JPS6366325A - Production of carbon fiber for high-performance cfrp - Google Patents

Production of carbon fiber for high-performance cfrp

Info

Publication number
JPS6366325A
JPS6366325A JP20510986A JP20510986A JPS6366325A JP S6366325 A JPS6366325 A JP S6366325A JP 20510986 A JP20510986 A JP 20510986A JP 20510986 A JP20510986 A JP 20510986A JP S6366325 A JPS6366325 A JP S6366325A
Authority
JP
Japan
Prior art keywords
fibers
carbon fiber
resin
dependence
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20510986A
Other languages
Japanese (ja)
Inventor
Akitaka Kikuchi
菊地 彰障
Keizo Hosoi
細井 啓造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20510986A priority Critical patent/JPS6366325A/en
Publication of JPS6366325A publication Critical patent/JPS6366325A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled higher-performance fibers useful as a high- performance carbon fiber composite material which is a raw material for structural materials of aircraft, by heat-treating carbon fibers having strong resin dependence of strand tensile breaking strength in a special atmosphere. CONSTITUTION:Carbon fibers having >=80kg/mm<2> resin dependence of strand tensile breaking strength are heat-treated at 800-1,250 deg.C in an atmosphere containing a hydrogen halide, preferably hydrogen chloride and steam to afford the aimed fibers. The carbon fibers which are a raw material are preferably obtained by flameproofing fibers prepared from an acrylonitrile polymer containing >=90wt% acrylonitrile at 240-350 deg.C, carbonizing the flameproofed fibers and oxidizing the surface under severe condition. Steam generated from heated water is preferably used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高性能炭素繊維複合材料(以下、r CFR
P Jという)用炭素繊維の製造方法に関し、さらに詳
しくは、ストランド引張破断強度の樹脂依存性が強い炭
素繊維を特殊な界囲気下で処理することによって、より
高性能の炭素繊維を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to high performance carbon fiber composite materials (hereinafter referred to as rCFR).
Regarding the method for producing carbon fiber for PJ), more specifically, it is a method for producing carbon fiber with higher performance by processing carbon fiber whose strand tensile breaking strength is strongly dependent on resin under a special ambient atmosphere. Regarding.

一般に、炭素繊維は比強度、比弾性率等の機械的特性に
優れており、そのため、この炭素m維を強化材としたC
FRPは、航空機の構造材をはじめ、宇宙開発機器、自
動1部品およびスポーツ用品にまで広く利用されつつあ
る。そして、近年特に、航空機、宇宙開発機器に関して
は、高め強度を有し、しかも、耐熱性、耐候性に優れた
より高性能のCFRPが要求されている。
In general, carbon fibers have excellent mechanical properties such as specific strength and specific modulus, and therefore carbon fibers are used as reinforcing materials.
FRP is being widely used for aircraft structural materials, space development equipment, automobile parts, and sporting goods. In recent years, particularly for aircraft and space development equipment, there has been a demand for higher performance CFRP that has increased strength and excellent heat resistance and weather resistance.

〔従来の技術〕[Conventional technology]

上述のような高性能のCFRPを得るため、これまでに
多くの高性能マ) IJフックス脂が開発されている(
例えば、特開昭60−197722号)。
In order to obtain high-performance CFRP as mentioned above, many high-performance polymers (IJ Fuchs resin) have been developed (
For example, JP-A-60-197722).

また、炭素繊維自身に関しても高強度化の手法が数多く
開発されている(例えば、特開昭60−88128号)
。そして、これらの高性能マ) IJフックス脂と高強
反炭素繊維とを組合せて、より高性能のCF RPを開
発する研究がますます活発に行なわれている。
In addition, many methods for increasing the strength of carbon fibers themselves have been developed (for example, JP-A-60-88128).
. Research is increasingly being conducted to develop higher performance CF RP by combining these high-performance polymers with IJ Fuchs resin and high-strength anti-carbon fibers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これまで提案されt高性能マトリックス樹脂と高強度炭
素繊維との組合せでは両者の特性が十分に発揮されたも
のとは言い難かった。すなわち、単純に両者を組合せた
だけでは、むしろ、得られたCFRPの特性が期待され
るべき値に比較して低い場合が多い。そして、その結果
として、ストランド引張破断強度の樹脂依存性(この特
性については後に定義する。)が発現する。
The combinations of high-performance matrix resins and high-strength carbon fibers that have been proposed so far have not been able to fully demonstrate the characteristics of both. That is, if the two are simply combined, the characteristics of the obtained CFRP are often lower than expected values. As a result, the dependence of the strand tensile strength at break on the resin (this property will be defined later) appears.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、プラスチックをマトリックスとする(’
F RPの機械的破壊機構について、鋭意研究を重ねた
結果、このようなCFRPの引張破壊は炭素n!、維と
マトリックスプラスチック間の界面状態と密接表関係が
あることを見出し、この知見に基づいて高性能CFRP
用炭素繊維の開発に努めた結果本発明の完成に至っ次。
The present inventors used plastic as a matrix ('
As a result of intensive research into the mechanical fracture mechanism of FRP, we found that such tensile fracture of CFRP is caused by carbon n! found that there is a close relationship between the interface state between fibers and matrix plastic, and based on this knowledge, we developed high-performance CFRP.
As a result of efforts to develop carbon fiber for use in carbon fibers, the present invention was completed.

本発明の高性能CFRP用炭素繊維の製造方法は、スト
ランド引張破断強度の樹脂依存性が80 kg/1as
2以上である炭素繊維をハロゲン化水素と水蒸気を含有
する雰囲気中にて800℃〜1250℃の温度で加熱処
理することを特徴とする。
The method for producing high-performance carbon fiber for CFRP of the present invention has a resin dependence of strand tensile breaking strength of 80 kg/1as.
2 or more carbon fibers are heat-treated at a temperature of 800°C to 1250°C in an atmosphere containing hydrogen halide and water vapor.

ここで「ストランド引張破断強度の樹脂依存性Jとは、
JIS−R7606に記載されているストランド試験方
法において、ビスフェノールA型エポキシ樹脂1エピコ
ー) ” 828 (油化シェル社製)100重証部、
無水メチルナジック酸90重厘部、ベンジルジメチルア
ミン2.5重量部およびメチシュチルケトン21重景部
から々る組成を有する樹脂処方(「樹脂処方(&)」と
いう)を用いて150℃。
Here, "resin dependence J of strand tensile breaking strength is
In the strand test method described in JIS-R7606, bisphenol A type epoxy resin 1 Epicor) 828 (manufactured by Yuka Shell Co., Ltd.) 100 times certified section,
150° C. using a resin formulation (referred to as “resin formulation (&)”) having a composition consisting of 90 parts by weight of methylnazic anhydride, 2.5 parts by weight of benzyldimethylamine, and 21 parts by weight of methishthyl ketone.

30分間硬化処理して得られるストランドの引張強度(
A ky、/am2)と、上記と同じビスフェノールA
型エポキシ樹脂100重量部、三ふっ化はう素モノエチ
ルアミン3重量部およびメチルエチルケトン43重量部
からなる組成を有する樹脂処方(「樹脂処方(b)」と
いう)を用いて130’Cで1時間その後180℃で2
時間硬化処理して得られるストランドの引張強度(B 
kFi/van” )との差の絶対値(IA−B 1k
g/J )をhう。
Tensile strength of the strand obtained by curing for 30 minutes (
A ky, /am2) and the same bisphenol A as above
Using a resin formulation (referred to as "resin formulation (b)") having a composition consisting of 100 parts by weight of type epoxy resin, 3 parts by weight of borofluoride monoethylamine, and 43 parts by weight of methyl ethyl ketone, the mixture was heated at 130'C for 1 hour. 2 at 180℃
Tensile strength of strands obtained by time-curing treatment (B
kFi/van”) and the absolute value of the difference (IA-B 1k
g/J).

本発明の方法において用いる炭素繊維は、原料プリカー
サを耐炎化処理、引続き炭素化処理することによって得
られる。プリカーサとしては、アクリロニトリル系合成
繊維、ピッチ系繊維、レーヨンなどのセルロース系繊維
、フェノ−#It&系線維など炭素繊維の製造に常用さ
れるものを用いることができる。中でも、少くとも90
1ii1%のアクリロニトリル単位を含有するアクリロ
ニトリル系重合体から、周知の方法によって製造された
繊維が好ましい。特に、単糸繊度0.5〜1.5デニー
ル、単糸本数1000〜12000本の線維束が好まし
く、不純物や欠陥が少なく、緻密な構造を有し、かつ高
配向の繊維束がさらに好ましい。
The carbon fibers used in the method of the present invention are obtained by subjecting a raw material precursor to flame resistance treatment and subsequent carbonization treatment. As the precursor, those commonly used in the production of carbon fibers such as acrylonitrile synthetic fibers, pitch fibers, cellulose fibers such as rayon, and pheno-#It& fibers can be used. Among them, at least 90
Preference is given to fibers produced by known methods from acrylonitrile-based polymers containing 1% of acrylonitrile units. In particular, a fiber bundle with a single fiber fineness of 0.5 to 1.5 deniers and a number of single fibers of 1,000 to 12,000 is preferable, and a fiber bundle with few impurities and defects, a dense structure, and a highly oriented fiber bundle is more preferable.

耐炎化処理は、上述のようなノリカーサを全党で代表さ
れる酸化性雰囲気中で熱風循環炉または/および加熱ロ
ーラーを用いて200〜400℃、好ましくは、240
〜350℃で所定の時間熱処理することによって行うこ
とができる。
The flame-retardant treatment is carried out by heating the above-mentioned Nolicasa in an oxidizing atmosphere, typically at 200 to 400°C, preferably at 240°C, using a hot air circulation furnace and/or a heating roller.
This can be done by heat treatment at ~350°C for a predetermined period of time.

本発明で用いる、ストランド引張破断強度の樹脂依存性
が80kgZ−以上である炭素繊維は、前述のように耐
炎化処理した繊維を、常法によって炭素化した後または
炭素化と同一工程で表面酸化処理することによって得る
ことができる。すなわち、常法に従って炭素化し之未酸
化処理炭素繊維を酸化性ガス中で気相酸化処理するか、
もしくは、炭素化工程を酸化性ガスを含む雰囲気中で行
うことにより繊維表面を気相酸化する方法(例えば、特
開昭52−53092号参照)、炭素化した未酸化処理
炭素繊維を電気分解反応を用いた電解酸化によって繊維
表面を酸化する方法(例えば、tfF開昭58−104
222号参照)、または、炭素化した未酸化処理炭素繊
維を酸化剤を宮む溶液で処理して繊維表面を液相酸化す
る方法(例えば、vf開昭52−25199号参照)に
よって製造できる。
The carbon fibers used in the present invention whose strand tensile strength at break depends on the resin are 80 kgZ- or more are obtained by surface oxidation after carbonizing the fibers by a conventional method or in the same process as the carbonization. It can be obtained by processing. That is, carbonized and unoxidized carbon fibers are subjected to gas phase oxidation treatment in an oxidizing gas according to a conventional method, or
Alternatively, the carbonization process is performed in an atmosphere containing an oxidizing gas to oxidize the fiber surface in a gas phase (for example, see Japanese Patent Application Laid-open No. 52-53092), or the carbonized unoxidized carbon fiber is subjected to an electrolysis reaction. A method of oxidizing the fiber surface by electrolytic oxidation using
222), or by a method in which carbonized unoxidized carbon fibers are treated with a solution containing an oxidizing agent to oxidize the fiber surface in a liquid phase (see, for example, VF Patent Publication No. 52-25199).

また、炭化水素ガスを原料として気相中で生成せしめた
気相成長法炭素繊維を用いることもできる。
Further, it is also possible to use vapor-grown carbon fibers produced in the vapor phase using hydrocarbon gas as a raw material.

特に、本発明で用いる上述の樹脂依存性の大きな炭素繊
維は表面酸化処理を比較的苛酷な条件下に行うことによ
り得られる。適切な表面酸化処理条件は実験の繰返しに
より容易に見出せよう。
In particular, the above-described highly resin-dependent carbon fibers used in the present invention can be obtained by surface oxidation treatment under relatively severe conditions. Appropriate conditions for surface oxidation treatment can be easily found through repeated experiments.

本発明の方法における加熱処理温度Visoo”c〜1
250℃、好ましくは、1000℃〜1200℃である
。すなわち、本発明が目的とするストランド破断強度樹
脂依存性の低減は、800℃〜1250℃の加熱処理温
度で発現し、特に1000℃〜1200℃の加熱処理温
度では、得られるCFRPの層間せん断強度(以下rI
LssJと略す)の低下が少なく、しかも、ストランド
破断強度が向上するので好ましい。
Heat treatment temperature Visoo"c~1 in the method of the present invention
The temperature is 250°C, preferably 1000°C to 1200°C. In other words, the resin-dependent reduction in strand breaking strength, which is the objective of the present invention, occurs at a heat treatment temperature of 800°C to 1250°C, and particularly at a heat treatment temperature of 1000°C to 1200°C, the interlaminar shear strength of the resulting CFRP decreases. (hereinafter rI
It is preferable because there is little decrease in LssJ (abbreviated as LssJ) and the strand breaking strength is improved.

ま之、上述の加熱温度に於ける処理時間は、10秒以上
が好ましく、20〜100秒が特に好ましい。すなわち
、10秒以上の場合にはストランド強度、樹脂依存性の
低減効果が充分認められ、また100秒以内の場合には
、In、SS値を大きく減少させずに処理できるので好
ましい。
However, the treatment time at the above heating temperature is preferably 10 seconds or more, particularly preferably 20 to 100 seconds. That is, when the heating time is 10 seconds or more, the effect of reducing strand strength and resin dependence is sufficiently recognized, and when the heating time is 100 seconds or less, the treatment can be carried out without greatly reducing the In and SS values, which is preferable.

雰囲気ガスとしてのハロゲン化水素ガスには、フッ化水
素ガス、塩化水素ガス、臭化水素ガス等のハロゲン化水
素ガス、または炭素繊維の加熱処理温度で熱分解により
、前述のハロゲン化水素を生成する様なハロゲン化合物
を加熱処理系に添加することにより、発生するハロゲン
化水素を用いてもよりが、実用上、塩化水素ガスの使用
が好ましい。
The hydrogen halide gas used as the atmospheric gas includes hydrogen halide gases such as hydrogen fluoride gas, hydrogen chloride gas, and hydrogen bromide gas, or the hydrogen halide gases described above are generated by thermal decomposition at the heat treatment temperature of carbon fibers. Practically speaking, it is preferable to use hydrogen chloride gas rather than using hydrogen halide generated by adding a halogen compound to the heat treatment system.

また、水蒸気は、加熱された水より発生するものであっ
ても良いし、超音波によって微小な粒状水分として気体
中に分散されたものであっても良いが、加熱によって水
よシ発生したガス状の水を用いる方が好ましい。さらに
また、雰囲気ガスに於て、ハロゲン化水素ガス及び水蒸
気に加えて、希釈剤として、他のガスを用いることがで
きる。
In addition, water vapor may be generated from heated water, or may be dispersed in gas as minute moisture particles by ultrasonic waves, but water vapor may be generated from water by heating. It is preferable to use water in the form of water. Furthermore, in addition to hydrogen halide gas and water vapor, other gases can be used as diluents in the atmospheric gas.

希釈剤としては、二酸化炭素ガス、窒素ガス、アルゴン
ガス等で代表される不活性ガスが好ましい。
As the diluent, an inert gas such as carbon dioxide gas, nitrogen gas, argon gas, etc. is preferable.

水蒸気の量としては、雰囲気中に占める水蒸気濃度が0
.1容量係以上であることが好ましく、特に1〜10容
41%であることがより好ましい。水蒸気濃度が0.1
容量チ以上の場合には、本発明の目的であるストランド
破断強度の樹脂依存性の低減、並びにストランド破断強
度の向上効果がよく発揮され、また10容tチ以下の場
合には、加熱装置内およびそこに至る配管内部における
水の凝集が少なく、安定し次操業ができる。また、水蒸
気とハロゲン化水素ガスの割合としては、水蒸気に対す
るハロゲン化水素ガスの容量比が0.1以上であること
が好ましく、さらに該容量比が1.0〜4.0の場合は
、より好まし込。該容量比が0.1以上の場合、本発明
の目的とするストランド破断強度の樹脂依存性の低減効
果が、特に充分に発現される。
As for the amount of water vapor, the water vapor concentration in the atmosphere is 0.
.. It is preferable that it is 1 volume ratio or more, and especially it is more preferable that it is 1-10 volume ratio or more. Water vapor concentration is 0.1
When the capacity is 10 cm or more, the effects of reducing the dependence of the strand breaking strength on the resin and improving the strand breaking strength, which are the objectives of the present invention, are well exhibited. And there is little water condensation inside the piping leading to it, making it possible to perform the next operation stably. Further, as for the ratio of water vapor to hydrogen halide gas, it is preferable that the volume ratio of hydrogen halide gas to water vapor is 0.1 or more, and furthermore, when the volume ratio is 1.0 to 4.0, it is more preferable. I like it. When the capacity ratio is 0.1 or more, the effect of reducing the dependence of the strand breaking strength on the resin, which is the object of the present invention, is particularly sufficiently achieved.

〔発明の効果〕〔Effect of the invention〕

本発明方法によって得られる炭素繊維は、ストランド破
断強度樹脂依存性が急激に低下し、通常け501’i/
’cm”以下となり、しかも本発明方法を施す以前の原
料炭素繊維と比べて、ストランド強度の絶対値が向上す
る。さらにまた本発明によって得られた炭素線維を用い
て加熱成形されたCFRPのILSS堕は実用に充分耐
え得る値を示す。
The carbon fiber obtained by the method of the present invention has a sharp decrease in resin dependence of strand breaking strength,
'cm' or less, and the absolute value of the strand strength is improved compared to the raw material carbon fiber before applying the method of the present invention.Furthermore, the ILSS of CFRP thermoformed using the carbon fiber obtained by the present invention Fall indicates a value that is sufficient for practical use.

例えば、N 、 N 、N’ 、 N’−テトラグリシ
ジルジアミノジフェニルメタン(チパ〃イギー社製アラ
ルゲイトMY720 ) 100重量部、4.4’−ジ
アミノジフェニルスルホン201iJ1部、37フ化ホ
ウ素モノエチルアミン1.5重量部から成る樹脂を用い
て本発明方法により得られた炭素繊維からプリプレグを
調製し、積層し念後加熱成形され念CFRPのILSS
値は約12.0 kg/c1rL2以上という高い水準
を保持する。
For example, 100 parts by weight of N, N, N', N'-tetraglycidyldiaminodiphenylmethane (Aralgate MY720, manufactured by Chipa Iggy), 1 part by weight of 4.4'-diaminodiphenylsulfone 201iJ, 1.5 parts by weight of 37 boron fluoride monoethylamine. A prepreg is prepared from the carbon fiber obtained by the method of the present invention using a resin consisting of
The value remains at a high level of approximately 12.0 kg/c1rL2 or higher.

〔実施例〕〔Example〕

以下1本発明方法を実施例について具体的に説明する。 Hereinafter, one method of the present invention will be specifically explained with reference to Examples.

実施例1 アクリロニトリル系合成!1!、維(単糸デニール1.
3d、フィラメント数6000)を空気中240℃にお
いて40分間、さらに260℃において20分間加熱し
て耐炎化繊維を得、さらに非酸化性雰囲気中、最高処理
温度1350℃で炭素化した。その後、この炭素繊維を
陽極とし、1規定硝酸水溶液を電解液とし、500mA
の直流′1E流を用い、電気化学的に表面処理を施し念
ところ、前述のストランド引張破断強度の樹脂依存性C
以下「樹脂依存性」と略す)が85 kg/vm”であ
り、ILSS値は12.5 kli7m”であった。
Example 1 Acrylonitrile synthesis! 1! , fiber (single yarn denier 1.
3d, 6000 filaments) was heated in air at 240°C for 40 minutes and then at 260°C for 20 minutes to obtain a flame-resistant fiber, which was further carbonized at a maximum treatment temperature of 1350°C in a non-oxidizing atmosphere. After that, this carbon fiber was used as an anode, 1N nitric acid aqueous solution was used as an electrolyte, and 500 mA was applied.
The surface treatment was performed electrochemically using a direct current '1E current.
(hereinafter abbreviated as "resin dependence") was 85 kg/vm'', and the ILSS value was 12.5 kli7m''.

この原料炭素繊維を、本発明の方法に基づき、水蒸気4
.3容量チ、塩化水素ガス2.0容′R係、および窒素
ガス93.7容量チからなる雰囲気中、900℃にて2
0秒間加熱処理を行ったところ、樹脂依存性が32ゆ/
、1112、I LSS値が12.1 kg7m”の高
性能CFRP用炭素線維が得られた。結果を第1表に示
す。
Based on the method of the present invention, this raw material carbon fiber is
.. At 900°C in an atmosphere consisting of 3 volumes of hydrogen, 2.0 volumes of hydrogen chloride gas, and 93.7 volumes of nitrogen gas,
When heat treated for 0 seconds, the resin dependence was 32 Yu/min.
, 1112, I A high performance carbon fiber for CFRP with an LSS value of 12.1 kg7m'' was obtained. The results are shown in Table 1.

実施例2 実施例1で用いたのと同じ耐炎化繊維を非酸化性雰囲気
中、最高処理温度1300℃で炭素化し、その後、得ら
れた炭素化繊維を酸素ガスを0,5容ffi%含む雰囲
気中1300℃にて気相酸化を施したところ、得られた
炭素繊維のストランド引張破断強度樹脂依存性は110
ゆ/12、ILSS値は12、4 kg/w”であり念
。この原料炭素繊維を本発明の方法に基づき、水蒸気4
.0容量チ、塩化水素ガス1.0容量係および窒素ガス
95容titチからなる雰囲気中、1100℃にて、8
0秒間加熱処理を行ったところ、樹脂依存性は30 k
g7m” 、ILSS値は12.0皺−3となった。
Example 2 The same flame-resistant fiber used in Example 1 was carbonized in a non-oxidizing atmosphere at a maximum treatment temperature of 1300°C, and then the obtained carbonized fiber was treated with oxygen gas containing 0.5 volume ffi%. When gas phase oxidation was performed at 1300°C in an atmosphere, the strand tensile strength at break of the obtained carbon fiber was 110% depending on the resin.
Yu/12, the ILSS value is 12.4 kg/w'', so this raw carbon fiber is heated to 4 kg/w with water vapor based on the method of the present invention.
.. At 1100°C in an atmosphere consisting of 0 volume titanium, 1.0 volume titanium hydrogen chloride gas, and 95 volume titanium nitrogen gas,
When heat treated for 0 seconds, resin dependence was 30 k
g7m", and the ILSS value was 12.0 wrinkle-3.

比較例1 実施例2に於て、水蒸気4.0容量チおよび窒素ガス9
6容量チからなる雰囲気を用いた以外は全て、同様な処
理を施したところ、得られた炭素繊維はストランドの引
張破断強度が激減し、ILSS用CFRPも成形するこ
とができなかった。
Comparative Example 1 In Example 2, water vapor 4.0 volume and nitrogen gas 9
When the same treatment was performed except that an atmosphere consisting of 6 volumes of carbon fibers was used, the tensile strength of the strands of the obtained carbon fibers was drastically reduced, and CFRP for ILSS could not be formed.

比較例2 実施例2に於て、塩化水素ガス、水蒸気ガスおよび窒素
ガスから成る雰囲気中にて加熱する際の    ゛加熱
温度を500℃とした以外は、全て、同様な処理を施し
たところILSS値は12.4に9□2であり之が、樹
脂依存性が105 ’Q/1m”であり、原料炭素繊維
に比べて、はとんど改善されていなかった。
Comparative Example 2 In Example 2, all the same treatments were performed except that the heating temperature was 500°C when heating in an atmosphere consisting of hydrogen chloride gas, water vapor gas, and nitrogen gas. The value was 12.4.9□2, but the resin dependence was 105'Q/1m'', which was hardly improved compared to the raw carbon fiber.

実施例3 実施例1で用いたのと同じ耐炎化FI1.維を最高処理
温度1400℃にて炭素化処理する際に、酸化性ガスを
用い、焼成と同時に表面酸化処理を施し、炭素繊維を得
之。結果を第1表に示す。この炭素繊維を原料とし、本
発明方法に基づき、水蒸気4.3容量チ、塩化水素ガス
0.9容量tsおよび窒素ガス94.8容量チからなる
雰囲気中で1000℃にて90秒間、加熱処理を施した
ところ、樹脂依存性は、41 kl/mx2、ILSS
は12.2 kg/m2となった。
Example 3 The same flame-retardant FI1 used in Example 1. When carbonizing the fibers at a maximum treatment temperature of 1400°C, oxidizing gas is used to perform surface oxidation treatment at the same time as firing to obtain carbon fibers. The results are shown in Table 1. Using this carbon fiber as a raw material, heat treatment was performed at 1000°C for 90 seconds in an atmosphere consisting of 4.3 volumes of water vapor, 0.9 volumes of hydrogen chloride gas, and 94.8 volumes of nitrogen gas, based on the method of the present invention. When applied, the resin dependence was 41 kl/mx2, ILSS
was 12.2 kg/m2.

比較例3 実施例3に於て、塩化水素ガス0.9容示チおよび窒素
ガス99.1容量チからなる雰囲気を用い次以外は全て
同様々処理を施したところ、樹脂依存性は92kg/喘
2、ILSS値は12.4ゆA♂であっ念。
Comparative Example 3 In Example 3, the same treatment was performed using an atmosphere consisting of 0.9 volumes of hydrogen chloride gas and 99.1 volumes of nitrogen gas, except for the following, and the resin dependence was 92 kg/ My asthma was 2, and my ILSS value was 12.4 YA♂.

実施例4 実施例1で用いたのと同じ耐炎化ra維を、非酸化芥囲
気中最高処理温度1350℃で炭素化し、その後、この
炭素lR1,維を過マンガン酸カリウム(KMn Oa
 ) 0.2重ff%、硫酸(H2S04)2重ffi
%を含む水溶液中、80℃で10分間酸化処理を施して
原料炭素繊維を得た。
Example 4 The same flame-retardant RA fiber used in Example 1 was carbonized at a maximum treatment temperature of 1350°C in a non-oxidizing atmosphere, and then this carbon lR1 fiber was treated with potassium permanganate (KMn Oa).
) 0.2 double ff%, sulfuric acid (H2S04) double ffi
% in an aqueous solution at 80° C. for 10 minutes to obtain raw carbon fibers.

この原料炭素繊維を、本発明の方法に基づき、水蒸気4
.0容滑チ、塩化水素1.2容量係および窒素ガス94
.8容量チより成る雰囲気中、1000℃にて40秒間
加熱処理したところ、樹脂依存性45kg/簡2、IL
SS値が12.2kl?/−の高性能CFRP用炭素繊
維が得られた。
Based on the method of the present invention, this raw material carbon fiber is
.. 0 volume liquid, hydrogen chloride 1.2 volume and nitrogen gas 94
.. When heat treated for 40 seconds at 1000°C in an atmosphere consisting of 8-capacity silicon, the resin dependence was 45 kg/2, IL
SS value is 12.2kl? /- high performance carbon fiber for CFRP was obtained.

実施例5 実施例4に於て塩化水素に代えて臭化水素ガスを用いた
以外は全て同様々処理を施したところ、樹脂依存性が6
0kg/■2、ILSS値が12.3 kg/wjの高
性能CFRP用炭素繊維が得られた。
Example 5 The same treatment as in Example 4 was performed except that hydrogen bromide gas was used instead of hydrogen chloride, and the resin dependence was 6.
A high-performance carbon fiber for CFRP with an ILSS value of 0 kg/■2 and 12.3 kg/wj was obtained.

上記各実施例および比較例における処理条件ならびに未
処理および処理後の炭素繊維の特性値をまとめて第1表
に示す。
Table 1 summarizes the treatment conditions and characteristic values of untreated and treated carbon fibers in each of the above Examples and Comparative Examples.

以下余白Margin below

Claims (2)

【特許請求の範囲】[Claims] (1)ストランド引張破断強度の樹脂依存性が80kg
/mm^2以上である炭素繊維をハロゲン化水素と水蒸
気を含有する雰囲気中にて800℃〜1250℃の温度
で加熱処理することを特徴とする高性能炭素繊維複合材
料用炭素繊維の製造方法。
(1) Resin dependence of strand tensile breaking strength is 80 kg
A method for producing carbon fibers for high-performance carbon fiber composite materials, which comprises heat-treating carbon fibers having a carbon fiber diameter of /mm^2 or more at a temperature of 800°C to 1250°C in an atmosphere containing hydrogen halide and water vapor. .
(2)雰囲気中の水蒸気濃度が0.1容量%以上であり
、且つ、水蒸気に対するハロゲン化水素ガスの容量比が
0.1以上である特許請求の範囲第1項記載の高性能炭
素繊維複合材料用炭素繊維の製造方法。
(2) The high-performance carbon fiber composite according to claim 1, wherein the water vapor concentration in the atmosphere is 0.1% by volume or more, and the volume ratio of hydrogen halide gas to water vapor is 0.1 or more. Method for producing carbon fiber for materials.
JP20510986A 1986-09-02 1986-09-02 Production of carbon fiber for high-performance cfrp Pending JPS6366325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20510986A JPS6366325A (en) 1986-09-02 1986-09-02 Production of carbon fiber for high-performance cfrp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20510986A JPS6366325A (en) 1986-09-02 1986-09-02 Production of carbon fiber for high-performance cfrp

Publications (1)

Publication Number Publication Date
JPS6366325A true JPS6366325A (en) 1988-03-25

Family

ID=16501569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20510986A Pending JPS6366325A (en) 1986-09-02 1986-09-02 Production of carbon fiber for high-performance cfrp

Country Status (1)

Country Link
JP (1) JPS6366325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074758A (en) * 2011-10-25 2013-05-01 金发科技股份有限公司 Ultrasonic atomization humidification method for production of carbon fiber
JP2018517269A (en) * 2015-04-09 2018-06-28 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Method for treating a carbon electrode
CN108823798A (en) * 2018-07-27 2018-11-16 中原工学院 A kind of preparation method of the modified high hollow nanometer gradient activated carbon fiber film of ortho position thermosetting phenolic base of molybdic acid phenyl ester

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074758A (en) * 2011-10-25 2013-05-01 金发科技股份有限公司 Ultrasonic atomization humidification method for production of carbon fiber
JP2018517269A (en) * 2015-04-09 2018-06-28 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Method for treating a carbon electrode
US10505199B2 (en) 2015-04-09 2019-12-10 United Technologies Corporation Method of treating carbon electrode
CN108823798A (en) * 2018-07-27 2018-11-16 中原工学院 A kind of preparation method of the modified high hollow nanometer gradient activated carbon fiber film of ortho position thermosetting phenolic base of molybdic acid phenyl ester
CN108823798B (en) * 2018-07-27 2020-08-07 中原工学院 Preparation method of phenyl molybdate modified high-ortho thermosetting phenolic-based hollow nano gradient activated carbon fiber membrane

Similar Documents

Publication Publication Date Title
KR101689861B1 (en) Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
US6372192B1 (en) Carbon fiber manufacturing via plasma technology
JP2016113726A (en) Polyacrylonitrile-based carbon fiber precursor fiber and carbon fiber production method
JP2014101605A (en) Method of manufacturing carbon fiber
JPS6366325A (en) Production of carbon fiber for high-performance cfrp
US3972984A (en) Process for the preparation of carbon fiber
WO2019203088A1 (en) Carbon fiber bundle, manufacturing method therefor, prepeg, and carbon-fiber-reinforced composite material
JP2014141762A (en) Carbon fiber bundle and production method thereof
JPH1025627A (en) Acrylic carbon fiber
JPS60252719A (en) Production of carbon fiber having high elongation
JP2016141913A (en) Method for producing fiber bundle
JP2007070742A (en) Method and machine for producing carbon fiber
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2001248025A (en) Method for producing carbon fiber
JPH0258367B2 (en)
JP2981023B2 (en) Porous carbon fiber, method for producing the same, method for producing porous graphite fiber, and method for treating porous carbon fiber
JPH02259119A (en) High density graphite yarn and production thereof
JPS60110925A (en) Manufacture of high-performance carbon fiber
JP4582819B1 (en) Method for producing high-strength polyacrylonitrile-based carbon fiber
JP2002054031A (en) Carbon fiber and method for producing the same
JP2004238779A (en) Method for producing carbon fiber
JPH03287860A (en) Production of carbon fiber
JPS62231072A (en) Production of high strength carbon fiber
JPH08209457A (en) Carbon fiber and its production
JPS60252724A (en) Production of high-strength carbon fiber