JPS58186614A - Production of graphite fiber - Google Patents

Production of graphite fiber

Info

Publication number
JPS58186614A
JPS58186614A JP6721082A JP6721082A JPS58186614A JP S58186614 A JPS58186614 A JP S58186614A JP 6721082 A JP6721082 A JP 6721082A JP 6721082 A JP6721082 A JP 6721082A JP S58186614 A JPS58186614 A JP S58186614A
Authority
JP
Japan
Prior art keywords
flame
fiber
density
elongation
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6721082A
Other languages
Japanese (ja)
Inventor
Hisao Anzai
安西 久雄
Toa Kobayashi
東亜 小林
Tadahiro Yamamoto
山本 直裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP6721082A priority Critical patent/JPS58186614A/en
Publication of JPS58186614A publication Critical patent/JPS58186614A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:A polyacrylonitrile fiber precursor is made flame-retardant under stretching in an atmosphere for affording flame-retardance, then subjected to carbonization and graphitization to enable efficient production of graphite fiber with high toughness without fluffing and filament breakage. CONSTITUTION:The precursor made of polyacrylonitrile fiber is subjected to a treatment to make it flame-retardant in an atmosphere for affording flame- retardance from 210-250 deg.C at the start to 290 deg.C at the end which restricts the density of the flame-retardant fiber to lower than 1.28g/cm<3> under 40-100%, preferably 50-90% elongation. Further the treatment is continued under the constant length or 10% streching until the density of the fiber exceeds 1.3g/cm<3>. Finally, in an inert atmosphere, carbonization is effected up to 1,500 deg.C and graphitization up to 2,000 deg.C.

Description

【発明の詳細な説明】 本発明は、ポリアクリロニトリル系繊維前駆体から剛性
に優れた黒鉛繊維を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing graphite fibers with excellent rigidity from polyacrylonitrile fiber precursors.

41機繊維前駆体を酸化雰囲気中例えば空気中で200
〜600℃の温度で耐炎化処理し、最終的に不活性雰囲
気中で緊張下又は無緊張下に少なくとも2000℃の温
度で処理して黒鉛繊維とすることは公知である。
41 machine fiber precursor in an oxidizing atmosphere e.g. air for 200 min.
It is known to flame retardantly treat the graphite fibers at temperatures of up to 600 DEG C. and finally to obtain graphite fibers under tension or without tension in an inert atmosphere at temperatures of at least 2000 DEG C.

黒鉛繊維は軽量かつ高剛性であり、この特性を生かして
、スポーツ用品、航空機部品、機械部品等の複合構造材
の補強材としての使用が拡大している。従来、黒鉛繊維
の高剛性すなわち高弾性を達成する一つの方法として、
焼成過程中の耐炎化処理時に伸長操作を行うことによっ
て繊維分子鎖の配向を高めることが有効であると一般に
考えられてきた。しかし実際には伸長度を高めるに伴い
、毛羽の発生、単糸切れ等を誘発し、かえって繊維の性
能を損うばかりでなく、毛羽又は切断単糸のローラへの
巻きつき等により、装置類の安定な運転を阻害するおそ
れもあるので、伸長操作には限界があった。
Graphite fiber is lightweight and highly rigid, and taking advantage of these characteristics, its use as a reinforcing material for composite structural materials such as sports equipment, aircraft parts, and mechanical parts is expanding. Conventionally, one way to achieve high stiffness, or high elasticity, of graphite fibers was to
It has generally been thought that it is effective to increase the orientation of fiber molecular chains by performing an elongation operation during flameproofing treatment during the firing process. However, in reality, as the degree of elongation is increased, it not only causes fuzz generation and single yarn breakage, which impairs the performance of the fiber, but also causes the equipment to be damaged due to the fuzz or cut single yarns being wrapped around rollers, etc. There was a limit to the extension operation as there was a risk of interfering with stable operation.

本発明者らは耐炎化処理時の繊維の物性挙動を詳細に検
討した結果、毛羽の発生、単糸切れ等を起こすことなく
大幅な伸長を可能とし、黒鉛繊維の弾性を向上するため
に有ゆな耐炎化処理方法を見出した。
As a result of a detailed study of the physical property behavior of fibers during flame-retardant treatment, the present inventors found that it is possible to significantly elongate graphite fibers without generating fluff or single filament breakage, which is useful for improving the elasticity of graphite fibers. We have discovered a flame-retardant treatment method.

本発明は、ポリアクリロニトリル系繊維前駆体を、21
0〜250℃から始まり250〜290°Cで終了する
耐炎化雰囲気中を通過させることにより耐炎化し、その
際まず該雰囲気中における耐炎化繊維の密度を1.28
9 /cm3以下に制限して40%以上100%未満の
伸長を付与し、次いで/定長で又は10%以下に伸長を
行いつつ耐炎化繊維の密度が少なくとも1.69/cr
fL3になるまで耐炎化を進め、続いて炭素化及び黒鉛
化を行うことを特徴とする、黒鉛繊維の製造法である。
The present invention provides polyacrylonitrile fiber precursor with 21
The flame resistant fibers are made flame resistant by passing through a flame resistant atmosphere starting from 0 to 250°C and ending at 250 to 290°C.
9/cm3 or less to give an elongation of 40% or more and less than 100%, and then/with a constant length or elongation to 10% or less, so that the density of the flame resistant fiber is at least 1.69/cm3.
This is a method for producing graphite fiber, which is characterized by progressing flame resistance until it reaches fL3, followed by carbonization and graphitization.

ポリアクリロニトリル系繊維前駆体としては、ポリアク
リロニトリルを主成分とする重合体又は共重合体よりな
る繊維があげられる。共重合体成分としてはアクリル酸
、メタクリル酸、イタコン酸等の不飽和カルボン酸、こ
れらの酸のエステル類、アクリルアミド、メタクリルア
ミド等の普通の共重合成分が用いられる。
Examples of the polyacrylonitrile fiber precursor include fibers made of polymers or copolymers containing polyacrylonitrile as a main component. As the copolymer component, common copolymer components such as unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, esters of these acids, acrylamide, and methacrylamide are used.

本発明を実施するに際しては、被処理繊維前駆体を、2
10〜250°Gから始まり、250〜290°Cで終
了する耐炎化雰囲気中を通過させ、その際耐炎化雰囲気
中における耐炎化繊維の密度を1.289 / crr
L3以下に制限して、40%以上100%未満の伸長を
付与する前耐炎化処理を行う。
When carrying out the present invention, the fiber precursor to be treated is
The flame resistant fibers are passed through a flame resistant atmosphere starting at 10-250 °G and ending at 250-290 °C, with the density of the flame resistant fibers in the flame resistant atmosphere being 1.289/crr.
Pre-flame resistance treatment is performed to give elongation of 40% or more and less than 100%, limiting the elongation to L3 or less.

前耐炎化処理の初期域の雰囲気温度は、210〜250
℃、好ましくは220〜245°Cである。これ以下の
温度では実質的な耐炎化の進行度が遅く工業的に不利で
ある。また250℃を越える雰囲気に繊維前駆体を直接
に導入すると、急激な発熱反応のため、繊維の融着、溶
融切断等を起こすことがある。
The ambient temperature in the initial region of the pre-flame retardant treatment is 210-250°C.
℃, preferably 220-245°C. At temperatures below this range, the progress of substantial flame resistance is slow and is industrially disadvantageous. Furthermore, if a fiber precursor is directly introduced into an atmosphere exceeding 250° C., a rapid exothermic reaction may cause fiber fusion, melting, and cutting.

前耐炎化処理の終了域の雰囲気温度は250〜290℃
、好ましくは255〜280°Cである。これ以下の温
度では、前耐炎化処理時に40%以上100%未満の伸
長を行う場合に、毛羽の発生又は単糸切れを起こすこと
がある。
The ambient temperature at the end of the pre-flame retardant treatment is 250 to 290°C.
, preferably 255-280°C. If the temperature is lower than this, fluffing or single filament breakage may occur when elongation is performed by 40% or more and less than 100% during the pre-flame resistance treatment.

250℃以上では高伸長による毛羽の発生又は単糸切れ
を誘発することはないが、290℃を越えると耐炎化が
急速に進行するため、繊維の構造が不均一となり、最終
的に得られる黒鉛繊維の性能が低下する。
At temperatures above 250°C, fluffing or single fiber breakage due to high elongation will not occur, but at temperatures above 290°C, flame resistance will rapidly progress, resulting in uneven fiber structure and the resulting graphite Fiber performance deteriorates.

前耐炎化処理の初期域から終了域までの雰囲気温度分布
としては、漸時、連続的又は不連続的に雰囲気温度を上
昇させる方式が好ましい。
As for the atmospheric temperature distribution from the initial region to the final region of the pre-flameproofing treatment, it is preferable to increase the atmospheric temperature gradually, continuously or discontinuously.

前耐炎化処理においては、耐炎化繊維の密度を1.28
9 / cm3以下に制限して、40%以上100%未
満、好ましくは50〜90%の伸長を付与する。耐炎化
繊維の密度が1.28 g/cm3を越えると、ポリア
クリロニトリル分子のラダー化が進行するために、大幅
な伸長操作が困難となり、無理に伸長すると毛羽の発生
や単糸切れを誘発しやすい。40未満の伸長では、黒鉛
繊維の弾性を高める上で十分な効果が期待できない。ま
た100%を越える過度の伸長は繊維構造を破壊し、同
時に毛羽の発生又は単糸9才(を招くことがある。
In the pre-flame-retardant treatment, the density of the flame-retardant fiber is 1.28.
9/cm3 or less to give an elongation of 40% or more and less than 100%, preferably 50 to 90%. If the density of the flame-resistant fiber exceeds 1.28 g/cm3, the laddering of polyacrylonitrile molecules progresses, making it difficult to stretch the fiber to a large extent, and forcing the fiber to stretch may cause fluff or breakage of single filaments. Cheap. If the elongation is less than 40, a sufficient effect in increasing the elasticity of graphite fibers cannot be expected. Excessive elongation of more than 100% may destroy the fiber structure, and at the same time may cause fuzzing or 9-year-old single yarns.

次いで定長もしくは10%以下に伸長を制限して毛羽の
発生又は単糸切れを抑制し、耐炎化繊維の密度が少なく
とも1.3 g/ cm3となるまで耐炎化を継続する
。耐炎化の終了後、炭素化処理を安定に行うためには、
耐炎化繊維の密度は少なくとも1.397 cm3が必
要である。1.5g/儂3未満では耐炎化構造の形成が
不十分なため、炭素化時に繊維の溶融切断を招くことが
ある。前耐炎化処理後、耐炎化を継続する場合の雰囲気
温度は250〜290 ’Cが好ましい。
Next, the elongation is limited to a constant length or 10% or less to suppress the occurrence of fuzz or single filament breakage, and flame resistance is continued until the density of the flame resistant fiber reaches at least 1.3 g/cm3. In order to perform the carbonization process stably after flameproofing is completed,
The density of the flame-retardant fibers must be at least 1.397 cm3. If it is less than 1.5 g/min, the formation of a flame-resistant structure is insufficient, which may lead to melting and cutting of the fibers during carbonization. After the pre-flame-proofing treatment, the ambient temperature when flame-proofing is to be continued is preferably 250 to 290'C.

耐炎化繊維の密度は、繊維束より20〜60本からなる
繊維集団を取り出し、これを直径2〜3 mllの輪状
とし、100 ’Cで6時間乾燥後、測定繊維に近い密
度を有する浸漬液(四塩化炭素−トルエン系)中で真空
脱泡し、次いで温度25℃の密度勾配管液に浸漬するこ
とにより求められる。
To determine the density of the flame-resistant fibers, take a group of 20 to 60 fibers from a fiber bundle, shape it into a ring with a diameter of 2 to 3 ml, and dry it at 100'C for 6 hours. It is determined by vacuum degassing in a carbon tetrachloride-toluene system and then immersing in a density gradient tube liquid at a temperature of 25°C.

耐炎化の完了後、常法により実質的に不活性な雰囲気中
において、最高温度1500 ”c以下で炭素化を行い
、さらに少なくも2000 ’Cの温度で処理すると、
黒鉛繊維が得られる。
After completion of flameproofing, carbonization is carried out in a substantially inert atmosphere by conventional methods at a maximum temperature of 1500'C or less, and further treated at a temperature of at least 2000'C.
Graphite fibers are obtained.

本発明方法によれば、耐炎化の比較的初期の段階に伸長
操作を集中し、耐炎化の後記に伸長を抑える効果的な伸
長条件を採ることによって、従来法の欠点である耐炎化
処理時の高伸長操作に伴う毛羽の発生、繊維切断等を抑
制しつつ、工業的に有利に高弾性の黒鉛繊維を製造する
ことができる。
According to the method of the present invention, by concentrating the elongation operation at a relatively early stage of flame resistance, and by adopting effective elongation conditions to suppress elongation after flame resistance, the flame resistance treatment, which is a disadvantage of the conventional method, can be performed. It is possible to industrially advantageously produce highly elastic graphite fibers while suppressing the occurrence of fuzz, fiber breakage, etc. that are caused by high elongation operations.

実施例1 ポリアクリロニトリル系繊維(単糸デニール1.5、フ
ィラメント数6000)を265℃−255°C−26
5°Cの3段雰囲気温度を有する空気中で、原長に対し
て60%の伸長をかけなから前耐炎化処理し、耐炎化繊
維の密度を1.26、!i’/cm3としたのち、さら
に空気中265℃で定長下に耐炎化を完了せしめ、最終
の耐炎化繊維密度を1.55 ji/ 6m3とした。
Example 1 Polyacrylonitrile fiber (single yarn denier 1.5, number of filaments 6000) was heated at 265°C-255°C-26
In air with a three-step ambient temperature of 5°C, the original length is stretched by 60% and then subjected to pre-flame resistant treatment, resulting in a flame resistant fiber density of 1.26! i'/cm3, and then flame-proofing was completed under constant length at 265° C. in air to give a final flame-proofing fiber density of 1.55 ji/6m3.

この繊維を窒素雰囲気中で、最高温度1250’Cで炭
素化し、続いて窒素雰囲気中で、最高温度2530 ’
Cで黒鉛化処理した。得られた黒鉛繊維をエポキシ樹脂
に含浸して硬化したのち、成長200闘として引張り試
験機で引張り弾性率及び引張り強度を測定した。その結
果、引張り弾性率は42.8ton/mi2、引張り強
度は253kg/ mm2であった。黒鉛繊維は毛羽の
発生、単糸切れがなく外観良好であった。
The fibers were carbonized in a nitrogen atmosphere at a maximum temperature of 1250'C, followed by carbonization in a nitrogen atmosphere at a maximum temperature of 2530'C.
It was graphitized with C. After the obtained graphite fibers were impregnated with an epoxy resin and cured, the tensile elastic modulus and tensile strength were measured using a tensile tester using a growth test of 200 mm. As a result, the tensile modulus was 42.8 ton/mi2, and the tensile strength was 253 kg/mm2. The graphite fiber had a good appearance with no fluff or single fiber breakage.

比較例1 前耐炎化処理時の伸長率を原長に対し25%とし、その
他は実施例1と同様の方法により黒鉛繊維を得た。得ら
れた黒鉛繊維は、引張り弾性率は39.1 ton/H
2,引張り強度は250kg/ mm2 で、特に弾性
率の劣るものであった。
Comparative Example 1 Graphite fibers were obtained in the same manner as in Example 1, except that the elongation rate during the pre-flame resistance treatment was set to 25% of the original length. The obtained graphite fiber has a tensile modulus of 39.1 ton/H.
2. The tensile strength was 250 kg/mm2, and the elastic modulus was particularly poor.

比較例2 実施例1と同じ方法により前耐炎化処理を行い、前耐炎
化処理後の耐炎化繊維密度を1.30!j / 6m3
  まで高めたところ、毛羽の発生及び単糸切れが多発
したために、これらがローラに巻きつき、耐炎化装置の
運転継続不能となった。
Comparative Example 2 A pre-flame resistant treatment was performed using the same method as in Example 1, and the flame resistant fiber density after the pre-flame resistant treatment was 1.30! j / 6m3
When the temperature was increased to 100%, fluffing and single yarn breakage occurred frequently, which wrapped around the rollers, making it impossible to continue operating the flameproofing device.

そこで前耐炎化処理後の耐炎化繊維密度を実施例1と同
様の1.26 ji / 6m3まで下げて運転を再開
した。運転が安定化したのち、耐炎化繊維の最終密度を
実施例1の場合の1.3597cm3かも徐々に低下さ
せていったところ、運転再開5時間後に炭素化処理炉で
処理繊維の溶融切断が起こった。このときの耐炎化繊維
の最終密度は1、2897cm3であった。
Therefore, the flame resistant fiber density after the pre-flame resistant treatment was lowered to 1.26 ji/6 m3, which is the same as in Example 1, and the operation was restarted. After the operation became stable, the final density of the flame-resistant fiber was gradually lowered to 1.3597 cm3 in the case of Example 1, and 5 hours after restarting the operation, melting and cutting of the treated fiber occurred in the carbonization treatment furnace. Ta. The final density of the flame-resistant fiber at this time was 1,2897 cm3.

実施例2 実施例1と同じポリアクリロニトリル系繊維を、240
°G−255°G−270℃の6段雰囲気温度を有する
空気中で、原長に対して80%の伸長をかけながら前耐
炎化処理し、耐炎化繊維の密度を1.2597cm3と
し、さらに空気中270℃で定長下に耐炎化を完了せし
め、最終の耐炎化繊維密度を1.359/cIrLSと
した。この繊維を実施例1と同じ方法によって炭素化及
び黒鉛化処理し、得られた黒鉛繊維の引張り弾性率及び
引張り強度を測定したところ、それぞれ44、817g
1.2及び255 kllJ/mm”で強度は実施例1
と同等であるが弾性率がさらに向上した。黒鉛繊維の外
観は実施例1と同様に良好なものであった。
Example 2 The same polyacrylonitrile fiber as in Example 1 was
Pre-flame resistant treatment was performed in air with a 6-step ambient temperature of °G-255 °G-270 °C while elongating 80% of the original length, and the density of the flame-resistant fiber was made 1.2597 cm3. Flame resistance was completed under constant length at 270° C. in air, and the final flame resistance fiber density was 1.359/cIrLS. This fiber was carbonized and graphitized by the same method as in Example 1, and the tensile modulus and tensile strength of the graphite fiber obtained were measured, and the results were 44 and 817 g, respectively.
1.2 and 255 kllJ/mm” and the strength is that of Example 1.
It is equivalent to , but the elastic modulus is further improved. The appearance of the graphite fibers was as good as in Example 1.

比較例6 実施例2において前耐炎化処理時の雰囲気温度を、24
0℃−245°G−245℃と徐々に低下させたところ
、短時間のうちに前耐炎化処理工程で繊維の切断が発生
した。そこで前耐炎化処理時の雰囲気温度を260’C
−265°C−270℃に設定して運転を再開した。得
られた黒鉛繊維は繊維間の融着がみられ、性能評価に供
しえないものであった。これは前駆体を急激に260℃
の耐炎化雰囲気に導入したためと考えられる。
Comparative Example 6 In Example 2, the ambient temperature during the pre-flame retardant treatment was set to 24
When the temperature was gradually lowered from 0°C to 245°G to 245°C, fiber breakage occurred in a short period of time during the pre-flame resistance treatment process. Therefore, the ambient temperature during the pre-flameproofing treatment was set to 260'C.
The temperature was set to -265°C-270°C and operation was restarted. The obtained graphite fibers showed fusion between the fibers and could not be used for performance evaluation. This rapidly heats the precursor to 260°C.
This is thought to be due to the introduction of the flame-retardant atmosphere.

出願人 三菱レイヨン株式会社 代理人 弁理士小 林 正 雄Applicant: Mitsubishi Rayon Co., Ltd. Agent: Patent attorney Masao Kobayashi

Claims (1)

【特許請求の範囲】[Claims] ポリアクリロニトリル系繊維前駆体を、210〜250
℃から始まり250〜290℃で終了する耐炎化雰囲気
中を通過させることにより耐炎化し、その際まず該雰囲
気中における耐炎化繊維の密度を1.28 fl / 
cm3以下に制限して40%以上100%未満の伸長を
付与し、次いで定長で又は10%以下に伸長を行いつつ
耐炎化繊維の密度が少なくとも1.37! / cm3
になるまで耐炎化な進め、続いて炭素化及び黒鉛化を行
うことを特徴とする、黒鉛繊維の製造法。
Polyacrylonitrile fiber precursor, 210 to 250
It is made flame resistant by passing it through a flame resistant atmosphere starting at 250-290 degrees Celsius, at which time the density of the flame resistant fibers in the atmosphere is first adjusted to 1.28 fl /
The density of the flame-retardant fiber is at least 1.37 while elongation is limited to 40% or more and less than 100% with a limit of cm3 or less, and then elongation is performed at a constant length or to 10% or less! /cm3
A method for producing graphite fiber, which is characterized by making it flame resistant until it becomes flame resistant, followed by carbonization and graphitization.
JP6721082A 1982-04-23 1982-04-23 Production of graphite fiber Pending JPS58186614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6721082A JPS58186614A (en) 1982-04-23 1982-04-23 Production of graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6721082A JPS58186614A (en) 1982-04-23 1982-04-23 Production of graphite fiber

Publications (1)

Publication Number Publication Date
JPS58186614A true JPS58186614A (en) 1983-10-31

Family

ID=13338314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6721082A Pending JPS58186614A (en) 1982-04-23 1982-04-23 Production of graphite fiber

Country Status (1)

Country Link
JP (1) JPS58186614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152826A (en) * 1984-12-24 1986-07-11 Mitsubishi Rayon Co Ltd High-elasticity carbon fiber and its production
WO2009125832A1 (en) 2008-04-11 2009-10-15 東レ株式会社 Carbon-fiber precursor fiber, carbon fiber, and processes for producing these
US8822029B2 (en) 2006-10-18 2014-09-02 Toray Industries, Inc. Polyacrylonitrile polymer, method of producing the same, method of producing precursor fiber used for producing carbon fiber, carbon fiber and method of producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152826A (en) * 1984-12-24 1986-07-11 Mitsubishi Rayon Co Ltd High-elasticity carbon fiber and its production
US8822029B2 (en) 2006-10-18 2014-09-02 Toray Industries, Inc. Polyacrylonitrile polymer, method of producing the same, method of producing precursor fiber used for producing carbon fiber, carbon fiber and method of producing the same
WO2009125832A1 (en) 2008-04-11 2009-10-15 東レ株式会社 Carbon-fiber precursor fiber, carbon fiber, and processes for producing these
US8674045B2 (en) 2008-04-11 2014-03-18 Toray Industries, Inc. Carbon-fiber precursor fiber, carbon fiber, and processes for producing these

Similar Documents

Publication Publication Date Title
US4284615A (en) Process for the production of carbon fibers
US4452860A (en) Carbon fibers and process for producing the same
KR870000533B1 (en) Carbon fiber&#39;s making method
JPS6328132B2 (en)
US3556729A (en) Process for oxidizing and carbonizing acrylic fibers
US4576810A (en) Carbon fiber production
JPS58136834A (en) Production of carbon fiber of high performance
JPS58186614A (en) Production of graphite fiber
JPS58144128A (en) Preparation of carbon fiber having high performance
JP4138361B2 (en) Carbon fiber strand and method for producing the same
JPS6127487B2 (en)
JP3303424B2 (en) Method for producing acrylic carbon fiber
JP2001248025A (en) Method for producing carbon fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JPS62215018A (en) Production of carbon fiber
JPH0329891B2 (en)
JP4919410B2 (en) Carbon fiber manufacturing method
JP2004339627A (en) Method for producing carbonaceous fiber, and carbonaceous fiber and activated carbon fiber
JPS58214535A (en) Production of acrylic type carbon fiber
JPH01282325A (en) Pitch-based carbon fibersheet and production thereof
JPS6361413B2 (en)
JP2007332498A (en) Method for producing carbon fiber bundle
JP2017020142A (en) Carbon fiber and manufacturing method therefor
JP4387056B2 (en) Carbon fiber bundle
JPS60151317A (en) Production of carbon fiber