JPH02212370A - Composite material - Google Patents

Composite material

Info

Publication number
JPH02212370A
JPH02212370A JP1227218A JP22721889A JPH02212370A JP H02212370 A JPH02212370 A JP H02212370A JP 1227218 A JP1227218 A JP 1227218A JP 22721889 A JP22721889 A JP 22721889A JP H02212370 A JPH02212370 A JP H02212370A
Authority
JP
Japan
Prior art keywords
composite material
carbon fibers
fine carbon
matrix
mechanical strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1227218A
Other languages
Japanese (ja)
Other versions
JPH0751464B2 (en
Inventor
Minoru Harada
稔 原田
Toshiaki Noda
野田 俊彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP1227218A priority Critical patent/JPH0751464B2/en
Publication of JPH02212370A publication Critical patent/JPH02212370A/en
Publication of JPH0751464B2 publication Critical patent/JPH0751464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To form a composite material having superior mechanical strength and heat resistance by dispersing specified vapor grown fine carbon fibers in a matrix. CONSTITUTION:This composite material is formed by dispersing vapor grown fine carbon fibers having 3.44-3.39Angstrom spacing (d) between graphite layers and obtd. by vapor growth in a matrix such as a metal, plastics or ceramics. The pref. diameter of the vapor grown carbon fibers is 0.01-1.0mum and the pref. aspect ratio is 100-200. The vapor grown carbon fibers have been preferably subjected to surface modification such as oxidation, CVD, sputtering or coupling treatment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複合材料の製造方法に関し、さらに詳しく言
うと、プラスチック、セラミック、金属、ゴム等のマト
リックス中に、充填材として特定の炭素繊維を分散して
なる複合材料の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing composite materials, and more specifically, the present invention relates to a method for manufacturing composite materials, and more specifically, the present invention relates to a method for manufacturing composite materials, and more specifically, the present invention relates to a method for manufacturing composite materials, and more specifically, to The present invention relates to a method for manufacturing a composite material obtained by dispersing.

[従来の技術 および発明が解決しようとする課題] 従来、炭素繊維をプラスチック、セラミック。[Conventional technology and the problem to be solved by the invention] Traditionally, carbon fiber is used as plastic and ceramic.

金属、ゴム等のマトリックス中に充填材として分散して
なる炭素繊維複合材料が種々の分野で利用されている。
BACKGROUND OF THE INVENTION Carbon fiber composite materials made by dispersing fillers in a matrix of metal, rubber, etc. are used in various fields.

このように種々の分野で炭素繊維複合材が使用されるの
は、前記マトリックス中に炭素繊維を分散させると、複
合材の機械的強度や耐熱性が改善されるからである。そ
して、近年に至っては、より一層機械的強度や耐熱性の
大きいものが求められている。
The reason why carbon fiber composite materials are used in such various fields is that when carbon fibers are dispersed in the matrix, the mechanical strength and heat resistance of the composite material are improved. In recent years, there has been a demand for materials with even greater mechanical strength and heat resistance.

ところで、高温炉内で、ベンゼン、メタン等の原料と水
素等のキャリヤーガスとの混合ガスを。
By the way, in a high-temperature furnace, a mixed gas of raw materials such as benzene and methane and a carrier gas such as hydrogen is mixed.

触媒になる鉄、ニッケル等を含む遷移金属化合物と共に
1,000〜1,300℃に加熱することによって気相
成長により製造される創生微細炭素繊M[VGCF  
(Vapor  Grown  Carbon   F
iber)]は、PAN形炭素繊維(ポリアクリロニト
リル系炭素Ia謔)よりも機械的特性に優れていること
が知られている。
Created fine carbon fiber M [VGCF] produced by vapor phase growth by heating to 1,000 to 1,300°C with a transition metal compound containing iron, nickel, etc. as a catalyst.
(Vapor Grown Carbon F
iber)] is known to have better mechanical properties than PAN type carbon fiber (polyacrylonitrile carbon Ia).

そこで、この創生微細炭素繊維を充填材としてマトリッ
クス中に分散することによる複合材料が考えられるので
あるが、このような複合材料は機械的強度が予想される
程十分ではなかった。。
Therefore, a composite material made by dispersing the generated fine carbon fibers in a matrix as a filler has been considered, but such a composite material did not have sufficient mechanical strength as expected. .

VGCFは黒鉛化以前の物質であり、結晶化が不完全で
あり、黒鉛層の面間隔dは3.47〜3.44λてあり
、VGCFの引張強度は2.5〜5 GPaであり1弾
性率は350〜450 GPaであるから、このVGC
Fを充填材とする複合材料は機械的強度を高めることが
できなかったものと推定される。
VGCF is a substance before graphitization and is incompletely crystallized, the interplanar spacing d of the graphite layers is 3.47 to 3.44λ, the tensile strength of VGCF is 2.5 to 5 GPa, and the elasticity is 1. Since the rate is 350-450 GPa, this VGC
It is presumed that the mechanical strength of the composite material containing F as a filler could not be increased.

このVGCFに対し、これをさらに2,800〜3.0
00℃に30分間以上かけて加熱することにより黒鉛化
されて得られるG W (G raphite W h
isker)を充填材とする複合材料が考えられる。
For this VGCF, add 2,800 to 3.0
G W (Graphite W h
isker) as a filler.

GWは黒鉛層の面間隔が3.36人程度にまで達する結
晶性の良好な物質であり、その引張強度は10〜20G
Paであり、弾性率は700〜800GPaである。
GW is a material with good crystallinity in which the interplanar spacing of graphite layers reaches approximately 3.36 mm, and its tensile strength is 10 to 20 G.
Pa, and the elastic modulus is 700 to 800 GPa.

したがって、このGWを充填材とする複合材料は大きな
機械的強度を有する優れた材料になるものと期待される
のであるが、実際上、期待する程の機械的強度を有する
ものは得られていない。
Therefore, it is expected that a composite material containing GW as a filler will be an excellent material with high mechanical strength, but in reality, no material with the expected mechanical strength has been obtained. .

発明者等の検討によると、GWはプラスチック、セラミ
ック、金属、ゴム等のマトリックスに対する濡れ性(あ
るいは、なじみ性)が不良てあり、機械的強度の向上を
妨げているものと推定される。
According to the inventors' studies, it is presumed that GW has poor wettability (or compatibility) with matrices such as plastics, ceramics, metals, and rubbers, which hinders improvement in mechanical strength.

そこで、このGWの表面を改質してマトリックスに対す
る濡れ性を改善することも考えられるのであるが、GW
は前述のように黒鉛化が高度に達成されていて結晶性が
良好であるから、その表面改質はきわめて困難である。
Therefore, it is possible to improve the wettability to the matrix by modifying the surface of this GW.
As mentioned above, since graphitization has been achieved to a high degree and the crystallinity is good, it is extremely difficult to modify its surface.

以上に詳述のように、VGCFを充填材として使用する
と、その機械的強度の弱さの故にその複合材料の強度か
高まらず、また、VGCFの表面を改質したとしても機
械的強度の向上に限度があり、他方、GWを充填材にし
てもその濡れ性の悪さの故に、たとえGWの機械的強度
か優れていたとしても、その複合材料の機械的強度の向
上が達成されなかったのである。
As detailed above, when VGCF is used as a filler, the strength of the composite material cannot be increased due to its weak mechanical strength, and even if the surface of VGCF is modified, the mechanical strength cannot be improved. On the other hand, even if GW was used as a filler, due to its poor wettability, even if the mechanical strength of GW was excellent, the mechanical strength of the composite material could not be improved. be.

この発明は前記事情に基すいてなされたものである。This invention has been made based on the above circumstances.

すなわち、この発明の目的は、特定の創生微細炭素繊維
を充填材として配合することによる機械的強度の大きな
複合材料を提供することにある。
That is, an object of the present invention is to provide a composite material with high mechanical strength by blending specific created fine carbon fibers as a filler.

[前記課題を解決するための手段] 前記fi11を解決するためのこの発明は、黒鉛層の面
間隔dが3.44〜3.3g人の範囲内にある気相成長
による創生微細炭素繊維をマトリックス中に分散してな
ることを特徴とする複合材料である。
[Means for Solving the Problems] This invention for solving the above fi11 uses fine carbon fibers created by vapor phase growth in which the interplanar spacing d of the graphite layers is within the range of 3.44 to 3.3 g. It is a composite material characterized by being made by dispersing in a matrix.

この発明で重要なことは、創生微細炭素繊維の黒鉛層の
面間隔dが3.44〜3゜39人の範囲内にあることで
ある。このような特定の面間隔dを有する創生微細炭素
繊維をマトリックス中に配合することにより、得られる
複合材料は従来のVGCFやGWの配合では達成されな
かった優れた機械的強度および耐熱性を有するに至る。
What is important in this invention is that the interplanar spacing d of the graphite layers of the created fine carbon fibers is within the range of 3.44 to 3.39 degrees. By blending the created fine carbon fibers with such a specific interplanar spacing d into the matrix, the resulting composite material has excellent mechanical strength and heat resistance that could not be achieved with conventional VGCF or GW blends. It comes to have.

換言すると、面間隔が3.44人よりも大きな創生微細
炭素繊維であると、従来と同様に創生微細炭素繊維の機
械的強度が小さくてこれを充填材として配合する複合材
料の機械的強度および耐熱性の向上を達成することがで
きず、また、面間隔dが3.39人よりも小さな創生微
細炭素繊維を使用すると結晶化が大き過ぎてマトリック
スとの濡れ性に劣り、したがってこれを配合する複合材
料の機械的強度および耐熱性の向上を図ることができな
い。
In other words, if the created fine carbon fiber has a surface spacing larger than 3.44, the mechanical strength of the created fine carbon fiber will be low as in the past, and the mechanical strength of the composite material containing it as a filler will be lower. It is not possible to achieve improvement in strength and heat resistance, and when using engineered fine carbon fibers with a spacing d smaller than 3.39, the crystallization is too large and the wettability with the matrix is poor. It is not possible to improve the mechanical strength and heat resistance of a composite material containing this.

この発明に使用する創生微細炭素繊維は、その直径が0
.01〜1.0pmであり、アスペクト比が100〜2
00であるものが好ましい、直径が0.月経mよりも小
さいとマトリックス中での創生微細炭素繊維の分散が困
難になる不都合があり、また1、0pmよりも大きいと
複合化の段階でマトリックスとの間の歪が大きくなるこ
とがあると言う不都合がある。また、アスペクト比が1
00よりも小さいと創生微細炭素繊維とマトリックスと
の相互間の結合力が不充分になり、また、アスペクト比
が200よりも大きいとマトリックス中に創生微細炭素
繊維を分散する際に創生微細炭素繊維が凝集するので均
一な分散が困難になる。
The created fine carbon fiber used in this invention has a diameter of 0.
.. 01 to 1.0 pm, and the aspect ratio is 100 to 2.
The diameter is preferably 0.00. If it is smaller than m, there is a disadvantage that it becomes difficult to disperse the created fine carbon fibers in the matrix, and if it is larger than 1.0 pm, the strain between the fiber and the matrix may become large during the compositing stage. There is an inconvenience. Also, the aspect ratio is 1
If the aspect ratio is smaller than 00, the mutual bonding force between the created fine carbon fibers and the matrix will be insufficient, and if the aspect ratio is larger than 200, the created fine carbon fibers will not be bonded properly when dispersed in the matrix. Fine carbon fibers aggregate, making uniform dispersion difficult.

以上の本発明に関わる創生微細炭素繊維は、次のように
して製造することができる。
The above-described fine carbon fibers related to the present invention can be produced as follows.

すなわち、高温炉内で、ベンゼン、メタン等の原料と水
素等のキャリヤーガスとの混合ガスを触媒になる鉄、ニ
ッケル等を含む有機繊維金属化合物とともに1,000
〜1,300℃に加熱することにより得られる粗創生微
細炭素繊維を、さらに1,800〜2 、500℃に、
好ましくは2,100〜2 、500℃に約30分以上
、好ましくは40〜50分かけて黒鉛化することにより
製造することができる。
That is, in a high-temperature furnace, a mixed gas of raw materials such as benzene and methane and a carrier gas such as hydrogen is mixed with an organic fiber metal compound containing iron, nickel, etc. as a catalyst at a temperature of 1,000 yen.
The crude fine carbon fiber obtained by heating to ~1,300°C is further heated to 1,800~2,500°C,
Preferably, it can be produced by graphitizing at 2,100 to 2,500°C for about 30 minutes or more, preferably 40 to 50 minutes.

この発明におけるマトリックスとしては、たとえばナイ
ロン、ポリフェニレン−スルフィド、ポリブチレンテレ
フタレート、ポリエステル、ポリプロピイレン、ポリブ
テン、ポリスチレン、ポリアセタール、ポリ塩化ビニル
等の熱可塑性樹脂およびエポキシ樹脂、不飽和ポリエス
テル樹脂、四フッ化樹脂、フェノール樹脂、尿素ホルマ
リン樹脂等の熱硬化性樹脂等のプラスチック、アルミナ
、窒化ケイ素、炭化ケイ素、二酸化ケイ素、二酸化ジル
コニウム等のセラミックス、アルミニウム、ニッケル、
チタン、銅、鉄等の金属、ならびにポリブタジェン、ポ
リイソプレン、天然ゴム。
Examples of matrices used in the present invention include thermoplastic resins such as nylon, polyphenylene sulfide, polybutylene terephthalate, polyester, polypropylene, polybutene, polystyrene, polyacetal, and polyvinyl chloride, as well as epoxy resins, unsaturated polyester resins, and tetrafluoride resins. , plastics such as thermosetting resins such as phenolic resins and urea-formalin resins, ceramics such as alumina, silicon nitride, silicon carbide, silicon dioxide, and zirconium dioxide, aluminum, nickel,
Metals such as titanium, copper, and iron, as well as polybutadiene, polyisoprene, and natural rubber.

スチレンゴム等のゴムを挙げることができる。いずれの
マトリックスが好ましいかは、複合材料の用途により相
違して1概に決定することができないが、プラスチック
については、エポキシ樹脂。
Rubbers such as styrene rubber can be mentioned. Which matrix is preferable cannot be determined as it depends on the use of the composite material, but for plastics, epoxy resin is preferred.

ナイロン等、セラミックスについては窒化ケイ素、金属
についてはアルミニウムが好ましい。
Silicon nitride is preferred for ceramics such as nylon, and aluminum is preferred for metals.

創生微細炭素繊維のマトリックスに対する配合量は、通
常、体積割合で5〜30%、好ましくは10〜25%で
ある0体積割合が5%よりも少ないと複合材の機械的強
度等の向上を図るのが困難になり、また30%よりも多
いと均一な分散がきわめて難しくなる。
The amount of created fine carbon fibers added to the matrix is usually 5 to 30% by volume, preferably 10 to 25%. If the zero volume ratio is less than 5%, the mechanical strength etc. of the composite material can be improved. If the amount exceeds 30%, uniform dispersion becomes extremely difficult.

なお、マトリックスに配合される創生微細炭素繊維は、
前記製造方法により製造された創生微細炭素繊維をその
ままて使用することができるのであるが、さらにその表
面改質処理をしてから使用するのが好ましい。
In addition, the created fine carbon fibers blended into the matrix are
Although the created fine carbon fibers produced by the above-mentioned production method can be used as they are, it is preferable to use them after further surface modification treatment.

表面改質処理をすることにより、創生微細炭素のマトリ
ックスに対する濡れ性を向上させることができるからで
ある。
This is because the surface modification treatment can improve the wettability of the created fine carbon to the matrix.

表面改質処理の方法は、マトリックスの種類に応じてそ
の適宜に選択される。
The surface modification treatment method is appropriately selected depending on the type of matrix.

たとえば、マトリクスがプラスチックである場合1表面
改質処理として、酸化処理、CVD処理、スパッタリン
グ処理、カップリング処理などにより創生微細炭素繊維
の表面に適当な官能基あるいは蒸着金属を付与する方法
を挙げることがてきる。
For example, when the matrix is plastic, surface modification treatment includes methods of imparting appropriate functional groups or vapor-deposited metals to the surface of the created fine carbon fibers by oxidation treatment, CVD treatment, sputtering treatment, coupling treatment, etc. Something will happen.

このように表面改質処理をした創生微細炭素繊維を充填
材とする複合材料は、マトリックスの強度の1.5〜2
.5倍の強度を有するに至る0表面改質処理を施した復
来のVGCFを充填材とする複合材料は、そのマトリッ
クスの強度に対して1.2〜1.50程度の機械的強度
の向上しか見られないこと、あるいは、表面改質処理を
施した従来のGWを充填材とする複合材料は、そのマト
リックスの強度に対して1.1−’1.4倍程度0機械
的強度の向上しか認められないことに鑑みると、特定の
面間隔を有する特定の創生微細炭素繊維を充填材として
配合することにより得られる効果は驚くべきことである
Composite materials using surface-modified fine carbon fibers as fillers have a strength of 1.5 to 2 times the strength of the matrix.
.. Composite materials that use conventional VGCF as filler, which has been subjected to zero surface modification treatment to have 5 times the strength, have an improvement in mechanical strength of about 1.2 to 1.50 compared to the strength of the matrix. However, the mechanical strength of composite materials using conventional GW as a filler that has undergone surface modification treatment is approximately 1.1 to 1.4 times higher than that of the matrix. In view of the fact that only a certain number of carbon fibers have been observed, it is surprising that the effect obtained by blending a specific created fine carbon fiber having a specific interplanar spacing as a filler is surprising.

次にこの発明の具体的実施例を示してこの発明をさらに
詳述する。
Next, the present invention will be explained in further detail by showing specific examples of the present invention.

[実施例] (実施例1) 直径が0.6 p−mで平均長さが72pmである創生
微細炭素繊維(VGCF)をアルゴン雰囲気中でt、a
oo℃、 2 、000℃、2 、200℃にてそれぞ
れ40分間かけて黒鉛化処理し、その後、リフラックス
濃硝酸で10時間にわたる表面処理をした。
[Example] (Example 1) Created fine carbon fiber (VGCF) with a diameter of 0.6 pm and an average length of 72 pm was heated for t, a in an argon atmosphere.
Graphitization treatment was performed at 0°C, 2,000°C, and 2,200°C for 40 minutes, and then surface treatment was performed with reflux concentrated nitric acid for 10 hours.

次に、100重量部のエポキシ樹脂[LY−556。Next, 100 parts by weight of epoxy resin [LY-556].

チバガイギー社製]、90重量部の硬化剤[HY−91
7J]および2重量部の硬化促進剤よりなる混合物をプ
ラスチックマトリックスとし、これに体積割合が12.
5%になるように表面処理済みの創生微細炭素繊維を加
え、圧力50kg/cm”で温度120℃に加熱しなが
ら2時間、次いで、150℃に加熱しながら2時間の条
件で硬化させることにより、複合材料を得た。
manufactured by Ciba Geigy], 90 parts by weight of curing agent [HY-91
7J] and 2 parts by weight of a curing accelerator to form a plastic matrix in a volume proportion of 12.
5% surface-treated synthetic fine carbon fibers, and cured under the conditions of 2 hours while heating to 120°C under a pressure of 50kg/cm'', and 2 hours while heating to 150°C. A composite material was obtained.

この複合材料につき、JIS  に7208に準拠した
圧縮試験を行なった。
This composite material was subjected to a compression test in accordance with JIS 7208.

第1表に圧縮試験結果および前記創生微細炭素繊維の面
間隔dを示した。
Table 1 shows the compression test results and the interplanar spacing d of the created fine carbon fibers.

(比較例1) 直径が0.6pmで平均長さが72μmである創生微細
炭素績# (VGCF)をアルゴン雰囲気中で2.50
0℃および2,900℃にて40分間かけて黒鉛化処理
することにより得られた創生微細炭素繊維を、前記実施
例1と同様に処理することにより、複合材料を製造した
(Comparative Example 1) A fine carbon fiber # (VGCF) with a diameter of 0.6 pm and an average length of 72 μm was heated at 2.50 μm in an argon atmosphere.
A composite material was produced by treating the generated fine carbon fibers obtained by graphitizing them at 0° C. and 2,900° C. for 40 minutes in the same manner as in Example 1 above.

この複合材料につき前記実施例1と同様にして評価し、
その結果を第1表に示した。
This composite material was evaluated in the same manner as in Example 1,
The results are shown in Table 1.

(比較例2) 直径が0.6pmで平均長さが72μmである創生微細
炭素績#(VGCF)を熱処理することなく前記実施例
1と同様に実施し゛C複合材料を製造した。
(Comparative Example 2) A VGCF composite material having a diameter of 0.6 pm and an average length of 72 μm was prepared in the same manner as in Example 1 without heat treatment.

この複合材料につき前記実施例1と同様にして評価し、
その結果を第1表に示した。
This composite material was evaluated in the same manner as in Example 1,
The results are shown in Table 1.

(実施例2) 直径か0.6 gmで平均長さが75μmである創生微
細炭素績fi(VGCF)をアルゴン雰囲気中で2.1
00℃にてそれぞれ40分間かけて黒鉛化処理し、その
後、酸素プラズマにより10分間にわたる表面処理をし
た。
(Example 2) A fine carbon fiber (VGCF) having a diameter of 0.6 gm and an average length of 75 μm was prepared in an argon atmosphere for 2.1 gm.
Graphitization treatment was performed at 00° C. for 40 minutes, and then surface treatment was performed using oxygen plasma for 10 minutes.

次に、100重量部のエポキシ樹脂[LY−556。Next, 100 parts by weight of epoxy resin [LY-556].

チバガイギー社製]、90重量部の硬化剤[HY−91
7J]および2重量部の硬化促進剤よりなる混合物をプ
ラスチックマトリックスとし、これに体積割合が15%
になるように表面処理済みの創生微細炭素繊維を加え、
圧力50kg/cm”で温度120℃に加熱しながら2
時間、次いで、150℃に加熱しながら2時間の条件で
硬化させることにより、複合材料を得た。
manufactured by Ciba Geigy], 90 parts by weight of curing agent [HY-91
7J] and 2 parts by weight of a curing accelerator as a plastic matrix, with a volume ratio of 15%.
Adding Sosei fine carbon fibers that have been surface-treated so that
2 while heating to a temperature of 120℃ at a pressure of 50kg/cm''.
A composite material was obtained by curing for 2 hours while heating at 150°C.

この複合材料につき、JIS  K7208に準拠した
圧縮試験を行なった。
This composite material was subjected to a compression test in accordance with JIS K7208.

第2表に圧縮試験結果および前記創生微細炭素繊維の面
間隔dを示した。
Table 2 shows the compression test results and the interplanar spacing d of the created fine carbon fibers.

(比較例3) 直径か1.5 )hmで平均長さが90pmである創生
機、細炭素繊、$9(VGCF)と、プラスチックマト
リクとして、100重量部のエポキシ樹脂[LY−55
6]、90重量部の硬化剤[+1Y−917J ]より
なる混合物とを、前記創生微細炭素繊維の体積割合が1
5%になるように、配合し、 50kg/cm”の圧力
をかけながら2時間かけて120℃に加熱し、その後、
同じ圧力の下に2時間かけて150℃に加熱することに
より、硬化処理を行ない、複合材料を得た。
(Comparative Example 3) A generator, fine carbon fiber, $9 (VGCF) with a diameter of 1.5) hm and an average length of 90 pm, and 100 parts by weight of epoxy resin [LY-55] as a plastic matrix.
6], a mixture consisting of 90 parts by weight of a hardening agent [+1Y-917J], and the volume ratio of the created fine carbon fibers is 1.
5%, heated to 120℃ for 2 hours while applying a pressure of 50kg/cm'', and then
A curing treatment was performed by heating to 150° C. for 2 hours under the same pressure to obtain a composite material.

この複合材料につき、前記実施例1と同様にして圧縮試
験を行ない、その試験結果を第2表に示した。
This composite material was subjected to a compression test in the same manner as in Example 1, and the test results are shown in Table 2.

(比較例4) 直径が0.05μmで平均長さが20pmである創生微
細炭素繊維(VGCF)を用いて前記比較例3と同様に
実施した。
(Comparative Example 4) The same procedure as in Comparative Example 3 was conducted using a created fine carbon fiber (VGCF) having a diameter of 0.05 μm and an average length of 20 pm.

結果を第2表に示した。The results are shown in Table 2.

(実施例3) 直径が0.34mで平均長さが541Lmである創生微
細炭素繊維(VGCF’)をアルゴンガス雰囲気中で2
,100℃にて30分間かけて黒鉛化処理し、その後、
酸素プラズマにより10分間にわたる表面処理およびそ
の後のシランカップリング剤[にDト403、信越シリ
コーン(株)製]による表面処理をした。
(Example 3) Created fine carbon fibers (VGCF') with a diameter of 0.34 m and an average length of 541 Lm were grown for 2 hours in an argon gas atmosphere.
, graphitized at 100°C for 30 minutes, and then
The surface was treated with oxygen plasma for 10 minutes, and then with a silane coupling agent [D403, manufactured by Shin-Etsu Silicone Co., Ltd.].

次に、100重量部のエポキシ樹脂[LY−556。Next, 100 parts by weight of epoxy resin [LY-556].

チバガイギー社製]、90重量部の硬化剤[HY−91
7J]および2重量部の硬化促進剤[DY−062]よ
りなる混合物をプラスチックマトリックスとし、これに
体積割合が15%になるように表面処理済みの創生微細
炭素繊維を加え、圧力50kg/cs2で温度120℃
に加熱しながら2時間、次いで、150°Cに加熱しな
がら2時間の条件で硬化させることにより、複合材料を
得た。
manufactured by Ciba Geigy], 90 parts by weight of curing agent [HY-91
7J] and 2 parts by weight of a curing accelerator [DY-062] was used as a plastic matrix, surface-treated created fine carbon fibers were added to this so that the volume ratio was 15%, and the mixture was heated at a pressure of 50 kg/cs2. at a temperature of 120℃
A composite material was obtained by curing for 2 hours while heating to 150°C and then for 2 hours while heating to 150°C.

この複合材料につき、前記実施例1と同様にして圧縮試
験を行なったと”ころ、圧縮強度が35.2kg/cm
”l’あり、圧縮弾性率が780kg/cm” ”t’
あった。また、層面間隔dは3.40人であった。
When this composite material was subjected to a compression test in the same manner as in Example 1, the compressive strength was 35.2 kg/cm.
"l", compression modulus is 780kg/cm""t"
there were. Further, the interlayer spacing d was 3.40 people.

(実施例4) 直径が0.3pmで平均長さが407zmである創生微
細炭素繊維をアルゴン雰囲気中で2,200°Cにて4
0分間かけて黒鉛化処理し1面間隔3.39人のグラフ
ァイトウィスカーを得た。このグラファイトウィスカー
(20容量%)をSi:+ N4  (313N、:A
文、03:Y、O:l:90: 3 : 7)中に分散
させホットプレス(富士電波工業■製)にて、窒素雰囲
気(l kg/cm”)中で、圧力250kg/cs”
、 1,800℃の条件で10分間焼結した。その後、
HIP(日機装製)にて、圧力1800kg/cm2(
窒素雰囲気) 、 1,750℃で30分間かけて再焼
結を行ない、ウィスカー強化セラミックスを得た。
(Example 4) Created fine carbon fibers with a diameter of 0.3 pm and an average length of 407 zm were heated at 2,200°C in an argon atmosphere.
Graphitization treatment was carried out for 0 minutes to obtain graphite whiskers with an interplanar spacing of 3.39 whiskers. This graphite whisker (20% by volume) was mixed with Si:+N4 (313N, :A
Text, 03:Y, O:l:90:3:7) and heated in a hot press (manufactured by Fuji Denpa Kogyo ■) in a nitrogen atmosphere (l kg/cm") at a pressure of 250 kg/cs".
, and sintered for 10 minutes at 1,800°C. after that,
At HIP (manufactured by Nikkiso), pressure 1800 kg/cm2 (
Re-sintering was performed at 1,750° C. for 30 minutes (in a nitrogen atmosphere) to obtain whisker-reinforced ceramics.

得られた強化セラミックスを用いて、輻4mm、厚み3
mm、長さ40mmの試料を作成し、曲げ試験及び靭性
の測定を行なったところ曲げ強さ;  112 kgf
/膳鵬2靭性値 ;  7.:l MParm であった。
Using the obtained reinforced ceramics, the diameter is 4 mm and the thickness is 3.
A sample with a length of 40 mm was made, and a bending test and toughness measurement were performed, and the bending strength was 112 kgf.
/ Zenho 2 toughness value; 7. :l MParm.

(比較例5) 直径が0.34mで平均長さが40JLmであり面間隔
が3.46人である創生微細炭素繊維を用いたほかは実
施例3と同様に実施したところ。
(Comparative Example 5) The same procedure as in Example 3 was carried out except that created fine carbon fibers having a diameter of 0.34 m, an average length of 40 JLm, and a face spacing of 3.46 were used.

曲げ強さ;  88 kgf/鳳s” 靭性値 ;  5.8 MParm を得た。Bending strength: 88 kgf/s” Toughness value: 5.8 MParm I got it.

(実施例5) 直径が0.8uLmで平均長さか90μmである創生微
細炭素繊維をアルゴン雰囲気中で2,200℃にて40
分間かけて黒鉛化処理し、面間隔3.39人のグラファ
イトウィスカーを得た。その後、アーク式イオンブレー
ティング装置を用いて5 X 10−’torrのアル
ゴン圧力下で30分間表面更新を行ないながらグラファ
イトウィスカー表面にTi被膜を形成した。このように
して得られたチタン被膜グラファイトウィスカー(25
容量%)をアルミニウム溶湯中(750〜800℃)に
分散させてクラファイトウィスカー強化アルミニウムを
得た。得られた強化アルミニウムで輻10mm、厚み2
mm、長さ150mmの試料片を作成し、その引張り強
さを測定したところ平均55 kgf/−■2であった
(Example 5) Created fine carbon fibers with a diameter of 0.8 uLm and an average length of 90 μm were heated at 2,200°C in an argon atmosphere for 40 minutes.
Graphitization treatment was carried out for a minute to obtain graphite whiskers with an interplanar spacing of 3.39 people. Thereafter, a Ti film was formed on the graphite whisker surface while surface renewal was performed for 30 minutes under an argon pressure of 5×10-'torr using an arc type ion blating device. Titanium-coated graphite whiskers (25
% by volume) in molten aluminum (750-800°C) to obtain graphite whisker-reinforced aluminum. The resulting reinforced aluminum has a radius of 10 mm and a thickness of 2.
A sample piece with a length of 150 mm was prepared and its tensile strength was measured, and the average tensile strength was 55 kgf/-2.

(比較例6) 直径が0.8g mて平均長さか90uLmであり面間
隔が3.46人である創生微細炭素繊!9(VGCF)
を用いたほかは実施例4と同様に実施したところ引張り
強さは平均48 kgf/■鳳2であった。
(Comparative Example 6) Souvenir fine carbon fiber with a diameter of 0.8gm, average length of 90uLm, and interplanar spacing of 3.46mm! 9 (VGCF)
The test was conducted in the same manner as in Example 4, except that the average tensile strength was 48 kgf/2.

[発明の効果] 本発明によると、特定の面間隔を有する特定の創生微細
炭素繊維を充填材として配合することにより、機械的強
度の大きな複合材料を提供することができる。
[Effects of the Invention] According to the present invention, a composite material with high mechanical strength can be provided by blending specific created fine carbon fibers having a specific interplanar spacing as a filler.

Claims (4)

【特許請求の範囲】[Claims] (1) 黒鉛層の面間隔dが3.44〜3.39Åの範
囲内にある気相成長による創生微細炭素繊維をマトリッ
クス中に分散してなることを特徴とする複合材料。
(1) A composite material characterized in that fine carbon fibers produced by vapor phase growth are dispersed in a matrix, and the interplanar spacing d of the graphite layers is within the range of 3.44 to 3.39 Å.
(2) 前記創生微細炭素繊維の直径が0.01〜1.
0μmであり、アスペクト比が100〜200である前
記請求項1に記載の複合材料。
(2) The diameter of the created fine carbon fiber is 0.01 to 1.
The composite material according to claim 1, having a diameter of 0 μm and an aspect ratio of 100 to 200.
(3) 前記創生微細炭素繊維は表面改質されてなる前
記請求項1に記載の複合材料。
(3) The composite material according to claim 1, wherein the generated fine carbon fibers are surface-modified.
(4) 前記マトリックスがプラスチック、セラミック
ス、および金属よりなる群から選択されるいずれか一種
である前記請求項1に記載の複合材料。
(4) The composite material according to claim 1, wherein the matrix is one selected from the group consisting of plastics, ceramics, and metals.
JP1227218A 1988-09-02 1989-09-01 Composite material Expired - Lifetime JPH0751464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227218A JPH0751464B2 (en) 1988-09-02 1989-09-01 Composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-219722 1988-09-02
JP21972288 1988-09-02
JP1227218A JPH0751464B2 (en) 1988-09-02 1989-09-01 Composite material

Publications (2)

Publication Number Publication Date
JPH02212370A true JPH02212370A (en) 1990-08-23
JPH0751464B2 JPH0751464B2 (en) 1995-06-05

Family

ID=26523298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227218A Expired - Lifetime JPH0751464B2 (en) 1988-09-02 1989-09-01 Composite material

Country Status (1)

Country Link
JP (1) JPH0751464B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276839A (en) * 1989-04-19 1990-11-13 Japan Synthetic Rubber Co Ltd Thermoplastic elastomer composition
JPH02300263A (en) * 1989-05-16 1990-12-12 Hokushin Ind Inc Polymer material
JPH04149242A (en) * 1990-10-12 1992-05-22 Kitagawa Ind Co Ltd Carrying material for food
JPH04149241A (en) * 1990-10-12 1992-05-22 Kitagawa Ind Co Ltd Film for food packaging
JPH04224852A (en) * 1990-12-27 1992-08-14 Daikin Ind Ltd Molten fluororesin composition
GB2354775A (en) * 1999-09-30 2001-04-04 Yazaki Corp Composite material with carbon fibres in metal matrix
GB2363615A (en) * 1999-09-30 2002-01-02 Yazaki Corp Composite material with epitaxial carbon fibres in a metal matrix
WO2003050181A1 (en) * 2001-09-14 2003-06-19 Bridgestone Corporation Elastomer composition
WO2003097736A1 (en) * 2002-05-16 2003-11-27 Bridgestone Corporation Rubber composition
WO2005023937A1 (en) * 2003-09-02 2005-03-17 Showa Denko K.K. Electrically conducting polymer and production method and use thereof
JP2005097534A (en) * 2003-07-23 2005-04-14 Nissin Kogyo Co Ltd Carbon fiber composite material and its producing method, carbon fiber composite formed article and its producing method, carbon fiber-metal composite material and its producing method, and carbon fiber-metal composite formed article and its prducing method
JP2005179519A (en) * 2003-12-19 2005-07-07 Nissin Kogyo Co Ltd Composite material of carbon fiber and method for producing the same, composite molded product of carbon fiber and method for producing the same, composite metallic material of carbon fiber and method for producing the same, and composite metallic molded product of carbon fiber and method for producing the same
JP2005179120A (en) * 2003-12-19 2005-07-07 Nissin Kogyo Co Ltd Carbon fiber composite material and its manufacturing method, carbon fiber composite metallic material and its manufacturing method
JP2005200594A (en) * 2004-01-19 2005-07-28 Nissin Kogyo Co Ltd Carbon fiber composite material and manufacturing method thereof, carbon fiber composite molded article and manufacturing method thereof, carbon fiber composite metal material and manufacturing method thereof, as well as, carbon fiber composite metal molded article and manufacturing method thereof
JP2006291229A (en) * 2006-08-07 2006-10-26 Nissin Kogyo Co Ltd Carbon fiber composite metal material and its production method, carbon fiber composite metal formed article and its production method
JP2006348305A (en) * 2006-08-07 2006-12-28 Nissin Kogyo Co Ltd Carbon fiber-metal composite material and method for producing the same, molded article of carbon fiber-metal composite material, and method for producing the same
US7438970B2 (en) 2004-05-24 2008-10-21 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same, carbon fiber-metal composite material and method of producing the same, and carbon fiber-nonmetal composite material and method of producing the same
WO2011129024A1 (en) * 2010-04-14 2011-10-20 高橋 玄策 Electroconductive thermoplastic resin
US8377547B2 (en) 2004-07-16 2013-02-19 Nissin Kogyo Co., Ltd. Carbon fiber-metal composite material and method of producing the same
WO2023286801A1 (en) * 2021-07-15 2023-01-19 Agc株式会社 Resin composition, method for producing resin composition, and molded article

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276839A (en) * 1989-04-19 1990-11-13 Japan Synthetic Rubber Co Ltd Thermoplastic elastomer composition
JPH02300263A (en) * 1989-05-16 1990-12-12 Hokushin Ind Inc Polymer material
JPH04149242A (en) * 1990-10-12 1992-05-22 Kitagawa Ind Co Ltd Carrying material for food
JPH04149241A (en) * 1990-10-12 1992-05-22 Kitagawa Ind Co Ltd Film for food packaging
JP2921957B2 (en) * 1990-10-12 1999-07-19 北川工業株式会社 Food packaging film
JPH04224852A (en) * 1990-12-27 1992-08-14 Daikin Ind Ltd Molten fluororesin composition
US6406790B1 (en) 1999-09-30 2002-06-18 Yazaki Corporation Composite material and manufacturing method therefor
GB2354775A (en) * 1999-09-30 2001-04-04 Yazaki Corp Composite material with carbon fibres in metal matrix
GB2363615B (en) * 1999-09-30 2002-05-29 Yazaki Corp Composite material and manufacturing method therefor
GB2354775B (en) * 1999-09-30 2002-06-12 Yazaki Corp Composite material and manufacturing method therefor
GB2363615A (en) * 1999-09-30 2002-01-02 Yazaki Corp Composite material with epitaxial carbon fibres in a metal matrix
DE10048203B4 (en) * 1999-09-30 2006-04-13 Yazaki Corp. Composite material and process for its production
WO2003050181A1 (en) * 2001-09-14 2003-06-19 Bridgestone Corporation Elastomer composition
WO2003097736A1 (en) * 2002-05-16 2003-11-27 Bridgestone Corporation Rubber composition
JP2005097534A (en) * 2003-07-23 2005-04-14 Nissin Kogyo Co Ltd Carbon fiber composite material and its producing method, carbon fiber composite formed article and its producing method, carbon fiber-metal composite material and its producing method, and carbon fiber-metal composite formed article and its prducing method
US8053506B2 (en) 2003-07-23 2011-11-08 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same, formed product of carbon fiber composite and method of producing the same, carbon fiber-metal composite material and method of producing the same, and formed product of carbon fiber-metal composite and method of producing the same
EP1660589A4 (en) * 2003-09-02 2007-07-04 Showa Denko Kk Electrically conducting polymer and production method and use thereof
US7569161B2 (en) 2003-09-02 2009-08-04 Showa Denko K.K. Electrically conducting polymer and production method and use thereof
WO2005023937A1 (en) * 2003-09-02 2005-03-17 Showa Denko K.K. Electrically conducting polymer and production method and use thereof
EP1660589A1 (en) * 2003-09-02 2006-05-31 Showa Denko K.K. Electrically conducting polymer and production method and use thereof
KR100795876B1 (en) * 2003-09-02 2008-01-21 쇼와 덴코 가부시키가이샤 Electrically conducting polymer and production method and use thereof
JP2005179120A (en) * 2003-12-19 2005-07-07 Nissin Kogyo Co Ltd Carbon fiber composite material and its manufacturing method, carbon fiber composite metallic material and its manufacturing method
JP2005179519A (en) * 2003-12-19 2005-07-07 Nissin Kogyo Co Ltd Composite material of carbon fiber and method for producing the same, composite molded product of carbon fiber and method for producing the same, composite metallic material of carbon fiber and method for producing the same, and composite metallic molded product of carbon fiber and method for producing the same
JP2005200594A (en) * 2004-01-19 2005-07-28 Nissin Kogyo Co Ltd Carbon fiber composite material and manufacturing method thereof, carbon fiber composite molded article and manufacturing method thereof, carbon fiber composite metal material and manufacturing method thereof, as well as, carbon fiber composite metal molded article and manufacturing method thereof
US7438970B2 (en) 2004-05-24 2008-10-21 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same, carbon fiber-metal composite material and method of producing the same, and carbon fiber-nonmetal composite material and method of producing the same
US8377547B2 (en) 2004-07-16 2013-02-19 Nissin Kogyo Co., Ltd. Carbon fiber-metal composite material and method of producing the same
JP2006348305A (en) * 2006-08-07 2006-12-28 Nissin Kogyo Co Ltd Carbon fiber-metal composite material and method for producing the same, molded article of carbon fiber-metal composite material, and method for producing the same
JP2006291229A (en) * 2006-08-07 2006-10-26 Nissin Kogyo Co Ltd Carbon fiber composite metal material and its production method, carbon fiber composite metal formed article and its production method
JP4550782B2 (en) * 2006-08-07 2010-09-22 日信工業株式会社 Method for producing carbon fiber composite metal material, method for producing carbon fiber composite metal molded product
JP4550783B2 (en) * 2006-08-07 2010-09-22 日信工業株式会社 Method for producing carbon fiber composite metal material, method for producing carbon fiber composite metal molded product
WO2011129024A1 (en) * 2010-04-14 2011-10-20 高橋 玄策 Electroconductive thermoplastic resin
JP5250154B2 (en) * 2010-04-14 2013-07-31 高橋 玄策 Conductive thermoplastic resin composition
WO2023286801A1 (en) * 2021-07-15 2023-01-19 Agc株式会社 Resin composition, method for producing resin composition, and molded article

Also Published As

Publication number Publication date
JPH0751464B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JPH02212370A (en) Composite material
US4904424A (en) Ceramic alloys from colloidal metal alloy suspensions
US5707471A (en) Method for making ceramic matrix composites
JP2000169249A (en) Ceramic composite material
JP5944619B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
JP5944618B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
WO2002081405A1 (en) Method for producing sic fiber-reinforced sic composite material by means of hot press
JPH0536521B2 (en)
JP3605133B2 (en) Carbide material coated with diamond-like carbon film functionally graded to substrate and method for producing the same
JPH062269A (en) Method for coating carbon fiber and composite material
JP3279134B2 (en) High heat resistant ceramic fiber and method for producing the same
CN100430341C (en) Method for producing a precursor ceramic
WO1989004884A1 (en) Ceramic fibers and process for their production
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JPH09241929A (en) Hollow inorganic fiber and production of the same
JPS60215816A (en) Carbon microfiber by vapor phase method
JPS61268441A (en) Composite material of generated fine carbon fiber
JP4208217B2 (en) Method for producing oxidation-resistant C / C composite material
JPH10167832A (en) Production of filament reinforced silicon carbide composition material
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JPH0952777A (en) Production of oxidation resistant c/c composite material
JPH0353333B2 (en)
JPH11256429A (en) Carbon-coated silicon carbide-based inorganic fiber and its production
JP2003192459A (en) Production method of carbon fiber reinforced carbon composite material coated with thermal decomposition carbon
JPS60215573A (en) Manufacture of silicon carbide-carbon composite material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 15