JPS60110925A - Manufacture of high-performance carbon fiber - Google Patents
Manufacture of high-performance carbon fiberInfo
- Publication number
- JPS60110925A JPS60110925A JP21330883A JP21330883A JPS60110925A JP S60110925 A JPS60110925 A JP S60110925A JP 21330883 A JP21330883 A JP 21330883A JP 21330883 A JP21330883 A JP 21330883A JP S60110925 A JPS60110925 A JP S60110925A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- carbonization
- treatment
- oxidizing atmosphere
- carbon fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Inorganic Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)技術分野
本発明は、アクリロニトリル系合成繊維から高強度およ
び高弾性率を有する高性能炭素繊維を製造する方法に関
する。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a method for producing high-performance carbon fibers having high strength and high modulus of elasticity from acrylonitrile-based synthetic fibers.
(ロ)従来技術
一般にアクリロニトリル系合成繊維から炭素繊維を製造
する場合には、200〜300 ’cの酸化性雰囲気中
で熱処理して得られた耐炎化繊維を不活性雰囲気中で更
に高温で炭素化処理する方法が知られている。(b) Prior Art Generally, when producing carbon fibers from acrylonitrile synthetic fibers, flame-resistant fibers obtained by heat treatment in an oxidizing atmosphere at 200 to 300 °C are heated to carbon fibers at a higher temperature in an inert atmosphere. There are known methods of oxidation treatment.
より高性能の炭素繊維を得るために現在まで多くの研究
が続けられある程度の成果があげられるに至ったが、航
空、宇宙関係、その他の複合材料の強化材として用いら
れる炭素繊維にはより高強度と高弾性率がめられている
。To date, much research has been carried out to obtain carbon fibers with higher performance, and some results have been achieved. It is known for its strength and high modulus.
しかしながら、高強度と高弾性率を有する炭素繊維を得
るのは困難な状況にある。それは、一般に知られている
ように、炭素繊維の強度は最高温度1000〜1500
℃の炭素化処理で最高値が得られ、それ以上では低下す
るが、弾性率は炭素化処理温度の上昇とともに増加する
からである。However, it is difficult to obtain carbon fibers with high strength and high modulus. As is generally known, the strength of carbon fiber is at a maximum temperature of 1000 to 1500
This is because the highest value is obtained in the carbonization treatment at .degree. C., and decreases at higher temperatures, but the elastic modulus increases as the carbonization temperature increases.
炭素化処理において特定条件下で適当な昇温速度及び伸
長操作を施すことが炭素繊維の性能向上に寄与すること
が知られており、例えば、昇温速度については特公昭4
8−292号公報等に、伸長操作に・ついては特開昭5
4−147222号公報等に示されているが十分な効果
を奏するには至っていない。It is known that applying an appropriate heating rate and elongation operation under specific conditions during carbonization treatment contributes to improving the performance of carbon fibers.
8-292, etc., and the expansion operation is described in Japanese Patent Application Laid-open No. 5
Although this method is disclosed in Japanese Patent No. 4-147222, etc., it has not yet achieved sufficient effects.
また、炭素化処理雰囲気としてはハロゲン化水素ガスを
用いる方法が特公昭47− lG36号公報、特公昭4
7−40575号公報等に示されているが、これらも十
分な効果を奏するには至っていない。In addition, a method using hydrogen halide gas as the carbonization treatment atmosphere is disclosed in Japanese Patent Publication No. 47-1G36,
Although these methods are disclosed in Japanese Patent No. 7-40575, etc., these methods have not yet achieved sufficient effects.
よび高弾性率を有する高性能炭素繊維を提供するにある
。The purpose of the present invention is to provide high performance carbon fibers with high elasticity and high modulus.
(ニ)発明の構成
本発明に係る高性能炭素繊維の製造方法は、アクリロニ
トリル系合成繊維を酸化性雰囲気中で耐炎化処理後、最
高温度1000℃以上で炭素化処理するにあたり、30
0℃以上1000℃以下の温度領域における昇温速度を
200℃/分以上3000’C/分以下、炭素化処理時
における伸長率を一4%以上25%以下とし、且つ炭素
化処理を、ハロゲン化水素ガスを含む酸化性雰囲気中で
行うことを特徴とする。(d) Structure of the Invention The method for producing high-performance carbon fibers according to the present invention involves carbonizing acrylonitrile-based synthetic fibers at a maximum temperature of 1000°C or higher after flame-retardant treatment in an oxidizing atmosphere.
The temperature increase rate in the temperature range of 0°C to 1000°C is 200°C/min to 3000°C/min, the elongation rate during carbonization is 14% to 25%, and the carbonization process is performed using halogen. It is characterized by being carried out in an oxidizing atmosphere containing hydrogen chloride gas.
(ホ)実施態様
本発明で用いるアクリロニトリル系合成繊維は、アクリ
ロニトリル90]Ti量%以上含有する重合体からなる
繊維である。10重量%以下であれば、アクリロニトリ
ルと共重合可能な従来公知の単量体、例えばアクリル酸
、メタクリル酸、イタコン酸等の不飽和カルボン酸、こ
れらの酸のエステル類、塩化ビニル、酢酸ビニル、スチ
レン、アクリルアミド、ジアセトンアクリルアミド、メ
タクリルアミド、α−クロルアクリロニトリル、アリル
スルホン酸等をアクリロニトリルと共重合すべき相手成
分として有利に用いることができる。(E) Embodiment The acrylonitrile synthetic fiber used in the present invention is a fiber made of a polymer containing acrylonitrile 90]Ti in an amount of % or more. If it is 10% by weight or less, conventionally known monomers copolymerizable with acrylonitrile, such as unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, esters of these acids, vinyl chloride, vinyl acetate, Styrene, acrylamide, diacetone acrylamide, methacrylamide, α-chloroacrylonitrile, allylsulfonic acid, etc. can be advantageously used as the partner component to be copolymerized with acrylonitrile.
本発明における耐炎化処理には従来公知の方法が用いら
れるが、一般には前記アクリロニトリル系合成繊維を酸
化性雰囲気中200〜300℃で熱処理する。この際適
当な伸長操作を施すことがより好ましい。Conventionally known methods are used for the flameproofing treatment in the present invention, but generally the acrylonitrile synthetic fiber is heat treated at 200 to 300°C in an oxidizing atmosphere. At this time, it is more preferable to perform an appropriate elongation operation.
本発明における炭素化処理では、最高温度1000℃以
上で炭素化処理するにあたり、300℃以上1000℃
以下の温度領域において昇温速度を200℃/分以上3
000℃/℃分以下とすることが必要である。200℃
/分未満の昇温速度では繊維内部に欠陥が生じやすくな
るため高性能炭素繊維は得られず、また、3000℃/
分を越える昇温速度では急激な熱分解反応により繊維束
切断のトラブルが発生ずるようになる。In the carbonization treatment in the present invention, the maximum temperature of carbonization treatment is 300℃ or higher and 1000℃ or higher.
Temperature increase rate of 200℃/min or more in the following temperature range3
000°C/°C min or less. 200℃
If the heating rate is less than 3000℃/min, defects will easily occur inside the fiber, making it impossible to obtain high-performance carbon fiber.
If the heating rate exceeds 1 minute, troubles such as fiber bundle breakage will occur due to rapid thermal decomposition reaction.
また、炭素化処理時における伸長率を一4%以上25%
以下とする必要がある。−4%未満の伸長率では繊維内
部の配向性が向上しないため高性能炭素繊維は得られず
、また、25%を越える伸長率では繊維束切断のトラブ
ルが発生するようになる。In addition, the elongation rate during carbonization treatment should be increased from 14% to 25%.
It is necessary to do the following. If the elongation rate is less than -4%, the internal orientation of the fibers will not improve, so high-performance carbon fibers will not be obtained, and if the elongation rate exceeds 25%, problems with fiber bundle breakage will occur.
炭素化処理における以上のような操作により、未操作の
ものに比べ強度および弾性率の向上はみられるものの、
本発明において意図されている強度および弾性率には達
しえない。本発明では前述したような操作に加えて、炭
素化処理をハロゲン化水素ガスを含む酸化性雰囲気中で
行うことが必要である。Although the above-mentioned operations during carbonization treatment improve the strength and elastic modulus compared to the untreated ones,
The strength and modulus contemplated in this invention cannot be achieved. In the present invention, in addition to the operations described above, it is necessary to carry out the carbonization treatment in an oxidizing atmosphere containing hydrogen halide gas.
ハロゲン化水素ガスを含む酸化性雰囲気は不活性ガスで
希釈しても用いることができるが、ハロゲン化水素ガス
は0.1容量%以上、酸化性ガスは0.05〜5容量%
、残りを不活性ガスとすることが好ましい。しかし、特
にこれに限定するものではない。ハロゲン化水素ガスと
しては、塩化水素、フン化水素、臭化水素などを、酸化
性ガスとしては、酸素、空気、二酸化炭素、水蒸気など
を、また、不活性ガスとしては、窒素、アルゴン、ヘリ
ウム、水素などをそれぞれ用いることカセできる。Oxidizing atmosphere containing hydrogen halide gas can be used even if diluted with inert gas, but hydrogen halide gas is 0.1% by volume or more, and oxidizing gas is 0.05 to 5% by volume.
, the remainder is preferably an inert gas. However, it is not particularly limited to this. Hydrogen halide gases include hydrogen chloride, hydrogen fluoride, hydrogen bromide, etc. Oxidizing gases include oxygen, air, carbon dioxide, water vapor, etc. Inert gases include nitrogen, argon, helium, etc. , hydrogen, etc. can be used.
操作性及び経済性の面から、これらの中でも塩化水素、
酸素および窒素の組合せを用いることが好ましい。Among these, hydrogen chloride,
Preferably, a combination of oxygen and nitrogen is used.
従来、炭素化処理は酸素などの酸化性ガスが可及的に少
ない雰囲気中で行われ、酸素が存在すると炭素繊維の性
能が低下するとされていた。しかるに、本発明では耐炎
化処理後の炭素化処理を、ハロゲン化水素ガスを含む酸
化性雰囲気中で行い、従来よりもはるかに高強度および
高弾性率を有する高性能炭素繊維を製造するという特徴
を有する。Conventionally, carbonization treatment is performed in an atmosphere containing as little oxidizing gas as possible, such as oxygen, and it has been thought that the presence of oxygen reduces the performance of carbon fibers. However, in the present invention, the carbonization treatment after the flameproofing treatment is performed in an oxidizing atmosphere containing hydrogen halide gas, and a feature of the present invention is that high-performance carbon fibers having much higher strength and higher elastic modulus than conventional ones are manufactured. has.
本発明方法における炭素化処理は全て単一な炉で行うこ
とが可能であり、操作性及び経済性の面からも有利であ
る。しかし、生産性のより一層の向上あるいはより高弾
性率を達成するための黒鉛化処理の導入などにより炉を
追加する場合には、追加した炉については本発明におけ
る雰囲気とは異なる雰囲気を用いることもできる。All carbonization treatments in the method of the present invention can be performed in a single furnace, which is advantageous from the viewpoint of operability and economy. However, if a furnace is added due to the introduction of graphitization treatment to further improve productivity or achieve a higher elastic modulus, an atmosphere different from that used in the present invention may be used for the added furnace. You can also do it.
(へ)発明の効果
以上のように本発明では、昇温速度及び伸長操作という
個々の操作またはそれらの組合せのみでは十分な効果を
奏しえない炭素化処理において、前述したような特殊な
雰囲気を用いることにより、従来よりもはるかに高強度
および高弾性率を有する高性能炭素繊維を製造すること
を可能にした。(f) Effects of the Invention As described above, the present invention provides a special atmosphere as described above in carbonization treatment in which individual operations such as heating rate and elongation operation or a combination thereof cannot produce sufficient effects. By using this method, it has become possible to produce high-performance carbon fibers that have much higher strength and modulus of elasticity than conventional methods.
また、本発明では炭素化処理において酸化性ガスを用い
ることにより、炭素繊維を複合祠料の強化材として用い
る場合に重要な要素である眉間剪断強度の向上をもたら
した。これは本発明が炭素繊維の表面処理までも同時に
行うという優れた効果も有することを意味する。Furthermore, in the present invention, by using an oxidizing gas in the carbonization treatment, the glabella shear strength, which is an important factor when using carbon fibers as a reinforcing material for a composite abrasive material, was improved. This means that the present invention also has the excellent effect of simultaneously performing surface treatment on carbon fibers.
(ト)実施例
以下、実施例により本発明をさらに詳細に説明するが、
本発明はこれに限定されるものではない。(g) Examples The present invention will be explained in more detail by examples below.
The present invention is not limited to this.
下記実施例中の炭素繊維の強度及び弾性率はJISR7
601に定められたストランド試験方法により測定した
。The strength and elastic modulus of carbon fiber in the following examples are JISR7.
It was measured by the strand test method specified in 601.
実施例1
単糸繊度1.3デニール、フィラメント数6000本か
らなるアクリロニトリル系重合体の繊維束を、250℃
の空気中で1時間、12%の伸長率を付与しながら熱処
理して耐炎化繊維を得た。この耐炎化繊維を伸長率O%
で最高温度1350℃まで加熱し、1350℃での滞在
時間を2分間として炭素化処理した。この際、300℃
以上1000℃以下の温度領域における昇温速度は90
0℃/分とした。以上を同一条件とし、ハロゲン化水素
ガス、酸素ガス、窒素ガスの割合を第1表記載の容量%
の値として炭素化処理して得られた炭素繊維の強度及び
弾性率を第1表に示す。これらの結果よりハロゲン化水
素ガスを含む酸化性雰囲気中で炭素化処理を行えば高強
度および高弾性率を有する高性能炭素繊維が得られるこ
とがわかる。Example 1 An acrylonitrile polymer fiber bundle consisting of 6000 filaments with a single yarn fineness of 1.3 denier was heated at 250°C.
The fibers were heat-treated in air for 1 hour while being given an elongation rate of 12% to obtain flame-resistant fibers. This flame resistant fiber has an elongation rate of 0%
The carbonization treatment was carried out by heating to a maximum temperature of 1350°C and staying at 1350°C for 2 minutes. At this time, 300℃
The temperature increase rate in the temperature range above 1000℃ is 90℃.
The temperature was set at 0°C/min. With the above conditions being the same, the proportions of hydrogen halide gas, oxygen gas, and nitrogen gas are the volume percentages listed in Table 1.
Table 1 shows the strength and elastic modulus of carbon fibers obtained by carbonization treatment. These results show that high-performance carbon fibers having high strength and high elastic modulus can be obtained by performing carbonization treatment in an oxidizing atmosphere containing hydrogen halide gas.
第1表
□□□□□□□■
実施例2
実施例1第1表中の隘4において炭素化伸長率を13%
とし、300℃以上1000℃以下の温度領域における
昇温速度を第2表に記載の値とした以外は全て同様な処
理を行って得られた炭素繊維の強度及び弾性率を第2表
に示す。これらの結果より昇温速度が200℃/分以上
3000℃/分以下の範囲では高強度および高弾性率を
有する高性能炭素繊維が得られることがわかる。Table 1 □□□□□□□■ Example 2 Carbonization elongation rate at 4 in Example 1 Table 1 is 13%
Table 2 shows the strength and elastic modulus of carbon fibers obtained by performing the same treatment except that the heating rate in the temperature range of 300 ° C to 1000 ° C was set to the values listed in Table 2. . These results show that high-performance carbon fibers having high strength and high elastic modulus can be obtained when the heating rate is in the range of 200° C./min or more and 3000° C./min or less.
第2表
実施例3
実施例1第1表中の隘4において炭素化伸長率を第3表
記載の値とした以外は全て同様な処理を行って得られた
炭素繊維の強度及び弾性率を第3表に示す。これらの結
果より炭素化伸長率が一4%以上25%以下の範囲では
高強度および高弾性率を有する高性能炭素繊維が得られ
ることがわかる。Table 2 Example 3 The strength and elastic modulus of carbon fibers obtained by performing all the same treatments except that the carbonization elongation rate in column 4 in Table 1 of Example 1 was changed to the value listed in Table 3. It is shown in Table 3. These results show that high-performance carbon fibers having high strength and high modulus of elasticity can be obtained when the carbonization elongation rate is in the range of 14% to 25%.
第3表
実施例4
実施例3第3表中の隘4で得られた炭素繊維束にエポキ
シ樹脂(エピコート828)を含浸し、プリプレグを作
成して積層後、加熱硬化させ、複合材料成形物を作成し
た。得られた複合材料成形物について眉間剪断強度を測
定したところ9.1kg/m+”であった。これは市販
されている表面処理済みの炭素繊維が有する値と同程度
である。Table 3 Example 4 The carbon fiber bundle obtained in item 4 in Table 3 of Example 3 was impregnated with epoxy resin (Epicote 828) to create a prepreg, which was laminated and cured by heating to produce a composite material molded product. It was created. The glabella shear strength of the obtained composite material molded article was measured and found to be 9.1 kg/m+''. This value is comparable to the value of commercially available surface-treated carbon fibers.
Claims (1)
処理後、最高温度1ooo”c以上で炭素化処理するに
あたり、300”C以上1000”C以下の温度領域に
おける昇温速度を200”07分以上3000”C/分
以下、炭素化処理時における伸長率を一4%以上25%
以下とし、且つ炭素化処理を、ハロゲン化水素ガスを含
む酸化性雰囲気中で行うことを特徴とする高性能炭素繊
維の製造方法。When acrylonitrile-based synthetic fibers are flame-resistant treated in an oxidizing atmosphere and then carbonized at a maximum temperature of 1 ooo"C or higher, the heating rate in the temperature range of 300"C to 1000"C is set to 200"07 minutes or more and 3000"C or more. "C/min or less, the elongation rate during carbonization treatment is 14% or more and 25%
A method for producing a high-performance carbon fiber as follows, and the carbonization treatment is performed in an oxidizing atmosphere containing hydrogen halide gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21330883A JPS60110925A (en) | 1983-11-15 | 1983-11-15 | Manufacture of high-performance carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21330883A JPS60110925A (en) | 1983-11-15 | 1983-11-15 | Manufacture of high-performance carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60110925A true JPS60110925A (en) | 1985-06-17 |
JPH0329891B2 JPH0329891B2 (en) | 1991-04-25 |
Family
ID=16636977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21330883A Granted JPS60110925A (en) | 1983-11-15 | 1983-11-15 | Manufacture of high-performance carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60110925A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60252719A (en) * | 1984-05-30 | 1985-12-13 | Asahi Chem Ind Co Ltd | Production of carbon fiber having high elongation |
JPS6233826A (en) * | 1985-08-07 | 1987-02-13 | Asahi Chem Ind Co Ltd | Production of high-strength and high-modulus carbon fiber |
JPS62282026A (en) * | 1986-05-29 | 1987-12-07 | Asahi Chem Ind Co Ltd | Production of carbon yarn having high strength and high modulus of elasticity |
JP2019143287A (en) * | 2018-02-23 | 2019-08-29 | 帝人株式会社 | Manufacturing method of carbon fiber and carbon fiber |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5046927A (en) * | 1973-08-30 | 1975-04-26 | ||
JPS5170324A (en) * | 1974-12-13 | 1976-06-17 | Nippon Carbon Co Ltd | Tansosenino seizohoho |
JPS59168129A (en) * | 1983-03-10 | 1984-09-21 | Nippon Carbon Co Ltd | Production of carbon fiber |
-
1983
- 1983-11-15 JP JP21330883A patent/JPS60110925A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5046927A (en) * | 1973-08-30 | 1975-04-26 | ||
JPS5170324A (en) * | 1974-12-13 | 1976-06-17 | Nippon Carbon Co Ltd | Tansosenino seizohoho |
JPS59168129A (en) * | 1983-03-10 | 1984-09-21 | Nippon Carbon Co Ltd | Production of carbon fiber |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60252719A (en) * | 1984-05-30 | 1985-12-13 | Asahi Chem Ind Co Ltd | Production of carbon fiber having high elongation |
JPH0116927B2 (en) * | 1984-05-30 | 1989-03-28 | Asahi Chemical Ind | |
JPS6233826A (en) * | 1985-08-07 | 1987-02-13 | Asahi Chem Ind Co Ltd | Production of high-strength and high-modulus carbon fiber |
JPS62282026A (en) * | 1986-05-29 | 1987-12-07 | Asahi Chem Ind Co Ltd | Production of carbon yarn having high strength and high modulus of elasticity |
JP2019143287A (en) * | 2018-02-23 | 2019-08-29 | 帝人株式会社 | Manufacturing method of carbon fiber and carbon fiber |
Also Published As
Publication number | Publication date |
---|---|
JPH0329891B2 (en) | 1991-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3723607A (en) | Surface modification of carbon fibers | |
US3775520A (en) | Carbonization/graphitization of poly-acrylonitrile fibers containing residual spinning solvent | |
JPS58136834A (en) | Production of carbon fiber of high performance | |
JPS60110925A (en) | Manufacture of high-performance carbon fiber | |
US3859187A (en) | Electrolytic process for the surface modification of high modulus carbon fibers | |
US3716331A (en) | Process for producing carbon fibers having a high young's modulus of elasticity | |
JPS58144128A (en) | Preparation of carbon fiber having high performance | |
US3914393A (en) | Process for the conversion of stabilized acrylic fibers to carbon fibers | |
JPS62257422A (en) | Production of carbon fiber | |
JPH0219513A (en) | Production of carbon fiber having high strength and high modulus of elasticity | |
JPS6127487B2 (en) | ||
JPH02259119A (en) | High density graphite yarn and production thereof | |
JPS6250574B2 (en) | ||
JPS61119712A (en) | Production of carbon fiber having high strength | |
JP4919410B2 (en) | Carbon fiber manufacturing method | |
JPH0116927B2 (en) | ||
JPS6311367B2 (en) | ||
JPS6366325A (en) | Production of carbon fiber for high-performance cfrp | |
JPH03287860A (en) | Production of carbon fiber | |
JPS58186614A (en) | Production of graphite fiber | |
US3656883A (en) | Process for the stabilization of acrylic fibers | |
JPS60151317A (en) | Production of carbon fiber | |
JPH07292526A (en) | Production of acrylic carbon fiber | |
JPS58214535A (en) | Production of acrylic type carbon fiber | |
JPH02259118A (en) | Graphite fiber having high tensile strength |