JPS61119717A - Bundle of water-absorbing carbon fiber of high performance - Google Patents

Bundle of water-absorbing carbon fiber of high performance

Info

Publication number
JPS61119717A
JPS61119717A JP23824784A JP23824784A JPS61119717A JP S61119717 A JPS61119717 A JP S61119717A JP 23824784 A JP23824784 A JP 23824784A JP 23824784 A JP23824784 A JP 23824784A JP S61119717 A JPS61119717 A JP S61119717A
Authority
JP
Japan
Prior art keywords
fibers
fiber
strength
strand
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23824784A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ogawa
博靖 小川
Tetsuo Shigei
繁井 哲郎
Hiroshi Sugano
宏 菅野
Kazuhiro Ichimaru
市丸 和宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP23824784A priority Critical patent/JPS61119717A/en
Priority to GB08527828A priority patent/GB2168966B/en
Priority to US06/798,060 priority patent/US4671950A/en
Priority to FR858516867A priority patent/FR2573095B1/en
Priority to DE19853540444 priority patent/DE3540444A1/en
Publication of JPS61119717A publication Critical patent/JPS61119717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:The titled carbon fiber bundle that has a specific saturated water content, a strand strength and elasticity, thus being suitable for production of reinforced tire cords to which RFL is applied, reinforced paper and reinforced cement, because it has high affinity to water and high strength and elasticity. CONSTITUTION:The objective carbon fiber bundle has a carbon content of 70-90wt%, a saturated water content of at least 0.5wt% at 80% RH and 20 deg.C, a strand strength of 250kgf/mm<2> and a strand elasticity of more than 18,000kgf/ mm<2>. The fiber bundle is preferably produced from acrylic fibers containing more than 95wt% acrylonitrile.

Description

【発明の詳細な説明】 (技術分野) 本発明は、水との高い親和性を有し且つ高いストランド
強度と高いストランド弾性率を有する低温焼成で得るこ
とができる炭素質繊維束に関する。このものは、水を使
用する製造■捏を経て19られる物、例えば、RFL 
(レゾルシンホルマリンラテックス)を付着させたタイ
ヤコード、紙、セメント強化月を製造するに当り好適に
使用される。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a carbonaceous fiber bundle that can be obtained by low-temperature firing and has a high affinity for water, high strand strength, and high strand elastic modulus. This product is manufactured using water and processed through kneading, such as RFL.
It is suitably used in the production of tire cords, paper, and cement-reinforced mats to which (resorcinol-formalin latex) is attached.

(背景技術) 近年、炭素含有量95重量%以上の炭素繊維は、高強度
、高弾性率で、しかも比重1.6〜1,9であるため、
繊維束(ストランド)やチョップの形で、8梯の71へ
リックス材、例えば、熱硬化性或いは熱可塑性プラスチ
ックど複合化されて、主として航空機、自動車、スポー
ツ用品の分野に多用されている。
(Background Art) In recent years, carbon fibers with a carbon content of 95% by weight or more have high strength and high elastic modulus, and have a specific gravity of 1.6 to 1.9.
In the form of fiber bundles (strands) or chops, 8-layer 71 helix materials, such as thermosetting or thermoplastic plastics, are composited and are widely used mainly in the fields of aircraft, automobiles, and sporting goods.

しかし、通常アクリル系繊維を前駆体として製造される
炭素繊維は、■炭化の際に、45〜50%の重量減を伴
い、加えて焼成温度に1000℃以上が採用されるため
に、原料コスト、エネルギーコストが高くなること、■
1000℃以上の高温の炉と、それに用いる特殊な高温
耐熱材とを必要どするために、設備コストも高くなるこ
となどの理由から、高価な製品となっていた。このよう
な炭素繊維は、高価であるにかかわらず、物性的には優
れた材料であるために、品質を優先する産業分野では多
用されているが、コス1〜に重点を置〈産業分野におい
ては多用されない傾向があった。
However, carbon fibers, which are usually manufactured using acrylic fibers as precursors, suffer from a weight loss of 45 to 50% during carbonization, and in addition, the firing temperature is 1000°C or higher, which increases the cost of raw materials. , higher energy costs,■
Since it requires a high-temperature furnace of 1000° C. or higher and special high-temperature heat-resistant materials used in it, the equipment cost is also high, making it an expensive product. Although carbon fiber is expensive, it is a material with excellent physical properties, so it is widely used in industrial fields where quality is a priority. tended not to be used frequently.

特に、炭素iI組は、相対湿度80%、温度20℃にお
ける飽和水分率が0.1重間%以下で、水との親和性が
不足しているために、RFL (レゾルシンホルマリン
ラテックス)の水分散液を使用してタイヤコードをつく
る場合において炭素繊維をゴム補強材とするときには、
RFLの繊維間への含浸性が悪く、しかも接着性も充分
でないためコードとしての強力は、低くなるという欠点
を有していた。
In particular, the carbon iI group has a saturated moisture content of 0.1% by weight or less at a relative humidity of 80% and a temperature of 20°C, and has insufficient affinity with water. When using carbon fiber as a rubber reinforcing material when making a tire cord using a dispersion liquid,
RFL has poor impregnability between fibers and insufficient adhesion, resulting in low strength as a cord.

これに対して、炭素繊維の製造中間段階である炭素含有
量90重量%以下の繊維(炭素質I!紐と呼称する)は
、水との親和性を有するものがあり、このものは物性的
にもコスト的にも炭素繊維より本来有利である。にもか
かわらず、従来の炭素質繊維は、繊組性能が炭素繊維に
比し大幅に低く劣っているために、炭素質1mのコスト
が低くても、炭素繊維の方がむしろ有利となり、炭素質
繊維の利用は少なかった。しかし、この炭素質m維の性
能を高めることができれば、炭素質l1r4ttは、特
にタイヤコードとして極めて有用なものとなり、その利
用の拡大が期待される。
On the other hand, some fibers with a carbon content of 90% by weight or less (referred to as carbonaceous I! string), which is an intermediate stage in the production of carbon fibers, have an affinity for water, and these fibers have physical properties. It is inherently more advantageous than carbon fiber in terms of both cost and cost. Nevertheless, the fiber assembly performance of conventional carbon fibers is significantly lower than that of carbon fibers, so even if the cost of 1 meter of carbon fiber is low, carbon fibers are more advantageous than carbon fibers. The use of quality fibers was low. However, if the performance of this carbonaceous m-fiber can be improved, carbonaceous l1r4tt will become extremely useful, especially as a tire cord, and its use is expected to expand.

(発明の課題) 本発明者らは、炭素質繊維が有する上記のごとき欠点を
解決し、水との高い親和性を有し且つ炭素繊維に匹敵す
る高い弾性率を有する繊維について検討の結果、本発明
に至ったものである。
(Problem of the Invention) The present inventors have solved the above-mentioned drawbacks of carbonaceous fibers, and as a result of studying fibers that have a high affinity for water and a high elastic modulus comparable to carbon fibers, This led to the present invention.

特に、本発明の目的は、ゴム補強用のRF 1.−(レ
ゾルシンホルマリンラテックス)付着のコードとして好
適な炭素質繊維束を提供するものである。
In particular, the object of the present invention is to provide RF for rubber reinforcement 1. - (Resorcin formalin latex) A carbon fiber bundle suitable as a cord for adhesion is provided.

(発明の構成及び作用) 本発明は、炭素含有量が70〜90重量%であって、相
対湿度80%、温度20℃における飽和水分率が少くと
も0.5重量%であり、且つストランド強度250kg
f/ mm’以上、ストランド弾性率18000kQf
 /mm’以上を有することを特徴とする炭素質繊維束
である。
(Structure and operation of the invention) The present invention has a carbon content of 70 to 90% by weight, a saturated moisture content of at least 0.5% by weight at a relative humidity of 80% and a temperature of 20°C, and strand strength. 250kg
f/mm' or more, strand elastic modulus 18000kQf
/mm' or more.

従来既知の炭素W!紺は、炭素含有量95重量%超を有
するものであるが、本発明の繊維束は、炭素含有量が、
炭素繊維よりはるかに低く、耐炎$11や前駆体くアク
リル系繊維)のそれより高く、この点で耐炎m維と炭素
繊維の中間領域に属する繊維である。このような本発明
の繊維束は、ストランド強度、ストランド弾性率におい
て炭素繊維に匹敵する特性を備え且つ親水性において炭
素Il紺より5〜50倍の高い値を示す。
Conventionally known carbon W! Navy blue has a carbon content of more than 95% by weight, but the fiber bundle of the present invention has a carbon content of
The flame resistance is much lower than that of carbon fiber and higher than that of the precursor (acrylic fiber), and in this respect it is a fiber that falls in the intermediate range between flame resistance and carbon fiber. Such a fiber bundle of the present invention has properties comparable to carbon fibers in strand strength and strand elastic modulus, and exhibits a hydrophilicity 5 to 50 times higher than that of carbon Il navy blue.

本発明の炭素質繊維束は、相対湿度80%、温度20℃
にお【ノる飽和水分率が少くとも0.5重間%である。
The carbon fiber bundle of the present invention has a relative humidity of 80% and a temperature of 20°C.
The saturated moisture content is at least 0.5% by weight.

0.5手出%未満の場合、RFLの水分散液に浸漬して
、RFLを付着させる際に、繊維束を構成している単[
1間にRFLが充分含浸しないこと及びRFLと繊維と
が強く固着しないために、得られるRFI−付着コード
は、本来のストランド強度から得られる強力よりもかな
り低いコード強力となるので好ましくない。
If the amount is less than 0.5%, when the fiber bundle is immersed in an aqueous dispersion of RFL to attach RFL, the mono[
This is undesirable because the resulting RFI-attached cord has a cord strength considerably lower than that obtained from the original strand strength because the RFL is not sufficiently impregnated during the stranding process and the RFL and the fibers are not strongly bonded.

本発明の炭素質11i1ft束は、ストランド強度25
0kgf /mm’以上、ストランド弾性率18000
kof/mm2以上を有するものである。ストランド強
度が250k(If/l11m’未満の場合、それ自体
、強廉が低いため、RFL付着したコードの強力は、従
来既知の炭素繊維をRFI−付着した強力よりも劣るこ
とは勿論、他のガラス繊維からのコードやアラミド繊維
コードにも劣るため、実用上メリッI−が減少し好まし
くない。またストランド弾性率が、18000kof/
 mm’未満の場合、該l!I維の弾性率とコストの対
応からみたコストパフォーマンスは、炭素繊維より劣る
ため好ましくない。
The carbonaceous 11i 1ft bundle of the present invention has a strand strength of 25
0kgf/mm' or more, strand elastic modulus 18000
kof/mm2 or more. If the strand strength is less than 250k (If/l11m'), the strength of the RFL-attached cord is low, so the strength of the RFL-attached cord is inferior to that of the conventionally known RFI-attached carbon fiber, and other Since it is inferior to a cord made of glass fiber or an aramid fiber cord, it is not preferable because the practical merit I- is reduced.In addition, the strand elastic modulus is 18,000 kof/
If less than mm', the l! The cost performance of I-fibers in terms of the relationship between elastic modulus and cost is inferior to that of carbon fibers, so they are not preferable.

本発明の炭素質mw11束は、ゴム補強用コードとして
、高い強力を有し、且つゴムとの接着性に優れており、
新しい有用な繊維素材である。
The carbonaceous mw11 bundle of the present invention has high strength as a rubber reinforcing cord and has excellent adhesiveness to rubber.
It is a new and useful textile material.

本発明において、炭素質繊維束の水分率は、次のように
して測定される値である。相対湿度80%(塩化アンモ
ン飽和水溶液を使って作成する)の容器の中に20℃で
1週間静置して、水分率を平衡にしたときの値で、下式
により求められる。
In the present invention, the moisture content of the carbon fiber bundle is a value measured as follows. The value is determined by the following formula when the moisture content is brought to equilibrium by being left standing at 20° C. for one week in a container with a relative humidity of 80% (prepared using a saturated ammonium chloride aqueous solution).

1週間後の繊維の重量−105℃、30分乾燥後の4I
維束重吊水分率−xloo(%) 105℃、30分乾燥後の繊維束重用 また、炭素含有量は元素分析装置(柳本社製)にて測定
した値である。ストランド強度、ストランド弾性率は、
J I 5R7601に準じて測定した値である。
Weight of fiber after 1 week - 4I after drying at 105°C for 30 minutes
Fiber bundle weight moisture content - xloo (%) Fiber bundle weight after drying at 105° C. for 30 minutes The carbon content is a value measured with an elemental analyzer (manufactured by Yanagimoto Co., Ltd.). Strand strength and strand elastic modulus are
This is a value measured according to J I 5R7601.

この様な、本発明の炭素質繊維束は、アクリル系繊維を
前駆体として得ることができる。
Such a carbon fiber bundle of the present invention can be obtained using acrylic fibers as a precursor.

本発明炭素質繊維束の製法の好適例を説明する。A preferred example of the method for producing the carbonaceous fiber bundle of the present invention will be described.

93重量%以−トのアクリロニトリルから成るアクリル
系繊維を前駆体として、空気中200〜300℃の耐炎
化炉にて、耐炎化繊維としたのち、不活性ガス中750
〜1000℃にて焼成する。
An acrylic fiber containing 93% by weight or more of acrylonitrile is used as a precursor in a flameproofing furnace at 200 to 300°C in air to make it flameproof, and then heated to 750℃ in an inert gas.
Calculate at ~1000°C.

特に、本発明で規定するストランド強度、ストランド弾
性率を有する繊維とするには、耐炎化での繊維の分子配
向を高くし、耐炎化を均一に行い、また、焼成時の張力
を高<L、f4つ耐炎繊維の比重を調整して焼成時の張
力と対応させることが望ましい。更に、本発明で規定す
る水分率が少くども0.5重量%、特に0.5〜5重量
%である繊維と覆るためには、焼成湿度、焼成時間を調
整することが好ましい。
In particular, in order to obtain fibers having the strand strength and strand elastic modulus specified in the present invention, the molecular orientation of the fibers should be increased during flame resistance, the flame resistance should be uniform, and the tension during firing should be set to a high <L , f It is desirable to adjust the specific gravity of the four flame-resistant fibers to correspond to the tension during firing. Further, in order to coat the fibers with a moisture content of at least 0.5% by weight, particularly 0.5 to 5% by weight as defined in the present invention, it is preferable to adjust the firing humidity and firing time.

以下に、本発明の炭素質繊維束を1qる方法について具
体例を示し、更に詳しく説明する。
Below, a specific example will be shown and a more detailed explanation will be given of the method of preparing 1 q of carbon fiber bundles of the present invention.

アクリル系繊維は、93重量%以上のアクリロニトリル
と共重合可能な公知のコモノマーとを共重合して得た[
1で、特に、コモノマーとしては、アクリル酸メチル1
〜5手出%、メタリルスルホン酸ソーダ0.1〜0.5
重量%又は、イタコン酸0.5へ・1.5重品%から選
択された成分とから成る分子量30000〜1oooo
o分子配向度85%以上、単繊緒デニール0.1〜1.
0.100〜100000本のm紐束が好ましい。
The acrylic fiber was obtained by copolymerizing 93% by weight or more of acrylonitrile with a known comonomer [
1, and in particular, as a comonomer, methyl acrylate 1
~5%, sodium methallylsulfonate 0.1~0.5
% by weight or a component selected from 0.5% to 1.5% by weight of itaconic acid with a molecular weight of 30,000 to 1oooo
o Molecular orientation degree 85% or more, single fiber denier 0.1-1.
A bundle of m strings of 0.100 to 100,000 is preferred.

耐炎化け、該アクリル系繊維束を酸化性雰囲気、主とし
て空気中で多段ローラ一群を有Jる耐炎化炉にて、該繊
維の分解温度より10〜60℃低い温度で段階的に昇温
しながら、張力下にて連続的に通して繊維の比重を1.
33.〜1.40とする。
Flameproofing: The acrylic fiber bundle is heated in an oxidizing atmosphere, mainly in the air, in a flameproofing furnace equipped with a group of multi-stage rollers while gradually increasing the temperature at a temperature 10 to 60°C lower than the decomposition temperature of the fibers. , the specific gravity of the fibers is reduced to 1.
33. ~1.40.

特に、本発明の1ift束を得るためには、アクリル系
繊維のX線回折角2θ−176の配向度を、耐炎繊維と
したとき80%以上保持するように張力と温度をかけて
耐炎化することが好ましく、とりわけ、該アクリル系繊
維の20−116における配向度が、88%以上の繊維
を張力100〜2001g /dにて、耐炎化すること
が一層好ましい。
In particular, in order to obtain the 1ift bundle of the present invention, tension and temperature are applied to make the acrylic fibers flame resistant so that the degree of orientation of the acrylic fibers at an X-ray diffraction angle of 2θ-176 is maintained at 80% or more when made into flame resistant fibers. More preferably, the acrylic fibers having a degree of orientation of 20-116 of 88% or more are made flame resistant under a tension of 100 to 2001 g/d.

張力100111(1/d未満の場合は、得られる炭素
質繊維束の弾性率が低く、また、張力200111(1
/dを越える場合は、該炭素質m紐束の毛羽が極めて多
くなるため束としての所要品質上問題となる傾向がある
When the tension is less than 100111 (1/d), the elastic modulus of the obtained carbon fiber bundle is low;
If it exceeds /d, the carbonaceous m string bundle will have an extremely large amount of fuzz, which tends to cause problems in terms of the required quality of the bundle.

耐炎化温度については、耐炎化に伴う繊維と酸素との反
応と、繊維中のニトリル基の環化反応とが、繊維断面に
均一に起るような温度で段階的に高温にすることが適当
である。好ましくは、該アクリル系繊維の空気中におけ
る分解温度よりも10〜60℃低い温度で開始し、分解
温度り2O−9= 〜30℃低い温度に段階的に昇温することが好ましい。
Regarding the flame resistance temperature, it is appropriate to increase the temperature in stages so that the reaction between the fiber and oxygen associated with flame resistance and the cyclization reaction of the nitrile groups in the fiber occur uniformly on the cross section of the fiber. It is. Preferably, the temperature is started at a temperature 10 to 60°C lower than the decomposition temperature of the acrylic fiber in air, and the temperature is raised stepwise to a temperature 2O-9 = -30°C lower than the decomposition temperature.

耐炎化時間は耐炎m帷の比重が1.33〜1.40とな
るごとく、0.3〜1時間とするのが、適当である。耐
炎繊維の比重が1.33未満の場合、得られる炭素質繊
維の前駆体繊n重間に対する重量%(炭化率)が極めて
小さくなるので好ましくむい。また比…が1.40を越
える場合、得られる炭素質繊維の強度が低くなる傾向と
なる。
It is appropriate that the flameproofing time is 0.3 to 1 hour so that the specific gravity of the flameproof cloth is 1.33 to 1.40. When the specific gravity of the flame-resistant fiber is less than 1.33, it is not preferable because the weight percent (carbonization rate) of the obtained carbonaceous fiber to the number of precursor fibers becomes extremely small. Moreover, when the ratio exceeds 1.40, the strength of the obtained carbonaceous fiber tends to decrease.

本発明の繊維束を得るために使用する耐炎化炉の1例は
、第1図のごどき多段ローラ一群を有する炉で、炉内は
、少なくとも2つ以Fの室に区分され、それぞれ温度が
調整できる構造を有し、繊維は、供給ローラーRrpか
ら炉内に連続的に供給されて耐炎化され、最終的にロー
ラーRtpにて引取る構造を有している。
An example of a flameproofing furnace used to obtain the fiber bundle of the present invention is a furnace having a group of multistage rollers as shown in FIG. It has a structure in which the fibers can be adjusted, and the fibers are continuously supplied into the furnace from the supply roller Rrp, made flame resistant, and finally taken off by the roller Rtp.

耐炎繊維の焼成は、窒素、アルゴンなどの雰囲気中、7
50 ヘ−1000℃の温度にて行うが、通常、第2図
のごとき炉を用いて繊維を連続的に通して行う。
Fire-resistant fibers are fired in an atmosphere of nitrogen, argon, etc.
The process is carried out at a temperature of 50° C. to 1000° C., and is usually carried out by continuously passing the fiber through a furnace as shown in FIG.

−10= 焼成温度が750℃未満の場合、水分率は高くなる傾向
となるが、ストランド強度、ストランド弾性率が低くな
るので好ましくない。また該温度が1000℃を越える
場合、水分率が0.5重間%未満の繊維となるので好ま
しくない。焼成時間は、温度に依存し、高温の場合は短
かくすることが好ましいが、通常0.5〜10分が適当
である。
-10= If the firing temperature is less than 750°C, the moisture content tends to increase, but the strand strength and strand elastic modulus decrease, which is not preferable. Further, if the temperature exceeds 1000°C, the fiber will have a moisture content of less than 0.5% by weight, which is not preferable. The firing time depends on the temperature, and is preferably shortened when the temperature is high, but 0.5 to 10 minutes is usually appropriate.

0.5分未満の場合、高い水分率の11維としうるが、
ストランド弾性率が低くなる傾向となる。
If the time is less than 0.5 minutes, 11 fibers with high moisture content can be used.
The strand elastic modulus tends to decrease.

10分を越える場合、エネルギーコストが高くなる傾向
となる。
If it takes more than 10 minutes, energy costs tend to increase.

特に、本発明の#JAIf#を得るためには、焼成時に
、張力を150+119/ d 〜250111g/ 
dかけることが好ましい。150mg /cl未渦の場
合、ストランド強度、ストランド弾性率が低く、また、
250mg /dを越える場合、1qられる繊維の毛羽
が多く品質の悪い繊維となり易い。
In particular, in order to obtain #JAIf# of the present invention, the tension must be set at 150+119/d to 250111g/d during firing.
It is preferable to multiply by d. In the case of 150 mg/cl without vortex, the strand strength and strand elastic modulus are low, and
If it exceeds 250 mg/d, the fibers produced by 1 q of fiber tend to have a lot of fuzz, resulting in poor quality fibers.

通常、耐炎繊維の比重が1.33〜1.40の場合、焼
成時の張力を150〜250mg/dとし、耐炎繊維の
比重に応じて、張力を高くすることが望ましい。
Normally, when the specific gravity of the flame-resistant fiber is 1.33 to 1.40, it is desirable that the tension during firing is 150 to 250 mg/d, and the tension is increased according to the specific gravity of the flame-resistant fiber.

第2図は、供給ローラーRfCと炉芯筒2、炉本体3、
断熱材4、ヒーター5及び引取ローラーRtcから構成
された焼成炉で、該炉において繊維1は、ローラーRf
Cを通って炉芯筒内を通過して連続的に、ローラーRt
cにて引取るように焼成される。
FIG. 2 shows the supply roller RfC, the furnace core tube 2, the furnace body 3,
A firing furnace composed of a heat insulating material 4, a heater 5, and a take-up roller Rtc, in which the fiber 1 is
Continuously passing through the furnace core cylinder through the roller Rt
It is fired in such a way that it is removed at c.

(発明の効果) 本発明の炭素質繊維束は、水との親和性に優れ、強度、
弾性率が高く、炭素繊維に匹敵する性能を有しているた
め、RFI−を充分含浸させた高いコード強力を示すタ
イヤコードをつくるのに有用である。
(Effects of the Invention) The carbon fiber bundle of the present invention has excellent affinity with water, strength,
Because of its high modulus and performance comparable to carbon fiber, it is useful for making tire cords that are fully impregnated with RFI- and exhibit high cord strength.

また、本発明のものは、水を媒体として製造される物に
対して製造時に使用される。例えば、抄紙して紙と覆る
場合や、セメントに混ぜて強化する場合などに有効であ
る。更に本発明のものは、炭素繊維に匹敵する性能を有
していることから、プラスチックスの補強材として有用
である。
Furthermore, the product of the present invention is used in the production of products that are produced using water as a medium. For example, it is effective when making paper and covering it with paper, or when mixing it with cement to strengthen it. Furthermore, since the material of the present invention has performance comparable to carbon fiber, it is useful as a reinforcing material for plastics.

(実施例及び比較例) 本発明について、実施例を挙げて更に詳しく説明する。(Example and comparative example) The present invention will be explained in more detail by giving examples.

同時に比較例も挙げる。特に、指定しない限り、「%」
 「部」は重量で示す。
At the same time, comparative examples are also given. Unless otherwise specified, "%"
"Parts" are expressed by weight.

尚、X線回折での配向度は、回折角2θ−17゜又は2
θ−25°における配向角φと回折強度の絵図の半価幅
W1/2を用いて、下記から求めた値である。
The degree of orientation in X-ray diffraction is determined by the diffraction angle 2θ-17° or 2
This is a value determined from the following using the orientation angle φ at θ-25° and the half width W1/2 of the diagram of the diffraction intensity.

90−W 1/ 2 X   100(%) X線回折測定は、理学電機社製のX線回折装置を用いて
「炭素m維」 〔大谷他著、近代編集孔発行、初版第3
75〜383頁〕付録の方法にて行った。
90-W 1/2
Pages 75-383] The procedure was carried out using the method in the appendix.

実施例1.2及び比較例1 アクリロニトリル96%、イタコン酸1%、アクリル酸
メチル3%からなる重合体(分利L65000 )より
得たところの、2θ−17°での配向度88%、空気中
での分解温度287℃のアクリル系繊紺束(単繊紺0.
8デニール、構成本数12000本)を、第1図に示す
耐炎化炉に、供給ローラーRfpを経て、炉内温度25
0℃、30分の第1ゾーンと、炉内温度263℃、24
分の第2のゾーンで処理1ノ、連続的に、引取ローラー
Rtl)にて引取った。
Example 1.2 and Comparative Example 1 A polymer consisting of 96% acrylonitrile, 1% itaconic acid, and 3% methyl acrylate (ratio L 65000), the degree of orientation at 2θ-17° was 88%, and the air Acrylic fiber navy blue bundle (single fiber navy blue) with a decomposition temperature of 287°C.
8 denier, 12,000 pieces) were passed through a supply roller Rfp to the flameproofing furnace shown in Fig. 1, and the furnace temperature was 25.
1st zone at 0℃ for 30 minutes and furnace temperature at 263℃ for 24 minutes.
In the second zone for 1 minute, the sample was continuously taken off with a take-off roller (Rtl).

耐炎化の間、各ローラ一部分にあるw4#1にかかる張
力を105mg /dとし、最終的に得られる耐炎繊維
の2θ−17°におけるX線配向度を81%とした。ま
た、同じ各ローラーの部分の繊維について、光学顕微鏡
観察を行い、繊維横断面における黒色部分の発達度合が
均一であり、耐炎化の反応が均一に起っていることを確
認した。
During flameproofing, the tension applied to w4#1 in a portion of each roller was 105 mg/d, and the degree of X-ray orientation at 2θ-17° of the flame-resistant fiber finally obtained was 81%. Furthermore, the fibers in the same roller portion were observed with an optical microscope, and it was confirmed that the degree of development of the black portion in the cross section of the fibers was uniform, and that the flame resistance reaction was occurring uniformly.

得られた耐炎繊維束の比重は1.35であった。The specific gravity of the obtained flame-resistant fiber bundle was 1.35.

この耐炎繊維束を入目温度330℃、炉内最高温度93
0℃である第2図の焼成炉に導入し、最高温度において
3分とするように引取りローラーRtCにて引取った。
This flame-resistant fiber bundle was put into the oven at a temperature of 330°C and a maximum temperature of 93°C in the furnace.
It was introduced into the firing furnace shown in FIG. 2 at 0° C., and taken off with a take-off roller RtC for 3 minutes at the maximum temperature.

この焼成時の張力を供給ローラーRfCと引取ローラー
Rtc間で張力を30m0/d (比較例1) 、18
0mo /d  (実施例2)、240mg /d  
(実施例1)となるごとクシテ、3種類の炭素質繊維束
を得た。得られた炭素質繊維束の水分率、ストランド強
度、ストランド弾性率は表1に示すとおりであった。
The tension during firing was set at 30 m0/d between the supply roller RfC and the take-up roller Rtc (Comparative Example 1), 18
0mo/d (Example 2), 240mg/d
(Example 1) Three types of carbon fiber bundles were obtained. The moisture content, strand strength, and strand elastic modulus of the obtained carbon fiber bundle were as shown in Table 1.

この3種類の炭素質繊維束を、それぞれ20%RFL(
レゾルシンホルマリンラテックス)(レゾルシン8.5
部、ホルマリン(37%水溶液) 4.1部、ビニルピ
リジン15部とスチレン15部と、ブタジェン70部か
らなるターポリマーのゴムラテックス62.6部とを混
合し、20℃で7日間熟成したもの〕水分散液に連続的
に浸漬して引き上げたのち、125℃で3分乾燥後、2
20℃で1分熱処理してRFL付着のコードを(qだ。
These three types of carbon fiber bundles were each mixed at 20% RFL (
Resorcin formalin latex) (Resorcin 8.5
A mixture of 4.1 parts of formalin (37% aqueous solution), 15 parts of vinylpyridine, 15 parts of styrene, and 62.6 parts of terpolymer rubber latex consisting of 70 parts of butadiene and aged at 20°C for 7 days. ]After being continuously immersed in an aqueous dispersion and pulled up, dried at 125℃ for 3 minutes,
Heat-treated at 20℃ for 1 minute to remove the RFL-attached cord (q).

得られた3fI類のコードについて、付着RF I」L
コード強力、ストランド強力に対するコード強力の割合
を求めたところ、表1に示す結果を得た。
Regarding the obtained 3fI type code, the attached RF I'L
When the ratio of cord strength to cord strength and strand strength was determined, the results shown in Table 1 were obtained.

表1に示すごとく、焼成時の張力を高くした実施例1及
び2で得られた炭素質繊維束は、水分率、ストランド強
力、ストランド性率のいづれにおいても本発明規定値を
満足して、優れた飴を示し、RFI−処理コードも、R
FLが充分に付着し、ストランド強度から計棹で求めた
ストランド強力に対するコード強力の割合も、高い値を
示した。
As shown in Table 1, the carbon fiber bundles obtained in Examples 1 and 2, in which the tension during firing was increased, satisfied the specified values of the present invention in terms of moisture content, strand strength, and strand property. Showing excellent candy, the RFI-processing code also
The FL was sufficiently attached, and the ratio of the cord strength to the strand strength calculated from the strand strength by measuring rod strength also showed a high value.

これに対し、焼成時の張力を低くした比較例1で得られ
たものは、特にス]へランド弾性率が低く実用上メリッ
トが乏しい繊維であった。
On the other hand, the fiber obtained in Comparative Example 1, in which the tension during firing was lowered, had a particularly low S-herand modulus and was of little practical merit.

比較例2 耐炎化炉の炉内温度を265℃(被処理アクリル繊維の
分解温度より22℃低い)とした第1ゾーンにて20分
、第2ゾーンにて267℃、16分処理して比重1.3
5の耐炎繊維とする以外は、実施例1と同様にして炭素
質繊維を得た。
Comparative Example 2 The temperature inside the flameproofing furnace was set to 265°C (22°C lower than the decomposition temperature of the acrylic fiber to be treated), and the specific gravity was 1.3
Carbonaceous fibers were obtained in the same manner as in Example 1, except that the flame-resistant fibers of No. 5 were used.

得られた炭素質1mは、炭素含有量83%、水分率3.
1%、ストランド強度230kgf/mm2、ストラン
ド弾性率20600kOf/ ml’であり、強度の低
いmHであった。尚、実施例1と同様にして、RFL処
理したところ、RF L (1着け23%であったが、
コード強力は60kgとかなり低い値であつ1こ。
1 m of the obtained carbonaceous material had a carbon content of 83% and a moisture content of 3.
1%, the strand strength was 230 kgf/mm2, the strand elastic modulus was 20600 kOf/ml', and the strength was low mH. In addition, when RFL treatment was performed in the same manner as in Example 1, RF L (1 wear was 23%,
The strength of the cord is 60kg, which is quite low.

実施例3,4及び比較例3,4 耐炎m維を炉内最高温度650℃、760℃、850℃
、1100℃の4水準にて焼成する以外、実施例1と同
様にして4種類の炭素質繊維とした。
Examples 3 and 4 and Comparative Examples 3 and 4 Flame-resistant M fibers were heated to maximum temperatures in the furnace of 650°C, 760°C, and 850°C.
Four types of carbonaceous fibers were prepared in the same manner as in Example 1, except that the fibers were fired at four levels: , 1100°C.

1qられた炭素質繊維束の性能、RFI−付着コードの
付着量(実施例1と同様に処理)、コード強力、コード
強力のストランド強力に対する割合は、表2に示すとお
りであった。
Table 2 shows the performance of the 1q carbon fiber bundle, the amount of RFI-attached cord attached (processed in the same manner as in Example 1), cord strength, and the ratio of cord strength to strand strength.

これによれば、水分率の低い比較例4の繊維束は、RF
I−が繊紺に含浸せず、付着間が低く、コード強力も低
く、またコード強力のストランド強力に対する割合が低
く、このためRFLとgi紺との接着性が不良である。
According to this, the fiber bundle of Comparative Example 4 with a low moisture content is
I- does not impregnate the navy blue fiber, has a low bonding distance, has low cord strength, and has a low ratio of cord strength to strand strength, resulting in poor adhesion between RFL and gi navy blue.

比較例3の繊維束は、ストランド強度とストランド弾性
率が低い。これに対して実施例3及び4の繊維束は、本
発明規定値を満足しており、優れたストランド性能とコ
ードRF L付着量を
The fiber bundle of Comparative Example 3 has low strand strength and strand elastic modulus. On the other hand, the fiber bundles of Examples 3 and 4 satisfied the specified values of the present invention and had excellent strand performance and cord RF L adhesion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐炎化装置の概略図、第2図は焼成炉の概略図
を示す。 図において各記号は次のとおりである。 A:耐炎化炉第1ゾーン B:耐炎化炉第2ゾーン C:耐炎化炉仕切壁 Rfll、Rfc:そレ−Fし供給ローフ −Rtp、
Rtc:それぞれ引取ローラー1:繊維、2:炉芯筒、
3:炉本体、4:断熱材、5:ヒーター、6:シール材
、7:不活性ガス供給口
FIG. 1 is a schematic diagram of the flameproofing device, and FIG. 2 is a schematic diagram of the firing furnace. In the figure, each symbol is as follows. A: Flameproofing furnace first zone B: Flameproofing furnace second zone C: Flameproofing furnace partition wall Rfll, Rfc: Sole-F supply loaf -Rtp,
Rtc: respectively take-up roller 1: fiber, 2: furnace core tube,
3: Furnace body, 4: Heat insulating material, 5: Heater, 6: Seal material, 7: Inert gas supply port

Claims (2)

【特許請求の範囲】[Claims] (1)炭素含有量が70〜90重量%であって、相対湿
度80%、温度20℃における飽和水分率が、少くとも
0.5重量%であり、且つストランド強度250kgf
/mm^2以上、ストランド弾性率18000kgf/
mm^2以上を有することを特徴とする炭素質繊維束。
(1) The carbon content is 70 to 90% by weight, the saturated moisture content at a relative humidity of 80% and a temperature of 20°C is at least 0.5% by weight, and the strand strength is 250kgf.
/mm^2 or more, strand elastic modulus 18000kgf/
A carbonaceous fiber bundle characterized by having a diameter of mm^2 or more.
(2)93重量%以上のアクリロニトリルから成るアク
リル系繊維から得た特許請求の範囲第1項記載の炭素質
繊維束。
(2) The carbonaceous fiber bundle according to claim 1, which is obtained from acrylic fibers containing 93% by weight or more of acrylonitrile.
JP23824784A 1984-11-14 1984-11-14 Bundle of water-absorbing carbon fiber of high performance Pending JPS61119717A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23824784A JPS61119717A (en) 1984-11-14 1984-11-14 Bundle of water-absorbing carbon fiber of high performance
GB08527828A GB2168966B (en) 1984-11-14 1985-11-12 High-strength carbonaceous fiber
US06/798,060 US4671950A (en) 1984-11-14 1985-11-14 High-strength carbonaceous fiber
FR858516867A FR2573095B1 (en) 1984-11-14 1985-11-14 HIGH RESISTANCE CARBON FIBER
DE19853540444 DE3540444A1 (en) 1984-11-14 1985-11-14 HIGH-STRENGTH CARBON FIBER AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23824784A JPS61119717A (en) 1984-11-14 1984-11-14 Bundle of water-absorbing carbon fiber of high performance

Publications (1)

Publication Number Publication Date
JPS61119717A true JPS61119717A (en) 1986-06-06

Family

ID=17027331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23824784A Pending JPS61119717A (en) 1984-11-14 1984-11-14 Bundle of water-absorbing carbon fiber of high performance

Country Status (1)

Country Link
JP (1) JPS61119717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298456A (en) * 1993-04-19 1994-10-25 Showa Denki Kk Rotating machine of winding drum for flexible, long-size material
JP2001278353A (en) * 2000-03-29 2001-10-10 Toho Tenax Co Ltd Carbon fiber packing body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234025A (en) * 1975-09-08 1977-03-15 Japan Exlan Co Ltd Process for producing carbon fibers having excellent performances
JPS5721521A (en) * 1980-07-14 1982-02-04 Mitsubishi Rayon Co Ltd Production of carbon fiber of high strength and elongation
JPS58136834A (en) * 1982-02-03 1983-08-15 Mitsubishi Rayon Co Ltd Production of carbon fiber of high performance
JPS599272A (en) * 1982-07-06 1984-01-18 東邦レーヨン株式会社 Acrylonitrile fiber and method
JPS59106521A (en) * 1982-12-08 1984-06-20 Toray Ind Inc Production of acrylic carbon yarn having improved physical properties
JPS59150116A (en) * 1983-02-10 1984-08-28 Mitsubishi Rayon Co Ltd Production of high-strength carbon fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234025A (en) * 1975-09-08 1977-03-15 Japan Exlan Co Ltd Process for producing carbon fibers having excellent performances
JPS5721521A (en) * 1980-07-14 1982-02-04 Mitsubishi Rayon Co Ltd Production of carbon fiber of high strength and elongation
JPS58136834A (en) * 1982-02-03 1983-08-15 Mitsubishi Rayon Co Ltd Production of carbon fiber of high performance
JPS599272A (en) * 1982-07-06 1984-01-18 東邦レーヨン株式会社 Acrylonitrile fiber and method
JPS59106521A (en) * 1982-12-08 1984-06-20 Toray Ind Inc Production of acrylic carbon yarn having improved physical properties
JPS59150116A (en) * 1983-02-10 1984-08-28 Mitsubishi Rayon Co Ltd Production of high-strength carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298456A (en) * 1993-04-19 1994-10-25 Showa Denki Kk Rotating machine of winding drum for flexible, long-size material
JP2001278353A (en) * 2000-03-29 2001-10-10 Toho Tenax Co Ltd Carbon fiber packing body

Similar Documents

Publication Publication Date Title
US3285696A (en) Method for the preparation of flexible carbon fibre
US3529934A (en) Process for the preparation of carbon fibers
US4904424A (en) Ceramic alloys from colloidal metal alloy suspensions
WO2009084390A1 (en) Processes for producing flameproof fiber and carbon fiber
GB2168966A (en) High-strength carbonaceous fiber
JPH02212370A (en) Composite material
GB1578094A (en) High purity carbon fibre and process for producing same
JPS61119717A (en) Bundle of water-absorbing carbon fiber of high performance
JP4141035B2 (en) Method for producing acrylonitrile fiber for carbon fiber production
CN107460738B (en) Preparation method of polyacrylonitrile oxidized fiber felt
US3708326A (en) Stabilization of acrylic fibers and films
JPS61119719A (en) Production of carbon fiber of high strength
JPS575923A (en) Preparation of carbon fiber
JPH0378414B2 (en)
JP3002698B2 (en) Manufacturing method of graphite fiber
JPH02264011A (en) Acrylic fiber for graphite fibers
US5502090A (en) High tenacity and high toughness acrylic sulfide fibers, a process for production thereof, and composite materials prepared by using it
JP3303424B2 (en) Method for producing acrylic carbon fiber
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
KR870000534B1 (en) Carbon fiber and it&#39;s making method
JPS59168128A (en) Production of acrylic flameproof fiber
JPS59168129A (en) Production of carbon fiber
JP3090868B2 (en) Carbon fiber bundle
JPS63162559A (en) Manufacture of carbon fiber reinforced hydraulic composite material
JPH03260109A (en) Gas phase grown carbon fiber-mixed organic fiber