JPS6250574B2 - - Google Patents

Info

Publication number
JPS6250574B2
JPS6250574B2 JP3824883A JP3824883A JPS6250574B2 JP S6250574 B2 JPS6250574 B2 JP S6250574B2 JP 3824883 A JP3824883 A JP 3824883A JP 3824883 A JP3824883 A JP 3824883A JP S6250574 B2 JPS6250574 B2 JP S6250574B2
Authority
JP
Japan
Prior art keywords
volume
hydrogen chloride
atmosphere
oxygen
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3824883A
Other languages
Japanese (ja)
Other versions
JPS59168129A (en
Inventor
Hiroshi Oota
Noboru Sugyama
Yoshikazu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP3824883A priority Critical patent/JPS59168129A/en
Publication of JPS59168129A publication Critical patent/JPS59168129A/en
Publication of JPS6250574B2 publication Critical patent/JPS6250574B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は取り扱い容易な高強度炭素繊維の製造
方法に関する。 高強度の炭素繊維を得るための炭化処理工程の
雰囲気として従来から、例えば特公昭44−21175
号公報に記載ごとく真空中または水素のような非
酸化性雰囲気、特公昭44−24692号公報に記載の
ごとく塩酸ガスなどの酸蒸気の雰囲気或いは特公
昭47−40575号公報に記載のごとくハロゲン化水
素雰囲気ならびに特公昭53−19047号公報に記載
のごとく塩化水素−水−不活性ガス雰囲気中でそ
れぞれ行なうことが知られている。 しかしながら、これらの雰囲気中で炭化して得
た炭素繊維はいずれも製造工程中の取り扱いに問
題があり、「ケバ」すなわち「単糸切れ」が発生
し易いという欠点を有していた。このため、合成
樹脂などを少量表面に塗布してサイジングするこ
とが行なわれるが、通常このサイジングする樹脂
の種類、量などを炭素繊維の取り扱い条件に合わ
せ適宜調節する必要があることから、サイジング
することなしに取り扱い易い炭素繊維の出現が望
まれてきた。 本発明の目的は前記従来技術の欠点を解消した
取り扱い易く、かつ高強度を有する炭素繊維を製
造する方法を提供するものであつて、その要旨と
するところはポリアクリロニトリル系繊維を酸化
性雰囲気中で加熱して耐炎化したのち、塩化水素
0.2〜10容量%、酸素0.2〜4容量%および不活性
ガスを含有する雰囲気中で加熱することを特徴と
する炭素繊維の製造方法にある。以下、本発明を
具体的に詳述する。 本発明において使用するポリアクリロニトリル
系繊維(以下、PAN繊維という)はポリアクリ
ロニトリル単独重合体または85重量%以上のポリ
アクリロニトリルとエチレン系不飽和化合物、例
えばアクリル酸メチル、メタクリル酸メチルまた
は酢酸ビニルのようなエステル類、塩化ビニル、
塩化ビニリデンのようなハロゲン類、アクリル
酸、メタクリル酸、イタコン酸などの酸類、アク
リルアマイド、メタクリルアマイドなどのアマイ
ド類などとの共重合体、混合体などを使用するこ
とができ、これらは湿式、乾式のいずれの紡糸法
によつても紡糸が可能であり、また溶媒としては
ロダン酸塩、硝酸、ジメチルホルムアミド、ジメ
チルアセトアミド、ジメチルスルホキシドを用い
ることができる。 繊維束としては単繊維度0.1〜10デニール パ
ー フイラメント(dpf)のフイラメントで数十
〜数十万本構成の繊維束が通常用いられるが、好
ましくは1〜5dpfのフイラメントが望ましい。 このPAN繊維を300℃以下、好ましくは230〜
280℃で酸素、ハロゲンガス、空気等の酸化性雰
囲気にて0.5〜3時間加熱して耐炎化する。この
際、原繊維長に対し数%以下の収縮または若干の
伸長を与える程度に張力を付与することが好まし
い。 次に耐炎化繊維は塩化水素0.5〜10容量%、酸
素0.2〜4容量%およびチツ素、アルゴンなどの
不活性ガスを含有する雰囲気中で300〜1500℃ま
で加熱する。このようにして得た炭素繊維はさら
に必要に応じ2000〜3000℃まで熱処理して黒鉛繊
維とすることもできる。 本発明において塩化水素、酸素の割合を前記の
ごとく限定した理由は次の通りである。 塩化水素−酸素−不活性ガス雰囲気において、
塩化水素を0.2容量%未満、酸素0.2容量%未満で
は「単糸切れ」の発生を防止する効果は認められ
ず、塩化水素10容量%、酸素4容量%を越えると
「単糸切れ」の発生が増加し、かつ強度も低下し
てくる。従つて、炭素化においては、塩化水素の
含有量0.2〜10容量%、酸素の含有量0.2〜4容量
%、好ましくは0.3〜3容量%および不活性ガス
を含有する雰囲気中で加熱することが望ましい。 従来の方法によると、塩化水素の存在は炭化時
間の短縮、強度の向上の面において効果があると
され、その量は雰囲気中10容量%以上が好適とさ
れてきた。しかし、多量の塩化水素の存在は排気
ガスの処理の面において困難な問題をかかえてお
り、また特公昭53−19047号に記載のごとく塩化
水素量を0.3〜30容量%におさえるかわりに水0.5
〜6容量%を加える方法も熱処理装置の腐食の面
において問題をかかえていた。 さらに、従来の方法で得た炭素繊維の大きな問
題はボビンに巻きうつしたりボビンから取り出し
たり、プラスチツク等と複合するため引き揃えた
り、製織したりするに際、繊維束を構成する単繊
維が切れて(「単糸切れ」)、からまるなどのトラ
ブルが発生し易いことであつた。従来の方法で得
た炭素繊維はサイジングによつても「単糸切れ」
を防止することはできなかつた。 本発明の方法によると、塩化水素の量を低くお
さえることができるため排気ガスの処理がきわめ
て容易であり、かつ水分が存在しないため装置の
腐食の問題も少ない。さらに塩化水素と酸素との
組み合わせによる雰囲気下での炭化は、得られる
炭素繊維の「単糸切れ」の発生を著しく低減させ
る効果を有する。 従つて、本発明により得られた高強度炭素繊維
は苛酷な取り扱い条件下でもサイジングなしで、
あるいは特別なサイジングを施すことなく充分使
用することができる。 以下、本発明を実施例および比較例に基づいて
具体的に説明する。 実施例1〜12および比較例1〜13 アクリロニトリル含有量95%、9000デニール、
6000フイラメントのPAN繊維を空気中で0.1g/
d張力下250℃で1時間加熱して耐炎化したの
ち、第1表に示すHCl−O2−N2雰囲気中の種々
の塩化水素濃度、酸素濃度で1400℃まで加熱炭化
した。炭化に要した時間は2分間であつた。得ら
れた炭素繊維の特性を第1表に示した。なお「単
糸切れ」の発生数は第1図に示すようにボビン1
から引き出し炭素繊維束2をボビン1の中心から
L=50cm離れたガイドロール3に導き、ボビン1
に固定して錘4により500gの荷重をかけ次いで
炭素繊維束2の中央部にm=10cmのところからブ
ロア5により20m/secの気流(室温)を30秒間
吹き付けたのち「単糸切れ」の発生数を測定し
た。
The present invention relates to a method for producing high-strength carbon fibers that are easy to handle. Traditionally, as an atmosphere for the carbonization process to obtain high-strength carbon fibers, for example,
In a vacuum or a non-oxidizing atmosphere such as hydrogen as described in Japanese Patent Publication No. 44-24692, in an atmosphere of acid vapor such as hydrochloric acid gas as described in Japanese Patent Publication No. 44-24692, or in a halogenated atmosphere as described in Japanese Patent Publication No. 47-40575. It is known to carry out the reaction in a hydrogen atmosphere and in a hydrogen chloride-water-inert gas atmosphere as described in Japanese Patent Publication No. 53-19047. However, carbon fibers obtained by carbonization in these atmospheres all have problems in handling during the manufacturing process, and have the disadvantage of being prone to "fluff" or "single yarn breakage." For this reason, sizing is carried out by applying a small amount of synthetic resin to the surface, but usually the type and amount of resin used for sizing must be adjusted appropriately according to the handling conditions of the carbon fiber, so sizing is carried out. The appearance of carbon fiber that is easy to handle has been desired. An object of the present invention is to provide a method for producing carbon fibers that are easy to handle and have high strength, eliminating the drawbacks of the prior art. After heating with hydrogen chloride to make it flame resistant,
A method for producing carbon fibers, characterized by heating in an atmosphere containing 0.2 to 10% by volume, 0.2 to 4% by volume of oxygen, and an inert gas. Hereinafter, the present invention will be specifically explained in detail. The polyacrylonitrile fiber (hereinafter referred to as PAN fiber) used in the present invention is a polyacrylonitrile homopolymer or a combination of polyacrylonitrile of 85% by weight or more and an ethylenically unsaturated compound, such as methyl acrylate, methyl methacrylate, or vinyl acetate. esters, vinyl chloride,
Copolymers and mixtures with halogens such as vinylidene chloride, acids such as acrylic acid, methacrylic acid, and itaconic acid, and amides such as acrylamide and methacrylamide can be used. Spinning can be performed by any dry spinning method, and rhodanate, nitric acid, dimethylformamide, dimethylacetamide, and dimethylsulfoxide can be used as the solvent. As the fiber bundle, a fiber bundle consisting of tens to hundreds of thousands of filaments with a single fiber density of 0.1 to 10 denier per filament (dpf) is usually used, but filaments of 1 to 5 dpf are preferably used. This PAN fiber is heated to 300℃ or less, preferably 230℃ or less.
Heat at 280°C in an oxidizing atmosphere such as oxygen, halogen gas, air, etc. for 0.5 to 3 hours to make it flame resistant. At this time, it is preferable to apply tension to an extent that causes contraction of several percent or less or slight elongation with respect to the fibril length. The flame-resistant fibers are then heated to 300-1500° C. in an atmosphere containing 0.5-10% by volume of hydrogen chloride, 0.2-4% by volume of oxygen, and an inert gas such as nitrogen or argon. The carbon fiber thus obtained can be further heat-treated to 2,000 to 3,000°C to form graphite fiber, if necessary. The reason why the proportions of hydrogen chloride and oxygen are limited as described above in the present invention is as follows. In a hydrogen chloride-oxygen-inert gas atmosphere,
If hydrogen chloride is less than 0.2% by volume and oxygen is less than 0.2% by volume, no effect on preventing "single thread breakage" is observed, and if hydrogen chloride exceeds 10% by volume and oxygen is 4% by volume, "single thread breakage" occurs. increases, and the strength also decreases. Therefore, in carbonization, heating may be performed in an atmosphere containing hydrogen chloride content of 0.2 to 10% by volume, oxygen content of 0.2 to 4% by volume, preferably 0.3 to 3% by volume, and an inert gas. desirable. According to conventional methods, the presence of hydrogen chloride is said to be effective in shortening carbonization time and improving strength, and the amount of hydrogen chloride in the atmosphere has been considered to be preferably 10% by volume or more. However, the presence of a large amount of hydrogen chloride poses a difficult problem in the treatment of exhaust gas, and as described in Japanese Patent Publication No. 53-19047, instead of suppressing the amount of hydrogen chloride to 0.3 to 30% by volume, water 0.5
The method of adding ~6% by volume also had problems in terms of corrosion of the heat treatment equipment. Furthermore, a major problem with carbon fibers obtained using conventional methods is that the single fibers that make up the fiber bundle break when they are wound onto a bobbin, taken out from the bobbin, aligned to be combined with plastic, etc., or woven. Problems such as ``single thread breakage'' and tangles were likely to occur. Carbon fiber obtained by conventional methods does not cause "single thread breakage" even when sizing
could not be prevented. According to the method of the present invention, the amount of hydrogen chloride can be kept low, making it extremely easy to treat the exhaust gas, and since no moisture is present, there are fewer problems of equipment corrosion. Furthermore, carbonization in an atmosphere using a combination of hydrogen chloride and oxygen has the effect of significantly reducing the occurrence of "single fiber breakage" in the resulting carbon fibers. Therefore, the high-strength carbon fiber obtained by the present invention can be used without sizing even under severe handling conditions.
Alternatively, it can be fully used without special sizing. The present invention will be specifically described below based on Examples and Comparative Examples. Examples 1 to 12 and Comparative Examples 1 to 13 Acrylonitrile content 95%, 9000 denier,
0.1g/6000 filament PAN fiber in air
After heating at 250° C. for 1 hour under d tension to make it flame resistant, it was heated to 1400° C. and carbonized at various hydrogen chloride and oxygen concentrations in the HCl-O 2 -N 2 atmosphere shown in Table 1. The time required for carbonization was 2 minutes. The properties of the obtained carbon fibers are shown in Table 1. The number of occurrences of "single thread breakage" is as shown in Figure 1.
The carbon fiber bundle 2 is pulled out from the center of the bobbin 1 and guided to the guide roll 3 located L = 50 cm away from the center of the bobbin 1.
A load of 500 g was applied using a weight 4, and then an air flow of 20 m/sec (at room temperature) was blown onto the center of the carbon fiber bundle 2 from a position of m = 10 cm using a blower 5 for 30 seconds. The number of occurrences was measured.

【表】【table】

【表】 第1表に示されるように本発明の範囲にある塩
化水素濃度、酸素濃度および不活性ガス雰囲気中
で加熱処理された炭素繊維は、その他の条件下で
加熱処理された炭素繊維と比較して引張強さおよ
び曲げ強度に優れ、かつ「単糸切れ」数が少な
い。 以上の説明からも明らかなように、ポリアクリ
ロニトリル繊維を酸化性雰囲気中で耐炎化した
後、特定濃度のHCl−O2−不活性ガス雰囲気中で
加熱する本発明の方法により得られる炭素繊維
は、従来の方法によるものに比して、強度に優れ
ると共に著しく「単糸切れ」の発生数が少ないこ
とから、取り扱い性に優れたものであることがわ
かる。
[Table] As shown in Table 1, carbon fibers heat-treated in hydrogen chloride concentration, oxygen concentration, and inert gas atmosphere within the range of the present invention are different from carbon fibers heat-treated under other conditions. In comparison, it has excellent tensile strength and bending strength, and has fewer "single thread breaks." As is clear from the above explanation, the carbon fiber obtained by the method of the present invention in which polyacrylonitrile fiber is made flame resistant in an oxidizing atmosphere and then heated in an HCl-O 2 -inert gas atmosphere at a specific concentration is Compared to the conventional method, it has excellent strength and the number of occurrences of "single yarn breakage" is significantly lower, indicating that it is easier to handle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は「単糸切れ」の測定方法を示す図。 1:ボビン、2:炭素繊維束、3:ガイドロー
ル、4:錘、5:ブロア。
FIG. 1 is a diagram showing a method for measuring "single yarn breakage." 1: bobbin, 2: carbon fiber bundle, 3: guide roll, 4: weight, 5: blower.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリアクリロニトリル系繊維を酸化性雰囲気
中で加熱して耐炎化した後、塩化水素0.2〜10容
量%、酸素0.2〜4容量%および不活性ガスを含
有する雰囲気中で加熱することを特徴とする炭素
繊維の製造方法。
1. Polyacrylonitrile fibers are heated in an oxidizing atmosphere to make them flame resistant, and then heated in an atmosphere containing 0.2 to 10% by volume of hydrogen chloride, 0.2 to 4% by volume of oxygen, and an inert gas. Carbon fiber manufacturing method.
JP3824883A 1983-03-10 1983-03-10 Production of carbon fiber Granted JPS59168129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3824883A JPS59168129A (en) 1983-03-10 1983-03-10 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3824883A JPS59168129A (en) 1983-03-10 1983-03-10 Production of carbon fiber

Publications (2)

Publication Number Publication Date
JPS59168129A JPS59168129A (en) 1984-09-21
JPS6250574B2 true JPS6250574B2 (en) 1987-10-26

Family

ID=12520000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3824883A Granted JPS59168129A (en) 1983-03-10 1983-03-10 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS59168129A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110925A (en) * 1983-11-15 1985-06-17 Asahi Chem Ind Co Ltd Manufacture of high-performance carbon fiber
JPS60252719A (en) * 1984-05-30 1985-12-13 Asahi Chem Ind Co Ltd Production of carbon fiber having high elongation
JPS61225373A (en) * 1985-03-27 1986-10-07 東邦レーヨン株式会社 Carbon fiber bundle
JPS61231265A (en) * 1985-03-30 1986-10-15 旭化成株式会社 Production of high performance carbon fiber

Also Published As

Publication number Publication date
JPS59168129A (en) 1984-09-21

Similar Documents

Publication Publication Date Title
CA1095206A (en) Process for producing carbon fibers
US4284615A (en) Process for the production of carbon fibers
US4362646A (en) Process for the production of fibrous activated carbon
US4113847A (en) Process for producing carbon fibers
US5328764A (en) Linear carbonaceous fiber with improved elongability
EP0159365A1 (en) Carbon fibers with high strength and high modulus, and process for their production
US3677705A (en) Process for the carbonization of a stabilized acrylic fibrous material
JPS6250574B2 (en)
JPS58136838A (en) Production of high-performance carbon fiber
JP3002549B2 (en) Manufacturing method of graphite fiber
US5078926A (en) Rapid stabilization process for carbon fiber precursors
JP2003055843A (en) Method for producing carbon fiber
JPS6128019A (en) Production of pitch based carbon fiber
JPH02242920A (en) Carbon fiber containing composite metal
US3954950A (en) Production of high tenacity graphitic fibrous materials
JPS62257422A (en) Production of carbon fiber
KR890005273B1 (en) Process for producing carbon fibers
JPS59137512A (en) Production of high-strength carbon fiber
US5413858A (en) Acrylic fiber and process for production thereof
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
JPS623245B2 (en)
JP2007332498A (en) Method for producing carbon fiber bundle
JPH0255549B2 (en)
US3650668A (en) Thermally stabilized acrylic fibers produced by sulfation and heating in an oxygen-containing atmosphere