℃で耐炎化処理する工程と、耐炎化処理された繊維を不活性雰囲気中1,000℃以上で炭素化処理する工程を有する炭素繊維の製造方法であって、
前記耐炎化処理の時間が100分以下であり、かつ
前記耐炎化処理中のアクリロニトリル系前駆体繊維のトウ幅Wの制御を、アクリロニトリル系前駆体繊維の密度が1.15〜1.25g/cm3である間は、トウ幅Wを下記式(1)に従って制御し、1.25〜1.30g/cm3である間はトウ幅Wを下記式(2)に従って制御し、1.30〜1.40g/cm3である間はトウ幅Wを下記式(3)に従って制御する炭素繊維の製造方法。
0.065×A1/2≦W≦0.083×A1/2 式(1)
0.053×A1/2≦W≦0.075×A1/2 式(2)
0.040×A1/2≦W≦0.063×A1/2 式(3)
(式中、Aはアクリロニトリル系前駆体繊維の総繊度(dtex)を表す。)
A step of flameproofing an acrylonitrile-based precursor fiber composed of tows having a number of filaments of 49,000 or more and 5 threads / 25 mm or less in an oxidizing atmosphere at 200 to 300 ° C. A carbon fiber manufacturing method comprising a step of carbonizing at 1,000 ° C. or higher in an active atmosphere,
The flameproofing treatment time is 100 minutes or less, and the control of the tow width W of the acrylonitrile precursor fiber during the flameproofing treatment, the density of the acrylonitrile precursor fiber is 1.15 to 1.25 g / cm. While being 3 , the tow width W is controlled according to the following formula (1), and while being 1.25 to 1.30 g / cm 3 , the tow width W is controlled according to the following formula (2), and 1.30 A carbon fiber manufacturing method in which the tow width W is controlled in accordance with the following formula (3) while it is 1.40 g / cm 3 .
0.065 × A 1/2 ≦ W ≦ 0.083 × A 1/2 Formula (1)
0.053 × A 1/2 ≦ W ≦ 0.075 × A 1/2 formula (2)
0.040 × A 1/2 ≦ W ≦ 0.063 × A 1/2 formula (3)
(In the formula, A represents the total fineness (dtex) of the acrylonitrile-based precursor fiber.)
フィラメント数49,000以上の捲縮が5山/25mm以下のトウからなるアクリロニトリル系前駆体繊維を、酸化性雰囲気中200〜300℃で耐炎化処理する工程と、耐炎化処理された繊維を不活性雰囲気中1,000℃以上で炭素化処理する工程を有する炭素繊維の製造方法であって、
前記耐炎化処理の時間が100分以下であり、かつ
前記耐炎化処理中のアクリロニトリル系前駆体繊維のトウ幅Wの制御を、アクリロニトリル系前駆体繊維の密度(ρ)が1.15〜1.40g/cm3の範囲において、下記式(4)に従って行う炭素繊維の製造方法。
Figure 2008019526
(式中、dはアクリロニトリル系前駆体繊維の単繊維繊度(dtex)、Aはアクリロニトリル系前駆体繊維のトウ総繊度(dtex)、ρは耐炎化工程糸の密度(g/cm3)を表す。)
A step of flameproofing an acrylonitrile-based precursor fiber composed of tows having a number of filaments of 49,000 or more and 5 threads / 25 mm or less in an oxidizing atmosphere at 200 to 300 ° C. A carbon fiber manufacturing method comprising a step of carbonizing at 1,000 ° C. or higher in an active atmosphere,
The flameproofing treatment time is 100 minutes or less, and the tow width W of the acrylonitrile precursor fiber during the flameproofing treatment is controlled by adjusting the density (ρ) of the acrylonitrile precursor fiber to 1.15 to 1.5. The manufacturing method of the carbon fiber performed according to following formula (4) in the range of 40 g / cm < 3 >.
Figure 2008019526
(Where d is the single fiber fineness (dtex) of the acrylonitrile-based precursor fiber, A is the tow total fineness (dtex) of the acrylonitrile-based precursor fiber, and ρ is the density (g / cm 3 ) of the flameproofing process yarn. .)
前記耐炎化処理において、多数のアクリロニトリル系前駆体繊維を並列にしたシート状物を複数の耐炎化炉を通過させ、
最初に耐炎化炉に導入する際の前記シート状物の幅Sw1と、最終の耐炎化炉から出る前記シート状物の幅Sw2との比(Sw2/Sw1)が下式(5)の範囲にある請求項1又は2に記載の炭素繊維の製造方法。
0.50≦Sw2/Sw1≦0.85 式(5)
In the flameproofing treatment, a plurality of sheets of acrylonitrile-based precursor fibers arranged in parallel are passed through a plurality of flameproofing furnaces,
The ratio (Sw2 / Sw1) of the width Sw1 of the sheet-like material when initially introduced into the flame-proofing furnace and the width Sw2 of the sheet-like material exiting from the final flame-proofing furnace is in the range of the following formula (5). A method for producing a carbon fiber according to claim 1 or 2.
0.50 ≦ Sw2 / Sw1 ≦ 0.85 Formula (5)
前記耐炎化処理において、トウ幅Wの均一性を示す下記式により得られるCV値が10%以下である請求項1から4のいずれかに記載の炭素繊維の製造方法。
CV値(%)=(標準偏差/平均値)×100
The method for producing carbon fiber according to any one of claims 1 to 4, wherein, in the flameproofing treatment, a CV value obtained by the following formula showing uniformity of tow width W is 10% or less.
CV value (%) = (standard deviation / average value) × 100
JP2006191975A 2006-07-12 2006-07-12 Carbon fiber manufacturing method Expired - Fee Related JP5081409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191975A JP5081409B2 (en) 2006-07-12 2006-07-12 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006191975A JP5081409B2 (en) 2006-07-12 2006-07-12 Carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2008019526A true JP2008019526A (en) 2008-01-31
JP5081409B2 JP5081409B2 (en) 2012-11-28

Family

ID=39075696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191975A Expired - Fee Related JP5081409B2 (en) 2006-07-12 2006-07-12 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP5081409B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014892A1 (en) 2010-07-27 2012-02-02 三菱レイヨン株式会社 Method for producing carbon-fiber bundles
WO2020066653A1 (en) * 2018-09-28 2020-04-02 東レ株式会社 Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle
CN114457466A (en) * 2020-11-10 2022-05-10 中国石油化工股份有限公司 Method for manufacturing high-strength high-modulus carbon fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073232A (en) * 1999-09-02 2001-03-21 Mitsubishi Rayon Co Ltd Flameproofing of carbon filament bundle precursor and apparatus for flameproofing
JP2005060871A (en) * 2003-08-11 2005-03-10 Mitsubishi Rayon Co Ltd Method for producing flame-proofed fiber and method for producing carbon fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073232A (en) * 1999-09-02 2001-03-21 Mitsubishi Rayon Co Ltd Flameproofing of carbon filament bundle precursor and apparatus for flameproofing
JP2005060871A (en) * 2003-08-11 2005-03-10 Mitsubishi Rayon Co Ltd Method for producing flame-proofed fiber and method for producing carbon fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014892A1 (en) 2010-07-27 2012-02-02 三菱レイヨン株式会社 Method for producing carbon-fiber bundles
US9157172B2 (en) 2010-07-27 2015-10-13 Mitsubishi Rayon Co., Ltd. Method for producing carbon-fiber bundles
WO2020066653A1 (en) * 2018-09-28 2020-04-02 東レ株式会社 Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle
JP7354840B2 (en) 2018-09-28 2023-10-03 東レ株式会社 Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles
CN114457466A (en) * 2020-11-10 2022-05-10 中国石油化工股份有限公司 Method for manufacturing high-strength high-modulus carbon fiber
CN114457466B (en) * 2020-11-10 2023-08-08 中国石油化工股份有限公司 Method for manufacturing high-strength high-modulus carbon fiber

Also Published As

Publication number Publication date
JP5081409B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
JP5161604B2 (en) Carbon fiber manufacturing method
WO2013157613A1 (en) Carbon fiber bundle and method of producing carbon fiber bundle
WO2000005440A1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
JP5297644B2 (en) Carbon fiber bundle and method for producing the same
JP5081409B2 (en) Carbon fiber manufacturing method
JP2012188781A (en) Carbon fiber and method for manufacturing the same
JP2005060871A (en) Method for producing flame-proofed fiber and method for producing carbon fiber
JP3607676B2 (en) Thick carbon fiber precursor acrylic yarn and method for producing the same
JP5873358B2 (en) Flame-resistant fiber strand, method for producing the same, and method for producing carbon fiber strand
JP4801621B2 (en) Method for producing carbon fiber precursor tow
JP2011127264A (en) Method for producing flame-proof fiber
JP4017772B2 (en) Continuous heat treatment method for acrylic fiber bundles
JPS62257422A (en) Production of carbon fiber
JP2007314901A (en) Method for producing carbon fiber
JP2013181264A (en) Carbon fiber bundle
JP2001073232A (en) Flameproofing of carbon filament bundle precursor and apparatus for flameproofing
WO1987002391A1 (en) Process for producing carbon fibers
JP2001020140A (en) Device for driving carbon fiber precursor
JP4709625B2 (en) Method for producing carbon fiber precursor fiber bundle
JPS62215018A (en) Production of carbon fiber
JP2002003081A (en) Carbon fiber precursor acrylic thick filament yarn package and its manufacturing method
JP4446817B2 (en) Method for producing acrylic carbon fiber precursor fiber bundle
JP2012188768A (en) Method for manufacturing carbon fiber precursor fiber bundle, and carbon fiber precursor fiber bundle obtained by the same
JP2008115481A (en) Flame-resisting treatment furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5081409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees