JPS61119712A - Production of carbon fiber having high strength - Google Patents

Production of carbon fiber having high strength

Info

Publication number
JPS61119712A
JPS61119712A JP23745484A JP23745484A JPS61119712A JP S61119712 A JPS61119712 A JP S61119712A JP 23745484 A JP23745484 A JP 23745484A JP 23745484 A JP23745484 A JP 23745484A JP S61119712 A JPS61119712 A JP S61119712A
Authority
JP
Japan
Prior art keywords
inert gas
flame
fiber
carbonization
gas atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23745484A
Other languages
Japanese (ja)
Other versions
JPS6361413B2 (en
Inventor
Toshio Iharaki
伊原木 俊夫
Shigemi Yoshino
吉野 重美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP23745484A priority Critical patent/JPS61119712A/en
Publication of JPS61119712A publication Critical patent/JPS61119712A/en
Publication of JPS6361413B2 publication Critical patent/JPS6361413B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce the titled fiber free from fluffing, stably, by heat-treating a polyacrylonitrile fiber in air, treating the resultant flame-resistant fiber in a hot inert gas, and carbonizing the product in an inert gas containing a hydrogen halide at a high temperature under specific condition. CONSTITUTION:LA polyacrylonitrile is used as the raw material, and is heat- treated in air at 200-350 deg.C to obtain a flame-resistant fiber. The obtained flame-resistant fiber free from adhesivity is treated in an inert gas atmosphere at 300-550 deg.C under the length variation of 0-+15%, and then carbonized in an inert gas atmosphere containing 2-25vol% hydrogen halide at 600-1,600 deg.C to obtain the objective fiber. The carbonization is carried out under a length variation of -10-+10% based on the raw fiber and of >=-6% based on the flame-resistant fiber, in the inert gas supplied at an average linear velocity of 3-20m/min.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度の炭素繊維を製造する方法に関するもの
で、特にポリアクリロニトリル系繊維から高性能の炭素
繊維を得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing high-strength carbon fibers, and particularly to a method for obtaining high-performance carbon fibers from polyacrylonitrile fibers.

(従来の技術) 炭素繊維は、その優れた強度、弾性率から、各種複合材
料の強化用繊維として、航空宇宙用途、工業用材料、ス
ポーツ用品等に使用されている。
(Prior Art) Due to its excellent strength and elastic modulus, carbon fiber is used as a reinforcing fiber for various composite materials in aerospace applications, industrial materials, sporting goods, and the like.

しかし、その強度は未だ充分とは言えず、特に航空宇宙
用分野の一次構造材として高強度炭素繊維の開発が望ま
れている。従来から、炭素繊維の強度を向上させる方法
について各種の提案がなされておシ、例えば、炭素化工
程における雰囲気ガスに関する特公昭47−7686号
及び特公昭47−29935 号や、昇温速度に関する
特公昭51−12087 号、又伸長下に炭素化する特
公昭47−29935 号が挙げられる。しかし、これ
らの提案の繊維は、実施例を見ると引張強度がいづれも
約300 kg7.2程度のものであり、最近の炭素繊
維のレベルからすれば低い。最近になり、耐炎化糸の密
度との関係で炭素化時に伸長する例が特開昭57−14
722号に示されている。すなわち、特定範囲の密度を
もつ耐炎化糸を300℃〜800℃の温度域で25チま
での範囲で伸長し、次いで800℃以上で炭化するもの
であるが、我々の検討ではこのような伸長を施すと毛羽
の発生が生じたシ、又均−な延伸が困難であったシして
、工業的方法としては必ずしも満足の行くものではない
However, its strength is still not sufficient, and the development of high-strength carbon fibers is particularly desired as a primary structural material in the aerospace field. In the past, various proposals have been made regarding methods for improving the strength of carbon fibers, such as Japanese Patent Publication No. 47-7686 and Japanese Patent Publication No. 47-29935 regarding atmospheric gas in the carbonization process, and Japanese Patent Publication No. 47-29935 regarding the temperature increase rate. Publication No. 51-12087 and Japanese Patent Publication No. 47-29935 which carbonizes during elongation are mentioned. However, looking at the examples of these proposed fibers, the tensile strength is about 300 kg/7.2, which is low compared to the level of recent carbon fibers. Recently, an example of elongation during carbonization due to the density of flame-retardant yarn was published in JP-A-57-14.
No. 722. In other words, a flame-resistant yarn with a density in a specific range is stretched to a maximum of 25 cm at a temperature range of 300°C to 800°C, and then carbonized at 800°C or higher. This method is not necessarily satisfactory as an industrial method, as fluffing occurs and uniform stretching is difficult.

(発明が解決しようとする問題点) こうした状況下で、本発明者等は、高強度の炭素繊維を
安定して得る工業的方法を見出すべく鋭意検討を進め、
本発明に到った。本発明は、即ち、上記の如き従来技術
における問題点を解消して、高強度の炭素繊維を安定し
て得ることのできる、工業的に有利な方法を提供しよう
とするものである。
(Problems to be Solved by the Invention) Under these circumstances, the present inventors have conducted intensive studies to find an industrial method for stably obtaining high-strength carbon fibers.
We have arrived at the present invention. That is, the present invention aims to solve the problems in the prior art as described above and to provide an industrially advantageous method that can stably obtain high-strength carbon fibers.

(問題点を解決するだめの手段) 本発明は、ポリアクリロニトリル系繊維から高強度炭素
繊維を製造する方法を提供するもので、この方法は、ポ
リアクリロニトリル系繊維を200℃〜350℃の空気
中で熱処理して接着のない耐炎化糸を得、次いで300
℃〜550℃の不活性ガス雰囲気で長さ変化がOないし
+15チで処理しく第1炭素化)、次いで600℃ない
し1600℃の不活性ガス雰囲気中で炭素化(第2炭素
化)することを含み、この不活性ガス雰囲気中での炭素
化に際して、長さ変化が一10%ないし+10%とし、
かつ耐炎化糸を基準とした長さ変化が−6−以上である
こと、該不活性ガス中に少くとも2容量チないし25容
量%壕でのノ飄ログン化水素ガスを含むこと、該不活性
ガスの平均線速が3m/分ないし20m/分であること
を特徴とする高強度炭素繊維の製造方法である。
(Another Means to Solve the Problems) The present invention provides a method for producing high-strength carbon fibers from polyacrylonitrile fibers. to obtain a flame-resistant yarn without adhesion, and then
℃~550℃ in an inert gas atmosphere with a length change of 0 to +15 degrees (first carbonization), then carbonization in an inert gas atmosphere at 600℃ to 1600℃ (second carbonization) and the length change during carbonization in this inert gas atmosphere is from -10% to +10%,
and the change in length based on the flame-retardant thread is -6- or more; the inert gas contains at least 2 to 25% by volume of atomized hydrogen gas; This is a method for producing high-strength carbon fiber, characterized in that the average linear velocity of the active gas is 3 m/min to 20 m/min.

本発明のポリアクリロニトリル系繊維は、少くとも90
重量%以上のアクリロニトリルと他の共重合し得る単量
体、例えばアクリル酸メチル等のアクリル酸エステル、
アクリル酸、メタクリル酸。
The polyacrylonitrile fiber of the present invention has at least 90%
% or more by weight of acrylonitrile and other copolymerizable monomers, such as acrylic esters such as methyl acrylate;
Acrylic acid, methacrylic acid.

イタコン酸等のカルボン酸、更にはアクリルアミド、ア
リルスルフォン酸等との(共)重合体を用いて、湿式紡
糸法、乾式紡糸法、乾−湿式紡糸法等で得られる長繊維
である。この繊維を得る方法は、接着のない繊維を得る
方法であれば特に限定されず、従来公知の方法が適用さ
れる。本発明において、この繊維を200℃〜350℃
の空気中で熱処理し、接着のない耐炎化糸を得る必要が
ある。この耐炎化糸を得る方法については、接着を防止
出来る方法であれば特に限定されないが、一般に急速に
高温度で耐炎化を行うと暴走反応により繊維が融着ひい
ては糸切れ現象を示すので、200℃〜350℃の範囲
で低温側から徐々に高温側へと何段かに分けて耐炎化す
るのが通常である。又、特公昭53−38774号とか
特公昭57−42729号に見られるように、耐炎化時
の接着防止のため、空気処理とか屈曲処理等を行なう方
法を用いても良い。いづれにしても、接着のない耐炎化
糸を得る事が必要であシ、接着していると後の炭素化処
理時に延伸が出来にくくなり、糸切れが生じたり、又糸
切れがなくても良好な物性が得られなかったシする。
It is a long fiber obtained by a wet spinning method, a dry spinning method, a dry-wet spinning method, etc. using a (co)polymer with a carboxylic acid such as itaconic acid, and further with acrylamide, allylsulfonic acid, etc. The method for obtaining this fiber is not particularly limited as long as it is a method for obtaining fibers without adhesion, and conventionally known methods can be applied. In the present invention, this fiber is heated at 200°C to 350°C.
It is necessary to heat-treat the yarn in the air to obtain a flame-resistant yarn without adhesion. The method for obtaining this flame-resistant yarn is not particularly limited as long as it can prevent adhesion, but in general, if flame-resistant is rapidly applied at high temperatures, the fibers will fuse due to a runaway reaction and eventually break. Usually, flame resistance is achieved in several stages from the low temperature side to the high temperature side in the range of .degree. C. to 350.degree. Further, as shown in Japanese Patent Publication No. 53-38774 and Japanese Patent Publication No. 57-42729, methods of air treatment, bending treatment, etc. may be used to prevent adhesion during flame resistance. In any case, it is necessary to obtain a flame-resistant yarn without adhesion, and if it is adhered, it will be difficult to stretch during the subsequent carbonization treatment, and yarn breakage may occur, or even if there is no yarn breakage. Good physical properties were not obtained.

本発明においては、前記接着のない耐炎化糸を300℃
〜550℃の不活性ガス雰囲気中で長さ変化が0ないし
15チで処理する必要がある。この工程において、伸長
が0%以下であると高強度の炭素繊維を得る事が困難で
あわ、又15チを超えると延伸斑や毛羽発生等を伴い、
場合によっては糸切れが生じ、安定して高強度の炭素繊
維を得ることが出来ない。また本工程での熱処理温度は
300℃〜550℃である。300℃未満だと炭素化反
応が遅く、長時間を要し、工業的実施には不利であ、9
.550℃を超えると糸が急速に加熱され、繊維構造の
変化が大きすぎて、高強度の炭素繊維を得る事ができな
いし、伸長しにくくなシ、糸切れの原因ともなる。
In the present invention, the non-adhesive flame resistant yarn is heated to 300°C.
It is necessary to process in an inert gas atmosphere at ~550°C with a length change of 0 to 15 inches. In this process, if the elongation is less than 0%, it is difficult to obtain high-strength carbon fibers, and if the elongation exceeds 15 inches, stretching unevenness and fluffing occur.
In some cases, thread breakage occurs, making it impossible to stably obtain high-strength carbon fibers. Further, the heat treatment temperature in this step is 300°C to 550°C. If it is lower than 300°C, the carbonization reaction is slow and takes a long time, which is disadvantageous for industrial implementation.
.. If the temperature exceeds 550°C, the yarn will be heated rapidly and the fiber structure will change too much, making it impossible to obtain high-strength carbon fibers, making it difficult to stretch, and causing yarn breakage.

本発明の方法において、前記熱処理された糸を600℃
以上1600℃以下の不活性ガス雰囲気下で更に炭素化
するに当り、長さ変化が−10チないし10%としかつ
耐炎化糸を基準にして長さ変化が−6チ以上とすること
、又不活性ガス中に2ないし25容量チのハロゲン化水
素ガスを含有させること、さらに不活性ガスはその平均
線速が3ないし20m/分にする事が必要であり、こう
した条件が満たされて始めて高強度の炭素繊維を得るこ
とが出来る。本工程での長さ変化は一10チないし+1
0%であシ、耐炎化糸を基準にして長さ変化が−6チ以
上にする必要がある。この長さ変化が小さ過ぎると高強
度の炭素繊維が得られないし、又大きすぎると毛羽立ち
、糸切れ等のトラブルが発生する。また、本工程では、
不活性ガス中に2ないし25容量チのハロダン化水素を
含有する必要がある。ハロゲン化水素は毛羽発生を少く
しかつ高強度炭素繊維を得るのに必要であシ、その濃度
が低すぎると前記効果が少く、又25チを超えて含有さ
せてもそれに見あった効果が得られないこと、及び使用
済み排ガスの処理のため多くの費用が発生すること等か
ら、工業的に不利である。ハロゲン化水素としては、塩
化水素、臭化水素、ヨウ化水素等が用いられる。また、
不活性ガスはその平均ガス線速が3ないし20m/分で
あシ、低すぎる場合は炭化炉内で発生するタール分等が
糸に付着して欠陥の原因となシ、高強度の炭素繊維が得
られないし、又速すぎるとシール部等で糸の乱れが生じ
、ひいては毛羽発生の原因となる。
In the method of the present invention, the heat-treated yarn is heated to 600°C.
When further carbonizing in an inert gas atmosphere at a temperature of 1600°C or less, the change in length is -10 inches to 10%, and the change in length is -6 inches or more with respect to the flame-resistant yarn; It is necessary to contain 2 to 25 volumes of hydrogen halide gas in the inert gas, and the average linear velocity of the inert gas must be 3 to 20 m/min. High strength carbon fiber can be obtained. The length change in this process is 110 inches or +1
0%, the length change must be -6 inches or more based on the flame-resistant yarn. If this length change is too small, high-strength carbon fibers cannot be obtained, and if it is too large, problems such as fluffing and yarn breakage occur. In addition, in this process,
It is necessary to contain 2 to 25 volumes of hydrogen halide in the inert gas. Hydrogen halide is necessary to reduce fuzz generation and obtain high-strength carbon fibers, and if its concentration is too low, the above effects will be small, and even if it is contained in excess of 25%, there will be no commensurate effect. It is industrially disadvantageous because it cannot be obtained and a lot of cost is incurred for processing the used exhaust gas. As the hydrogen halide, hydrogen chloride, hydrogen bromide, hydrogen iodide, etc. are used. Also,
The average gas linear velocity of the inert gas should be 3 to 20 m/min. If it is too low, tar, etc. generated in the carbonization furnace will adhere to the yarn and cause defects. Moreover, if the speed is too high, the threads will be disturbed at the sealing part, etc., and this will cause fuzz.

以上述べたように、本発明の方法の特徴は、まず、接着
のない耐炎化糸を得、次いで2段階で炭素化するに当っ
て、延伸、ガス条件等を特定の範囲で実施することにあ
シ、本発明の条件下で始めて高強度の炭素繊維を毛羽等
の発生がなくかつ安定に製造することが可能となシ、本
発明の工業的意義は極めて大きい。
As mentioned above, the feature of the method of the present invention is that firstly, a flame-resistant yarn without adhesion is obtained, and then carbonized in two steps, in which stretching, gas conditions, etc. are carried out within a specific range. Furthermore, the industrial significance of the present invention is extremely great because it is possible to stably produce high-strength carbon fibers without the generation of fuzz for the first time under the conditions of the present invention.

(実施例) 以下に実施例を挙げて本発明を更に説明するが、これら
の例は本発明を限定するものではない。
(Examples) The present invention will be further explained below with reference to Examples, but these examples do not limit the present invention.

実施例1 アクリロニトリル/メタクリル酸= 98.0/2.0
なる共重合体を用い、硝酸を溶媒として、湿式紡糸法に
より、フィラメント数6000本、単糸デニール1.O
dのプリカーサ−を得た。この繊維束を235℃で20
分、次いで255℃で40分かけて耐炎化した。この耐
炎化糸の接着はなく、比重1.38 j;l/CCであ
った。この耐炎化糸を用いて表−1に示すような各種炭
素化条件にて炭素化した。
Example 1 Acrylonitrile/methacrylic acid = 98.0/2.0
A copolymer of 6,000 filaments and a single yarn denier of 1. O
A precursor of d was obtained. This fiber bundle was heated at 235°C for 20
minutes, and then flame resistant at 255° C. for 40 minutes. There was no adhesion of this flame-resistant yarn, and the specific gravity was 1.38 J; l/CC. Using this flame-resistant yarn, carbonization was carried out under various carbonization conditions as shown in Table 1.

第1炭素化は温度350〜460℃の温度勾配をもつ窒
素中で、又第2炭素化は最高温度1350℃で実施した
。また、実験番号15の接着のある耐炎化糸は、同じノ
リカーサ−を用いて260℃で30分間空気中で耐炎化
したものである。なお、炭素繊維のストランド強度はJ
ISR7601に示される樹脂含浸ストランド試験方法
にて実施し、樹脂処方は同解説例2を用いた。
The first carbonization was carried out in nitrogen with a temperature gradient of 350-460°C, and the second carbonization was carried out at a maximum temperature of 1350°C. Further, the flame-retardant yarn with adhesion in Experiment No. 15 was made flame-retardant in air at 260° C. for 30 minutes using the same glue cursor. In addition, the strand strength of carbon fiber is J
The test was carried out using the resin-impregnated strand test method specified in ISR7601, and the resin formulation used was Explanation Example 2.

以下余白 実験番号2,3,6,7,10.11及び13が本発明
の方法及び条件で得た炭素繊維であり、他の比較例のも
のに比し引張強度が著しく向上しておシ、本発明で規定
する範囲においてのみ高強度の炭素繊維が得られること
がわかる。
The following margin experiment numbers 2, 3, 6, 7, 10. , it can be seen that high-strength carbon fibers can be obtained only within the range specified by the present invention.

実施例2 実施例1と同じポリマーを用いて、湿式紡糸方法で、フ
ィラメント数6000本、単糸デニール0.83dのプ
リカーサ−を得、これを入口でエアー開繊しながら実施
例1と同じ耐炎化条件で耐炎化し、実施例1の実験Al
lと同じ炭素化条件で炭素化し、ストランド強度を測定
した所548kg/閾であった。
Example 2 Using the same polymer as in Example 1, a precursor with 6,000 filaments and a single filament denier of 0.83 d was obtained using a wet spinning method, and the same flame resistance as in Example 1 was obtained by opening the precursor with air at the entrance. The experimental Al of Example 1
Carbonization was performed under the same carbonization conditions as in Example 1, and the strand strength was measured to be 548 kg/threshold.

Claims (1)

【特許請求の範囲】 1、ポリアクリロニトリル系繊維を原料繊維として20
0℃ないし350℃の空気中で熱処理し耐炎化繊維を得
て炭素繊維を製造する方法において、(1)接着のない
耐炎化繊維を300℃ないし550℃の不活性ガス雰囲
気中で長さ変化が0ないし+15%で処理し、ついで (2)600℃ないし1600℃の不活性ガス雰囲気中
で炭素化する、 ことを含み、この不活性ガス雰囲気中での炭素化に際し
て、 (イ)長さ変化が−10%ないし+10%でありかつ耐
炎化繊維を基準にした長さ変化が −6%以上であること、 (ロ)該不活性ガス中に2容量%ないし25容量%のハ
ロゲン化水素が含まれること、 (ハ)該不活性ガスの平均線速が3m/分ないし20m
/分であること、 を特徴とする高強度炭素繊維の製造方法。
[Claims] 1. 20 polyacrylonitrile fibers as raw material fibers
In a method for producing carbon fiber by heat-treating in air at 0°C to 350°C to obtain flame-resistant fibers, (1) length change of unbonded flame-resistant fibers in an inert gas atmosphere at 300°C to 550°C; 0 to +15%, and then (2) carbonizing in an inert gas atmosphere at 600°C to 1600°C, during carbonization in this inert gas atmosphere, (a) length (b) 2% to 25% by volume of hydrogen halide in the inert gas; (c) The average linear velocity of the inert gas is 3 m/min to 20 m/min.
A method for producing high-strength carbon fiber, characterized in that: /min.
JP23745484A 1984-11-13 1984-11-13 Production of carbon fiber having high strength Granted JPS61119712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23745484A JPS61119712A (en) 1984-11-13 1984-11-13 Production of carbon fiber having high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23745484A JPS61119712A (en) 1984-11-13 1984-11-13 Production of carbon fiber having high strength

Publications (2)

Publication Number Publication Date
JPS61119712A true JPS61119712A (en) 1986-06-06
JPS6361413B2 JPS6361413B2 (en) 1988-11-29

Family

ID=17015580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23745484A Granted JPS61119712A (en) 1984-11-13 1984-11-13 Production of carbon fiber having high strength

Country Status (1)

Country Link
JP (1) JPS61119712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282026A (en) * 1986-05-29 1987-12-07 Asahi Chem Ind Co Ltd Production of carbon yarn having high strength and high modulus of elasticity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055938U (en) * 1991-07-09 1993-01-29 住友電気工業株式会社 Wedge stopper for pretensioning grip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282026A (en) * 1986-05-29 1987-12-07 Asahi Chem Ind Co Ltd Production of carbon yarn having high strength and high modulus of elasticity

Also Published As

Publication number Publication date
JPS6361413B2 (en) 1988-11-29

Similar Documents

Publication Publication Date Title
US4069297A (en) Process for producing carbon fibers
US3529934A (en) Process for the preparation of carbon fibers
US3539295A (en) Thermal stabilization and carbonization of acrylic fibrous materials
US4452860A (en) Carbon fibers and process for producing the same
US3775520A (en) Carbonization/graphitization of poly-acrylonitrile fibers containing residual spinning solvent
US3961888A (en) Acrylic fiber conversion utilizing a stabilization treatment conducted initially in an essentially inert atmosphere
US5078926A (en) Rapid stabilization process for carbon fiber precursors
US4295844A (en) Process for the thermal stabilization of acrylic fibers
US3708326A (en) Stabilization of acrylic fibers and films
JPS61119712A (en) Production of carbon fiber having high strength
US4452601A (en) Process for the thermal stabilization of acrylic fibers and films
US3954950A (en) Production of high tenacity graphitic fibrous materials
JPS58144128A (en) Preparation of carbon fiber having high performance
JPS59137512A (en) Production of high-strength carbon fiber
US3820951A (en) Process for the thermal stabilization of polyacrylonitrile fibers andfilms
JPS61119719A (en) Production of carbon fiber of high strength
GB2084975A (en) Carbon fibres
JPH02259119A (en) High density graphite yarn and production thereof
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
US3813219A (en) Process for the thermal stabilization of polyacrylonitrile fibers and films
JPS62215018A (en) Production of carbon fiber
WO1987002391A1 (en) Process for producing carbon fibers
JPS5920004B2 (en) Carbon fiber manufacturing method
JPS60110925A (en) Manufacture of high-performance carbon fiber
JPS6250574B2 (en)