JPS5887321A - Continuous production of carbon fiber - Google Patents

Continuous production of carbon fiber

Info

Publication number
JPS5887321A
JPS5887321A JP18374181A JP18374181A JPS5887321A JP S5887321 A JPS5887321 A JP S5887321A JP 18374181 A JP18374181 A JP 18374181A JP 18374181 A JP18374181 A JP 18374181A JP S5887321 A JPS5887321 A JP S5887321A
Authority
JP
Japan
Prior art keywords
yarns
carbon fiber
bundle
fiber
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18374181A
Other languages
Japanese (ja)
Inventor
Ryuichi Yamamoto
隆一 山本
Minoru Yoshinaga
吉永 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP18374181A priority Critical patent/JPS5887321A/en
Publication of JPS5887321A publication Critical patent/JPS5887321A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The starting yarns for making carbon fiber are twisted individually, then doubled and made flame resistant and, further the resultant yarns are untwisted into individual yarns and carbonized to produce high-quality carbon fiber with no strength reduction in high productivity. CONSTITUTION:Preferably, starting yarns for carbon fiber such as acrylic fibers, are twisted by means of a creel separately and several of the resulting yarns are doubled into a bundle without twisting. The resultant fiber bundle is sent into the furnace for imparting it flame resistance where the bundle is heated and calcined in an oxidative atmosphere to give a flame resistant fiber bundle. Then, the resulting bundle is separated into two or more bundle to the same number of the yarns. Thus, the separated yarns are carbonized in a non-oxidative atmosphere of such as nitrogen gas or hydrogen gas to produce the objective carbon fiber. The product of the filament denier in the starting fiber and the filament count is 500-30,000 and the twisting number is desirably 5-100/m.

Description

【発明の詳細な説明】 本発明は炭素繊維の連続的製造法、和−にアクリル繊維
の如き炭素Na細川用糸から高能率で、目、つ高品質の
炭素繊維を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously producing carbon fibers, particularly a method for producing high-quality carbon fibers with high efficiency from carbon-Na Hosokawa threads such as acrylic fibers. be.

炭素繊維は、その比強度、比弾性率が極めて高く、耐熱
性、耐薬品性能軛も極めて優れていることから航空宇宙
用途の補強材料、ゴルフクラブ、釣竿等のスポーツ用品
の補強材料等に広く使われつ\ある。
Carbon fiber has extremely high specific strength and specific modulus, as well as excellent heat resistance and chemical resistance, so it is widely used as a reinforcing material for aerospace applications and for sporting goods such as golf clubs and fishing rods. It's used a lot.

炭素繊維の製造法としてアクリル系炭素繊維を例にとれ
ば、前駆体繊維をいわゆる耐炎化か1中で、酸化性雰囲
気中200ないし350℃の温度で比較的長時間かけて
醸化させて耐炎化糸とし、これを1000℃以上の非酸
化性雰囲気中で加熱分解・炭化することにより得られる
Taking acrylic carbon fiber as an example, the method for manufacturing carbon fiber is to make the precursor fiber flame resistant by fermenting it in an oxidizing atmosphere at a temperature of 200 to 350 degrees Celsius over a relatively long period of time. It can be obtained by heating and carbonizing the fiber in a non-oxidizing atmosphere at a temperature of 1000° C. or higher.

この工程中、特に初期のいわゆる耐炎化工程では、酸化
反応による発熱が著しく、繊維を長時間滞留させる必要
があるため炉体を大きくしたり炉を数多く配置する必要
があった。また一般に耐炎化工程は繊維の処理に数十分
ないし数時間の長時間を要するため、比較的大型の装置
を使っても糸辻は小さく極めて生産性は低かった。この
ように炭素繊維の生産性は該耐炎化工程が最大のネック
であった。
During this process, especially in the initial so-called flameproofing process, the heat generated by the oxidation reaction is significant and the fibers need to be retained for a long time, so it is necessary to enlarge the furnace body or arrange many furnaces. Furthermore, in general, the flameproofing process requires a long time, from several tens of minutes to several hours, to treat the fibers, so even if relatively large equipment is used, the threads are small and productivity is extremely low. As described above, the flame resistance process was the biggest bottleneck in carbon fiber productivity.

かかる生産性の低さをカバーするため、特開昭56−9
1015において加熱した前駆体繊維を2本以上・引揃
え、更に加熱した状態で耐炎化及び炭化処理を行なうこ
とが提案されている。
In order to compensate for this low productivity, JP-A-56-9
It has been proposed that two or more precursor fibers heated in 1015 are aligned and subjected to flameproofing and carbonization treatment in the heated state.

この種の方法によれば耐炎化及び炭化工程に供給される
前駆体繊維の構成フィラメント数を増加し得るため、確
かに炭素繊維の生産性は向上するが、そ−の一方で得ら
れる炭素繊維の強度が著しく低下するという問題があっ
た。
According to this type of method, the number of filaments constituting the precursor fibers supplied to the flame-retardant and carbonization process can be increased, which certainly improves the productivity of carbon fibers, but on the other hand, the carbon fibers obtained There was a problem in that the strength of the steel was significantly reduced.

また、特開昭48−41040において前駆体繊維を加
電した後、数本引揃え合糸した状態で炭化処理を行なう
ことにより炭素繊維の生産性を向上させることも提案さ
れているが、炭素繊維製造−Lのネックが前述したよう
に主として耐炎化工程にあるため、該耐炎化工程の生産
性を無視して如何に炭化工程か生産神効率のみを高めた
としても、炭素繊維の製造全般を通しての生産性は必ず
しも向上せず、しかも前記提案のケースと同様、炭素繊
維の強度低下がj1イけられなかった。
Furthermore, in JP-A No. 48-41040, it has been proposed to improve the productivity of carbon fibers by applying electricity to the precursor fibers and then carbonizing the precursor fibers in a state in which several fibers are aligned and combined. As mentioned above, the bottleneck in fiber production is mainly in the flame-retardant process, so no matter how much you ignore the productivity of the flame-retardant process and improve only the carbonization process or production efficiency, the overall production of carbon fibers will be affected. The productivity through the process did not necessarily improve, and as in the case of the above proposal, the decrease in strength of the carbon fibers could not be avoided.

本発明者らは上記の如き炭素繊維製造上において生産性
の向上と高品質の糺持とを両立させるべく鋭意研究の結
果、本発明に至ったものである。
The present inventors have arrived at the present invention as a result of intensive research aimed at achieving both improved productivity and high-quality adhesiveness in the production of carbon fibers as described above.

すなわち、本発明の目的とするところは品質の優れた炭
素繊維を高能率で製造し得る方法を提供する←卿にある
That is, an object of the present invention is to provide a method for producing carbon fibers of excellent quality with high efficiency.

かかる本発明の目的は、炭素繊維用原糸を加熱し、その
?M′I&、本を引揃え加熱することなく合糸し、連続
的に酸化性雰囲気中で焼成して耐炎化糸束となした接散
耐炎化糸束を少なくとも2本乃至前記加熱された原糸単
位に分繊し、次いで非酸化性雰囲気中で炭化することを
特徴とする炭素繊維の連続的製造法によって達成される
The object of the present invention is to heat the raw yarn for carbon fiber and to heat the raw yarn for carbon fiber. M'I&, at least two bundles of flame-retardant fibers, which are made by pulling and doubling the yarns without heating and continuously firing them in an oxidizing atmosphere to form a bundle of flame-retardant yarns, or the heated raw material. This is achieved by a continuous carbon fiber production method characterized by dividing into thread units and then carbonizing in a non-oxidizing atmosphere.

本発明方法における炭素繊維用原糸とは醸化性雰囲気中
での加熱・酸化によって耐炎化し、史に非酸化性雰囲気
中での高温加熱によって炭素繊維が得られる有機高分子
繊維であって、例えばアクリル系繊維、ポリビニルアル
コール系繊維1石油系または石炭系のピッチ繊維であり
、好ましくはアクリル系繊維である。
The yarn for carbon fiber in the method of the present invention is an organic polymer fiber that has been made flame resistant by heating and oxidation in a fermenting atmosphere, and that carbon fiber can be obtained by heating at high temperature in a non-oxidizing atmosphere. For example, acrylic fibers, polyvinyl alcohol fibers, petroleum-based or coal-based pitch fibers, and acrylic fibers are preferred.

該炭素繊維用原糸は通常単糸デニール0.5〜2、 O
d構成フィラメント数が500〜30OoO本、好まし
くは500〜.poooo本の範囲内。
The yarn for carbon fiber usually has a single yarn denier of 0.5 to 2,0
d The number of constituent filaments is 500 to 30 OoO, preferably 500 to . Poooo within the scope of the book.

たとえば0.5 a ×6000 仝、 1.0 a 
X 6000a、X、5dX3000本、’2.0dX
3000本である。
For example, 0.5 a x 6000, 1.0 a
X 6000a, X, 5dX3000 lines, '2.0dX
There are 3000 pieces.

また該原糸は1m当り5〜100回、好ましくは5〜2
0回の範囲内の撚りを与えるが、このとき撚り数が5回
未満では複数本の原糸を合糸する際、繊維同志が絡み合
うため耐炎化後の分繊が円滑に行なえない。一方撚り数
が多くなると炭素繊維の物性、特に強度の低下が認めら
れ、100回を越えるとその低下が著しい。
In addition, the raw yarn is used 5 to 100 times per meter, preferably 5 to 2 times per meter.
A twist within the range of 0 twists is given, but if the number of twists is less than 5 twists, the fibers become entangled with each other when a plurality of raw yarns are combined, making it impossible to divide them smoothly after flame resistance. On the other hand, when the number of twists increases, the physical properties of the carbon fiber, especially the strength, are observed to decrease, and when the number of twists exceeds 100, the decrease is significant.

ここで撚りを与える方法には例えばクリール(巻出し機
)のスピンドルを回転させ、連続的に加熱/焼成を行な
うなどが好適である。
A suitable method for imparting twist here is, for example, rotating the spindle of a creel (unwinding machine) and continuously heating/firing.

かくの如く加熱された炭素繊維用原糸は、合糸本数2本
ないし8本、好ましくは2本ないし4本の範囲で合糸さ
せる。このとき合糸本数が多すぎると耐炎化後の分繊性
が低下して毛羽が多発し、甚しい場合には糸切れが生じ
るようになるばかりか、総デニールが大きすぎると耐炎
化工程における発熱/除熱のコントロールが困難となる
The carbon fiber raw yarn heated in this way is doubled in the number of yarns in the range of 2 to 8, preferably 2 to 4. At this time, if the number of yarns is too large, the splitting properties after flame resistance will be reduced, fuzz will occur frequently, and in severe cases, yarn breakage will occur. Controlling heat generation/heat removal becomes difficult.

合糸した糸条は耐炎化炉へ送り込まれ、通常の耐炎化条
件2例えば空気中200〜350℃畦で加熱・焼成され
る。
The combined yarn is sent to a flameproofing furnace and heated and fired under normal flameproofing conditions 2, for example, in air at 200 to 350°C.

得られた耐炎化糸束は次の炭化工程に送られ。The obtained flame-resistant yarn bundle is sent to the next carbonization process.

る前に加熱された原糸単位ないしはその複数本に分繊さ
せる。
The filament is split into heated filament units or multiple filaments before being heated.

分織糸条の構成フィラメント’fkは通常500〜30
000本で、これが多すぎると炭素繊維の物性、特に強
度の低下が著しく、一方分繊させる際の下限は加熱され
た原糸単位であり、それ以下は分繊自体が困難なこと、
ならびに繊維が損傷する等の点で無意味である。
The filament 'fk' of the divided yarn is usually 500 to 30
000 fibers, and if this is too large, the physical properties of the carbon fiber, especially the strength, will be significantly reduced.On the other hand, the lower limit for fiber splitting is the heated raw fiber unit, and below that, the fiber splitting itself will be difficult;
Also, it is meaningless in that it damages the fibers.

分繊された耐炎化糸条は窒素ガス、水素ガス。The flame-retardant yarn that has been split is treated with nitrogen gas and hydrogen gas.

アルゴンガス等の雰囲気下1000℃以上に保たれた炭
化炉中従来公知の方法により炭化され、炭素繊維となる
It is carbonized by a conventionally known method in a carbonization furnace maintained at 1000° C. or higher in an atmosphere of argon gas or the like to become carbon fibers.

なお、本発明において炭素繊維用原糸の合糸。In addition, in the present invention, the yarn for carbon fibers is a doubling yarn.

あるいは耐炎化糸束の分繊等を効率的に実施するには、
通常溝付きローラを用いるのが望ましい。このことは溝
付ローラが従来一般的に用いられてきたくし型ガイド類
に比較して繊維の損傷、特に毛羽の発生が少ない点で優
れているからである。
Alternatively, in order to efficiently split the flame-resistant yarn bundle,
It is usually desirable to use grooved rollers. This is because the grooved roller is superior to the comb-shaped guides that have been commonly used in the past in that it causes less damage to the fibers, especially less fuzz.

以上詳述したように、本発明は炭素繊維の製造全般を通
してバランスよく生産性を高めると同時に、高品質の維
持を目的として、炭素繊維の製造上最大のネックとなっ
ていた耐炎化工程では加熱した原糸を更に合糸して耐炎
化を行ない、次に耐炎化工程と比較して処理時間が短か
い炭化工程では、一旦合糸して得られた耐炎化糸束を原
糸単位あるいはその複数本に分繊した後炭化処理を行な
うものであり、この結果は炭素繊維製造の生産性が容易
にバランスよく向上できると同時に、従来の生産性向上
策では避けられなかった炭素繊維の強度低下が十分回避
できる等、その効果は著しい。
As detailed above, the present invention aims to improve productivity in a well-balanced manner throughout the production of carbon fibers, and at the same time maintain high quality. In the carbonization process, which requires a shorter processing time than the flame-retardant process, the flame-retardant yarn bundle obtained by the yarns is divided into raw yarn units or their own. Carbonization is performed after the fibers are split into multiple fibers, and this results in an easy and well-balanced increase in the productivity of carbon fiber manufacturing, while at the same time reducing the strength loss of carbon fibers that was unavoidable with conventional productivity improvement measures. The effect is remarkable, such as being able to sufficiently avoid problems.

以下、実施例を挙げて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

実施例1 フィラメント数3000本のアクリル繊維をクリールで
1m当り15回の撚りをかけなから連続的に巻き出し4
本ずつ溝付きローラの1溝内に引き揃え合糸し、空気中
240℃ないし270℃に加熱された耐炎化炉に入れて
80分間酸化処理を施した。次いで洛付きのローラーを
用いて2本ずつに分繊し、窒素ガス中最高温度1300
℃の炭化炉で1分間炭化を行なった。
Example 1 Acrylic fibers with 3000 filaments were twisted 15 times per meter using a creel and then continuously unwound 4
The yarns were drawn one by one into one groove of a grooved roller and put into a flameproofing furnace heated to 240°C to 270°C in air and subjected to oxidation treatment for 80 minutes. Next, the fibers are divided into two fibers using a roller with a roller, and the fibers are heated to a maximum temperature of 1300 ml in nitrogen gas.
Carbonization was carried out for 1 minute in a carbonization furnace at .degree.

得られた炭素繊維の物性は強度3 ’72 kg / 
am−弾性率23.9 t / wm”であった。
The physical properties of the obtained carbon fiber are strength 3'72 kg/
am-modulus of elasticity was 23.9 t/wm".

なお、前記同様の酸化処理によって得られた耐炎化糸束
を分繊せず、4本合糸のまま炭化処理した。得られた炭
素繊維の物性は強度346kg / wa”、弾性率2
3.6t/−嘗であった。
Incidentally, the flame-resistant yarn bundle obtained by the same oxidation treatment as described above was not divided into fibers, but was subjected to carbonization treatment as it was as a four-ply yarn. The physical properties of the obtained carbon fiber are strength: 346 kg/wa", elastic modulus: 2
The amount was 3.6t/-.

実施例2 フィラメント数6,000本のアクリル繊維(以下原糸
と略称)をクリールで加熱する際、撚り数を種々変更し
、溝付きローラーの溝中に3数が分繊時の操作性ならび
に炭素繊維品質(強度・弾性率)への影響を調べた。こ
の結果を第1表に示した。
Example 2 When heating an acrylic fiber with 6,000 filaments (hereinafter referred to as raw yarn) with a creel, the number of twists was variously changed, and the number of twists was 3 in the groove of a grooved roller to improve operability during fiber separation. The effect on carbon fiber quality (strength and elastic modulus) was investigated. The results are shown in Table 1.

第1表 実施例3 フィラメント数3,000本のアクリル繊維(以下原糸
と略称)をクリールで1m当り15回の撚りをかけなが
ら、連続的に巻出し、実施例1と同一焼成条件にょる耐
炎化及び炭化処理を行なった。
Table 1 Example 3 Acrylic fibers with 3,000 filaments (hereinafter referred to as yarn) were continuously unwound using a creel while being twisted 15 times per meter under the same firing conditions as Example 1. Flameproofing and carbonization treatments were performed.

ここで耐炎化処理時の合糸ならびに炭化処理時の分繊状
態を種々変更し、これらの炭素繊維品質(強度9弾性率
)への影響を調べた。これらの結果を第8表に示した。
Here, various changes were made to the doubling during the flame-retardant treatment and the fiber splitting state during the carbonization treatment, and the effects of these on the carbon fiber quality (strength 9 elastic modulus) were investigated. These results are shown in Table 8.

Claims (5)

【特許請求の範囲】[Claims] (1)炭素繊維用原糸を加熱し、その複数本を′g[に
’+iiえ加熱することなく合糸し、連続的に酸化性雰
囲気中で焼成して耐炎化糸束となした後、該耐炎化糸束
を少くとも2本乃至前記加熱された原糸単位に分繊し、
次いで非酸化性雰囲気中で炭化することを特徴とする炭
素繊維の連続的製造法。
(1) After heating the raw yarn for carbon fiber, combining multiple yarns without heating, and continuously firing in an oxidizing atmosphere to form a flame-resistant yarn bundle. , splitting the flame-resistant yarn bundle into at least two or the heated raw yarn units;
A continuous method for producing carbon fibers, which is then carbonized in a non-oxidizing atmosphere.
(2)  炭素繊維用原糸がアクリル繊維である特許請
求の範囲(1)記載の炭素繊維の連続的製造法。
(2) The method for continuously producing carbon fiber according to claim (1), wherein the carbon fiber yarn is an acrylic fiber.
(3)  炭素w、維用原糸の単糸デニール×構成フィ
ラメント数が500〜30000であり、かつ加熱数が
5〜100回/mである特許請求の範囲(1)記載の炭
素繊維:の連続的製造法。
(3) The carbon fiber according to claim (1), wherein the carbon w, the single fiber denier of the textile yarn x the number of constituent filaments is 500 to 30,000, and the number of heating is 5 to 100 times/m. Continuous manufacturing method.
(4)  耐炎化工程に供給される炭素繊維用原糸の合
糸本数が2〜8本である特許請求の範囲(1)記載の炭
素繊維の連続的製造法。
(4) The method for continuously producing carbon fibers according to claim (1), wherein the number of yarns for carbon fibers supplied to the flameproofing step is 2 to 8.
(5)  炭化工程に供給される分繊耐炎化糸条の構成
フィラメント数が500〜30000本である特許請求
の範囲(])記載の炭素繊維の連続的製造法。
(5) The continuous method for producing carbon fibers according to claim (), wherein the number of constituent filaments of the split flame-resistant yarn supplied to the carbonization step is 500 to 30,000.
JP18374181A 1981-11-18 1981-11-18 Continuous production of carbon fiber Pending JPS5887321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18374181A JPS5887321A (en) 1981-11-18 1981-11-18 Continuous production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18374181A JPS5887321A (en) 1981-11-18 1981-11-18 Continuous production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS5887321A true JPS5887321A (en) 1983-05-25

Family

ID=16141158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18374181A Pending JPS5887321A (en) 1981-11-18 1981-11-18 Continuous production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS5887321A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067910A (en) * 2013-09-27 2015-04-13 東レ株式会社 Carbon fiber and manufacturing method thereof
WO2019172246A1 (en) 2018-03-06 2019-09-12 東レ株式会社 Carbon fiber and method for manufacturing same
WO2019172247A1 (en) 2018-03-06 2019-09-12 東レ株式会社 Carbon fiber bundle and production method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841040A (en) * 1971-09-27 1973-06-16
JPS5571819A (en) * 1978-11-24 1980-05-30 Showa Denko Kk Production of carbon fiber
JPS5691015A (en) * 1979-12-25 1981-07-23 Toho Rayon Co Ltd Method for calcining treatment of acrylonitrile fiber bundle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841040A (en) * 1971-09-27 1973-06-16
JPS5571819A (en) * 1978-11-24 1980-05-30 Showa Denko Kk Production of carbon fiber
JPS5691015A (en) * 1979-12-25 1981-07-23 Toho Rayon Co Ltd Method for calcining treatment of acrylonitrile fiber bundle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067910A (en) * 2013-09-27 2015-04-13 東レ株式会社 Carbon fiber and manufacturing method thereof
WO2019172246A1 (en) 2018-03-06 2019-09-12 東レ株式会社 Carbon fiber and method for manufacturing same
WO2019172247A1 (en) 2018-03-06 2019-09-12 東レ株式会社 Carbon fiber bundle and production method therefor
KR20200126394A (en) 2018-03-06 2020-11-06 도레이 카부시키가이샤 Carbon fiber and its manufacturing method
KR20200127204A (en) 2018-03-06 2020-11-10 도레이 카부시키가이샤 Carbon fiber bundle and its manufacturing method
US11834758B2 (en) 2018-03-06 2023-12-05 Toray Industries, Inc. Carbon fiber bundle and production method therefor

Similar Documents

Publication Publication Date Title
JP5161604B2 (en) Carbon fiber manufacturing method
US4051659A (en) Production of carbon fibre
US3533743A (en) Process for the manufacture of continuous high modulus carbon yarns and monofilaments
JPS5887321A (en) Continuous production of carbon fiber
JP2003055843A (en) Method for producing carbon fiber
JPS62257422A (en) Production of carbon fiber
JP2005060871A (en) Method for producing flame-proofed fiber and method for producing carbon fiber
US5277850A (en) Process for producing a coil-shaped carbon fiber bundle
WO1987002391A1 (en) Process for producing carbon fibers
JPS6021911A (en) Manufacture of carbon fiber product
EP0098025B1 (en) Process for producing polyacrylonitrile-based carbon fiber
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
JP2930166B2 (en) Carbon fiber production method
JPS60126324A (en) Method for producing carbon fiber bundle having high orientation of filament
JPS62257424A (en) Production of carbon fiber having high strength and elastic modulus
JPH01250417A (en) Production of carbon fiber bundle cord
JPS58214530A (en) Production of flameproofed fiber
JPH0892824A (en) Spinning of carbon fiber and apparatus therefor
JPS6269826A (en) Production of high-strength and high-modulus carbon fiber
JPS6285032A (en) Multi-stage process for preoxidation of acrylonitrile polymer fiber bundle
JPS599222A (en) Production of carbon fiber yarn
JPS58214524A (en) Continuous production of graphite fiber
JPS58214532A (en) Production of flameproofed fiber
JP2020007656A (en) Manufacturing method of carbon fiber bundle
CN117344407A (en) Method for reducing tar in carbon fiber production process, preparation method of carbon fiber and obtained carbon fiber