WO2003097736A1 - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
WO2003097736A1
WO2003097736A1 PCT/JP2003/005886 JP0305886W WO03097736A1 WO 2003097736 A1 WO2003097736 A1 WO 2003097736A1 JP 0305886 W JP0305886 W JP 0305886W WO 03097736 A1 WO03097736 A1 WO 03097736A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
vapor
carbon fiber
grown carbon
composition according
Prior art date
Application number
PCT/JP2003/005886
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Toyosawa
Mituaki Maeda
Sei Aoki
Hideo Takeichi
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002141920A external-priority patent/JP2003327753A/en
Priority claimed from JP2002141921A external-priority patent/JP4090268B2/en
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to AU2003235937A priority Critical patent/AU2003235937A1/en
Publication of WO2003097736A1 publication Critical patent/WO2003097736A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a rubber composition (hereinafter, also simply referred to as “composition”), and more particularly, to a rubber composition having good mechanical properties and the like, and having excellent heat conductivity and electric conductivity.
  • carbon black and silica are widely known as fillers for obtaining the effect of capturing natural rubber, and alumina / boron nitride is used to increase thermal conductivity.
  • methods such as compounding metal powders such as copper and nickel, and highly conductive fibrous fillers such as conductive carbon and carbon fiber (hereinafter sometimes abbreviated as “CF j”) are used.
  • CF j highly conductive fibrous fillers
  • the only way to obtain a high effect is to increase the compounding amount, and as a result, it is not possible to obtain a uniform dispersion of the fillers, and the performance varies.
  • there are disadvantages such as exudation, increase in viscosity and decrease in physical properties, resulting in deterioration of moldability, and deterioration of mechanical properties of the obtained rubber article, making it unpractical. It was.
  • the research group of the present inventors has developed a high effect even with a relatively small amount of addition, and as a filler that does not adversely affect other performances such as mechanical properties.
  • An object of the present invention is to provide a rubber composition containing the above-mentioned vapor-grown carbon fiber, which further improves its mechanical properties, and specifically, has a dynamic viscoelasticity, a modulus, and a thermal conductivity in a wide temperature range.
  • the rubber composition containing the vapor-grown carbon fiber can be used for many purposes by improving the breaking property at 80 ° C or higher while maintaining low loss property while improving the loss rate. It is.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by oxidizing the vapor-grown carbon fiber used in the rubber composition, The effect of improving thermal conductivity and electrical conductivity is impaired by reducing the average aspect ratio to less than 10 and further by resin-coating the surface of the vapor-grown carbon fiber used in the rubber composition. It has been found that the mechanical properties can be improved without the need, and the present invention has been completed.
  • Rubber materials include natural rubber, general-purpose synthetic rubber, for example, emulsion-polymerized styrene-butadiene rubber, solution-polymerized styrene-butadiene rubber, high cis-1,4 polybutadiene rubber, low cis-1,4 polybutadiene rubber, high cis-1,4 (4) Polyisoprene rubber, etc., gen-based special rubbers, such as nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, etc., olefin-based special rubbers, such as ethylene-propylene rubber, petinole rubber, No., butyl butyl rubber, acrylinole rubber, chlorosnolephone And other special rubbers such as hydrin rubber, fluoro rubber, polysulfurized rubber, polyurethane rubber, and the like. From the standpoint of cost and performance, natural rubber or general-purpose synthetic rubber is preferred.
  • the rubber material according to the present invention is preferably used after vulcanization.
  • the crosslinking method include a method of adding iodine, a peroxide, a metal oxide, and the like, and crosslinking by heating, A method in which a photopolymerization initiator is added and crosslinking is performed by irradiation with light, a method in which crosslinking is performed by irradiating an electron beam or radiation, and the like.
  • Vapor-grown carbon fiber according to the present invention is generally of carbon fibers (CF) (average diameter 5 mu m to, the length 1 0 0 mu about m) of 1 0 _ 2 to 1 0 - 1 times of the order Since it is a fine fibrous structure, there is an advantage that a problem such as dispersibility does not easily occur as compared with the case where carbon fiber is added, and a similar performance improving effect can be obtained.
  • CF carbon fibers
  • the method of the oxidizing treatment is not particularly limited as long as the object of the present invention can be achieved, and it may be a chemical treatment or a physical treatment. Is also good.
  • the chemical treatment a method of treating with nitric acid, sulfuric acid, perchloric acid or a mixture of these acids is preferable from the viewpoint that it can be easily performed.
  • the conditions of these acid treatments are as follows: from the viewpoint that the treatment can be carried out effectively, which can be appropriately selected according to the kind of the acid, etc., the treatment temperature is about 20 to 80 ° C, and the pH is about 0 to 2 Is preferred.
  • the oxidizing gas may be any gas having the ability to oxidize the vapor grown carbon fiber, and specifically includes ozone, nitric acid gas, nitrous acid gas, sulfuric acid gas, sulfurous acid gas, and the like. These oxidizing gases can be used alone or in combination of two or more.
  • the concentration of ozone generated using a commercially available ozone generator is sufficient.
  • nitric acid gas or sulfuric acid gas is used, commercially available gas supplied from a standard gas cylinder such as NOX or SOX can be used, and the processing temperature is from room temperature to about 250 ° C. I can do it.
  • Examples of the physical treatment include corona discharge treatment, plasma treatment, and the like.Each condition can be appropriately selected, but in each case, the reaction components are effectively brought into contact with the surface of the vapor-grown carbon fiber. In addition, do not allow the vapor-grown carbon fiber to be too thick under the condition where it is allowed to stand still, or apply a large amount of current when introducing the vapor-grown carbon fiber to the place where discharge or plasma is generated and react. Be careful not to I do.
  • the method of resin coating on the vapor-grown carbon fiber whose surface is coated with a resin according to the present invention is not particularly limited as long as the method can achieve the object of the present invention.
  • a method of impregnating the vapor-grown carbon fiber with a solution dissolved in a solvent or an aqueous solvent is preferable.
  • organic solvent toluene, xylene, hexane, acetone, ethanol, as tetrahydrofuran and the like, and are fist up and mixtures thereof, as long as the resin is soluble is water:
  • organic solvent an organic solvent
  • aqueous additive to which a surfactant or the like is added.
  • the temperature conditions for the impregnation are not limited, but it is preferable that the temperature is lower than the boiling point of the solution to be used and the viscosity is as low as possible.
  • the resin used in the present invention is not particularly limited as long as it can achieve the effects of the present invention, but preferably has a polar portion.
  • a resin obtained by copolymerizing a monomer having a polar group or a resin modified by a substance having a polar group is preferable, and examples thereof include polyethylene copolymerized with maleic acid.
  • the vapor-grown carbon fiber in the present invention can be treated with a coupling agent in addition to the oxidation treatment and / or the resin coating treatment.
  • a coupling agent examples include titanate-based, aluminum-based, and silane-based coupling agents.
  • the coupling agent is dissolved in a solvent, and treated by a method such as impregnating the vapor-grown carbon fiber. can do.
  • the vapor-grown carbon fiber to be subjected to these treatments is not particularly limited, and the fiber diameter, the fiber length, and the length according to the required performance as appropriate. It is preferable that the force average diameter is in the range of 0.4 to 0.4 ⁇ , more preferably in the range of 0.05 to 0.3 m, especially 0. A range of 0.7 to 0.3 ⁇ is preferred. Further, those having an average length in a range of 0.5 to 50 / im are preferable, and those having an average length in a range of:! To 30 ⁇ , and particularly in a range of 1.5 to 25 m. Is preferred.
  • the specific surface area of 5 ⁇ 5 0 m 2/7 g , especially in the range of 8 ⁇ 3 O m 2 Z g It is preferable to use a certain one.
  • vapor-grown carbon fiber VGCF registered trademark
  • a rubber composition containing a rubber material as a base material and a vapor-grown carbon fiber having an average aspect ratio of less than 10 as a filler is also included in the scope of the present invention. As long as the average aspect ratio is less than 10, there are no particular restrictions on the shape, and the method for producing the vapor-grown carbon fiber having a low aspect ratio is not particularly limited.
  • a long fiber produced by a usual method is pulverized into a short length to reduce an aspect ratio.
  • a method of mechanically pulverizing using a pole mill mixer or a mortar a method of dispersing in an aqueous or organic solvent and pulverizing by applying ultrasonic waves, and sieving these. Vapor-phase grown carbon fibers with a cut ratio of less than 10 can be obtained.
  • the average diameter of the vapor-grown carbon fiber according to the present invention is not particularly limited as long as the average aspect ratio is less than 10, but the average diameter is preferably in the range of 0.04 to 0.4 ⁇ . Is preferably in the range of 0.05 to 0.3 m, particularly preferably in the range of 0.07 to 0.3 m.
  • the length is not particularly limited, and may have a range in which the average aspect ratio is less than 10, depending on the average diameter.
  • specific surface area of 5 to 50 m 2 Zg, and particularly preferably in the range of 8 ⁇ 30 m 2 / g.
  • the shape of the vapor-grown carbon fiber of the long fiber which is a raw material of the vapor-grown carbon fiber having an average aspect ratio of less than 10 according to the present invention.
  • a commercially available product Showa Denko KK ) Can be used.
  • the vapor-grown carbon fiber having an average aspect ratio of less than 10 can be subjected to oxidation treatment and / or resin coating on the surface, and the treatment method and conditions are the same as described above. . Further, in addition to acid treatment and Z or surface resin coating, a force coupling agent treatment can also be performed.
  • the compounding amount of the vapor grown carbon fiber of the present invention is preferably in the range of 0.1 to 20% by volume based on the total amount of the rubber composition. If the compounding amount is within this range, the desired performance can be sufficiently obtained, and the workability in mixing, molding and the like becomes good. In addition, from the same viewpoint, the range may be further set to 0.2 to 15 volume%. preferable.
  • the rubber composition of the present invention preferably has a Young's modulus in a range of 0.5 to 1 OMPa.
  • the Young's modulus is in this range, the rubber properties such as creep property and strength are good, and the rubber elasticity is preferable.
  • the JISA hardness is preferably in the range of 30 to 90.
  • various fillers other than the vapor-grown carbon fiber can be blended, and the blending amount is 1 to 60% by volume, particularly 1 to 40% by volume based on the total amount of the rubber composition. A range of volume% is preferred.
  • Various fillers can be selected as needed, but it is preferable to contain carbon black and / or silica. When the composition contains an appropriate amount of carbon black and Z or silicium, a higher reinforcing effect can be obtained as compared with the case where only the vapor-grown carbon fiber is added.
  • the carbon black known ones such as HAF class carbon black can be used.
  • the method of mixing and molding the rubber composition can be a known method used for ordinary mixing and molding of rubber, and is not particularly limited.
  • the rubber composition of the present invention is characterized in that, by blending a small amount of vapor-grown carbon fiber, it does not significantly change other physical properties and does not impair molding processability, and has thermal conductivity, electrical conductivity, etc. Since the characteristics can be greatly improved, it can be widely used for electrical and electronic parts, tires, belts, and other various products.
  • the rubber and the composition of the present invention may contain additives generally used in the rubber industry, such as vulcanizing agents, vulcanization accelerators, reinforcing materials, antioxidants, and softening agents. Additives can be used as appropriate.
  • Thermal conductivity was evaluated based on the thermal conductivity measured using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Co., Ltd.
  • the modulus at the time of pulling at 100 ° C. was measured in accordance with JIS K6253—1993, and the value at the time of pulling at 300% was evaluated.
  • VGCF vapor grown carbon fiber
  • 500 cc of concentrated nitric acid is gently poured into the beaker and slowly mixed so as to be evenly mixed. And stirred. After standing for 5 days with occasional stirring, excess nitric acid was washed off with water. As a washing method, decantation was performed until the pH of water reached 6, and suction filtration was performed. Thereafter, suction washing was performed with 100 cc of ethanol. The obtained VGCF cake was dried in a vacuum dryer at 60 ° C. until the weight became constant, to obtain an acid-treated V GCF.
  • VGCF vapor grown carbon fiber
  • the acid-treated VG CF and various additives were blended with natural rubber (NR) as a rubber material in the composition shown in Table 1, and the vulcanized rubber was mixed according to the kneading conditions and sheet preparation conditions shown below. A sheet of the composition was made.
  • the amounts in Table 1 all indicate parts by weight. Table 1 shows the results of various physical property evaluations.
  • the mixture was kneaded with a vulcanization at 0.99 ° Cxl 5 minutes using a hot press to prepare a vulcanized rubber sheet lm m thick.
  • Example 2 A vulcanized rubber sheet was produced in the same manner as in Example 1 except that the vapor-grown carbon fiber was subjected to a corner treatment instead of the nitric acid treatment.
  • Corona treatment was performed as follows. 10 g of the vapor-grown carbon fiber was placed in a glass petri dish and placed in a glass low-pressure plasma generator chamber. After the inside of the chamber was replaced with argon, oxygen was introduced at a concentration of 1 torr, and a plasma was generated by operating with an electrostatic power of 100 W to modify the surface of the vapor grown carbon fiber. The processing time was 15 minutes. Table 1 shows the evaluation results.
  • a vulcanized rubber sheet was produced in the same manner as in Example 1 except that the vapor-grown carbon fiber was treated with ozone instead of nitric acid.
  • Ozone treatment was performed as follows. Vapor-grown carbon fibers were placed in a tray treated with enamel so as to have a thickness of about 2 cm, and the tray was placed in a glass desiccator. Ozone generated at the maximum capacity (0.7 g / hour of ozone generation) of an ozone generator (SO-03 manufactured by Tokyu Corporation) was introduced into the desiccator and treated at room temperature for 24 hours. Table 1 shows the evaluation results. .
  • a vulcanized rubber sheet was produced in the same manner as in Example 1 except that the vapor-grown carbon fiber was used without being oxidized. Table 1 shows the evaluation results.
  • a natural rubber (NR) as a rubber material and various additives were mixed with the content shown in Table 1 without using vapor-grown carbon fiber, and a vulcanized rubber composition was prepared in the same manner as in Example 1. A sheet of the product was produced. Table 1 shows the evaluation results.
  • Vapor-grown carbon fiber (VGCF (registered trademark)) manufactured by Showa Denko KK (fiber diameter 0.15 wm, fiber length 10-20 ⁇ m)
  • Vapor-grown carbon fiber (VGCF (registered trademark)) (fiber diameter 0.15 ⁇ , fiber length 10-20 ⁇ ) manufactured by Showa Denko Co., Ltd. is pulverized and sieved to obtain an average aspect ratio of 3 Was obtained.
  • Natural rubber (NR) as a rubber material the above-mentioned vapor-grown carbon fiber having an average aspect ratio of 3 and various additives were mixed according to the blending contents shown in Table 1, and the kneading conditions and the following conditions were used.
  • a sheet of the vulcanized rubber composition was prepared according to the sheet preparation conditions. The amounts in Table 1 all indicate parts by weight. Table 2 shows the evaluation results. The kneading conditions and sheet preparation conditions are the same as those described in Example 1. Comparative Example 3
  • a vulcanized rubber sheet was produced in the same manner as in Example 4, except that a vapor-grown carbon fiber having an average aspect ratio of 100 was used. Table 2 shows the evaluation results.
  • the natural rubber (NR) as the rubber material and various additives were mixed with the compounding content shown in Table 2 without using the vapor-grown carbon fiber, and vulcanized rubber was formed in the same manner as in Example 4. A sheet of the product was produced. Table 2 shows the evaluation results. Table 2
  • VCC F vapor grown carbon fiber
  • Ducrel maleic acid copolymerized polyethylene
  • the VGC F used had a wire diameter of 150 nm, a length of 15 ⁇ (aspect ratio of 100), and a surface area of 7.10 X 1 CI- 8 cm 2 (specific surface area). 14 m 2 / g), the volume was 2.65 ⁇ 10-13 cm 3 , and the weight was 5.3 ⁇ 10-13 g. Assuming that a resin having a specific gravity of 1 covers the VGCF surface by 5 nm, the required resin amount was calculated to be 0.007 g / g (0.28 g of resin / 40 g of VGCF).
  • the coating treatment VGCF and various additives were blended with natural rubber (NR) as a rubber material according to the blending content shown in Table 3, and the vulcanized rubber was mixed according to the kneading conditions and sheet preparation conditions shown below. A sheet of the composition was made. ] 3 ⁇ 4, all amounts in Table 3 represent parts by weight. Table 3 shows the results of various physical property evaluations.
  • a vulcanized rubber sheet was produced in the same manner as in Example 5, except that unmodified polyethylene was used instead of maleic acid-modified polyethylene. Table 3 shows the evaluation results. Comparative Example 5
  • a vulcanized rubber sheet was produced in the same manner as in Example 5, except that a vapor-grown carbon fiber without resin coating was used. Table 3 shows the evaluation results.
  • a vulcanized rubber was produced in the same manner as in Example 5 except that the vapor-grown carbon fiber was not used and the mixing ratio shown in Table 3 was used. Table 3 shows the evaluation results.
  • the rubber composition of the present invention even when added in a small amount, properties such as thermal conductivity and electrical conductivity are not significantly changed without significantly changing other physical properties, and without impairing moldability.
  • the ta ⁇ ⁇ value can be reduced while maintaining particularly high thermal conductivity and high modulus in a high-temperature region. Therefore, the vulcanized rubber composition of the present invention can be widely used for electric and electronic parts, tires, belts, and other various products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A rubber composition, characterized by comprising a rubber as the base material and at least one filler selected from among vapor-phase-produced carbon fibers which are oxidized, vapor-phase-produced carbon fibers which have mean aspect ratios of less than 10, and vapor-phase-produced carbon fibers which are surface-coated with resins.

Description

明 細 書 ゴム組成物 技術分野  Description Rubber composition Technical field
本発明はゴム組成物 (以下、 単に 「組成物」 とも'称する) に関し、 詳しくは、 力学特性等が良好で、 かつ、 熱伝導性、 電気伝導性に優れたゴム組成物に関す る。 背景技術  The present invention relates to a rubber composition (hereinafter, also simply referred to as “composition”), and more particularly, to a rubber composition having good mechanical properties and the like, and having excellent heat conductivity and electric conductivity. Background art
電気電子部品、 タイヤ、 ベルト等の各種製品には、 その特性に応じて、 種々 の天然ゴムや各種合成ゴムを基材としたゴム組成物が使用されている。 かかる 製品の性能や機能は、 基材としてのゴム材料と同様に、 種々配合されている充 填材等の副資材や加硫条件などによっても大きく影響を受ける。  For various products such as electric and electronic parts, tires, and belts, rubber compositions based on various natural rubbers and various synthetic rubbers are used according to their characteristics. The performance and functions of such products are greatly affected by auxiliary materials such as various fillers and vulcanization conditions as well as the rubber material as the base material.
例えば、 天然ゴムの捕強効果を得るための充填材としてはカーボンブラック やシリカが広く知られており、 熱伝導性を高めるためにはアルミナゃ窒化ホウ 素等を、 また、 電気伝導性を付与するためには銅やニッケルのような金属粉や 導電性カーボン、 カーボンファイバー (以下 「C F j と省略することがある) などの高電気伝導性の繊維状充填材を、 夫々配合する等の手法が取られている。 しかしながら、 従来知られている充填材において、 高い効果を得るためには 配合量を増大するしかなく、 結果として、 充填材の均一な分散を得ることがで きず性能にバラツキが出たり、 粘度の上昇や物性の低下が大きくなって成型性 が悪化する、 得られたゴム物品の力学特性が低下して実用に供し得なくなるな どの欠点をも伴うものであった。  For example, carbon black and silica are widely known as fillers for obtaining the effect of capturing natural rubber, and alumina / boron nitride is used to increase thermal conductivity. In order to achieve this, methods such as compounding metal powders such as copper and nickel, and highly conductive fibrous fillers such as conductive carbon and carbon fiber (hereinafter sometimes abbreviated as “CF j”) are used. However, in the conventionally known fillers, the only way to obtain a high effect is to increase the compounding amount, and as a result, it is not possible to obtain a uniform dispersion of the fillers, and the performance varies. In addition, there are disadvantages such as exudation, increase in viscosity and decrease in physical properties, resulting in deterioration of moldability, and deterioration of mechanical properties of the obtained rubber article, making it unpractical. It was.
これらの課題を解決する方法として、 本発明者らの研究グループは比較的少 量の添加によっても高い効果を発現し、 かつ、 力学特性などの他の性能に悪影 響を及ぼさない充填材として気相成長炭素繊維を見出し、 基材であるゴム材料 に、 これらの充填材を配合したゴム組成物を開発した。 発明の開示 As a method of solving these problems, the research group of the present inventors has developed a high effect even with a relatively small amount of addition, and as a filler that does not adversely affect other performances such as mechanical properties. We discovered vapor-grown carbon fibers and developed a rubber composition in which these fillers were blended with a rubber material as a base material. Disclosure of the invention
本発明の目的は、 上記気相成長炭素繊維を配合したゴム組成物において、 さ らにその力学特性を改良し、 具体的には幅広い温度領域での動的粘弾性、 モジ ュラス、 及び熱伝導率などを改良し、 低ロス性を維持しつつ、 8 0 °C以上での 被壊特性を改良し、 前記気相成長炭素繊維を配合したゴム組成物を多くの用途 に使用可能とするものである。  An object of the present invention is to provide a rubber composition containing the above-mentioned vapor-grown carbon fiber, which further improves its mechanical properties, and specifically, has a dynamic viscoelasticity, a modulus, and a thermal conductivity in a wide temperature range. The rubber composition containing the vapor-grown carbon fiber can be used for many purposes by improving the breaking property at 80 ° C or higher while maintaining low loss property while improving the loss rate. It is.
本発明者らは、 上記課題を解決するために鋭意検討した結果、 ゴム組成物に 使用する気相成長炭素繊維を酸化処理することによって、 またゴム組成物に使 用する気相成長炭素繊維の平均ァスぺク ト比を 1 0未満にすることによって、 さらにゴム組成物に使用する気相成長炭素繊維の表面を榭脂コーティングする ことによって、 熱伝導性や電気伝導性の向上効果を損なうことなく、 力学特性 を改良し得ることを見出し、 本発明を完成したものである。 発明を実施するための最良の形態  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by oxidizing the vapor-grown carbon fiber used in the rubber composition, The effect of improving thermal conductivity and electrical conductivity is impaired by reducing the average aspect ratio to less than 10 and further by resin-coating the surface of the vapor-grown carbon fiber used in the rubber composition. It has been found that the mechanical properties can be improved without the need, and the present invention has been completed. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 ゴム材料を基材とし、 充填材として酸化処理した気相成長炭素繊 維、 平均ァスぺク ト比が 1 0未満である気相成長炭素繊維及ぴ表面に樹脂コー ティングした気相成長炭素繊維から選ばれる少なくとも 1つを配合することを 特徴とする。  According to the present invention, a vapor-grown carbon fiber oxidized as a filler using a rubber material as a base material, and a resin-coated surface and a vapor-grown carbon fiber having an average aspect ratio of less than 10 It is characterized by blending at least one selected from vapor grown carbon fibers.
ゴム材料としては、 天然ゴム、 汎用合成ゴム、 例えば、 乳化重合スチレン一 ブタジエンゴム、 溶液重合スチレン一ブタジエンゴム、 高シス一 1, 4ポリブ タジェンゴム、 低シス一 1 , 4ポリブタジエンゴム、 高シスー 1, 4ポリイソ プレンゴム等、 ジェン系特殊ゴム、 例えば、 二トリルゴム、水添二トリルゴム、 クロロプレンゴム等、 ォレフィン系特殊ゴム、 例えば、 エチレン一プロピレン ゴム、 プチノレゴム、 ノ.、ロゲン化ブチルゴム、 ァクリノレゴム、 クロロスノレホンィ匕 ポリエチレン等、 その他特殊ゴム、 例えば、 ヒ ドリンゴム、 フッ素ゴム、 多硫 化ゴム、 ゥレタンゴム等を挙げることができる。 コストと性能とのパランスか ら、 好ましくは、 天然ゴムまたは汎用合成ゴムである。  Rubber materials include natural rubber, general-purpose synthetic rubber, for example, emulsion-polymerized styrene-butadiene rubber, solution-polymerized styrene-butadiene rubber, high cis-1,4 polybutadiene rubber, low cis-1,4 polybutadiene rubber, high cis-1,4 (4) Polyisoprene rubber, etc., gen-based special rubbers, such as nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, etc., olefin-based special rubbers, such as ethylene-propylene rubber, petinole rubber, No., butyl butyl rubber, acrylinole rubber, chlorosnolephone And other special rubbers such as hydrin rubber, fluoro rubber, polysulfurized rubber, polyurethane rubber, and the like. From the standpoint of cost and performance, natural rubber or general-purpose synthetic rubber is preferred.
本発明に係るゴム材料は加硫して使用することが好ましく、 架橋方法として は、ィォゥ、過酸化物、金属酸化物等を添加して加熱により架橋させる方法や、 光重合開始剤を添加して光照射により架橋させる方法、 電子線や放射線を照射 して架橋させる方法等が挙げられる。 The rubber material according to the present invention is preferably used after vulcanization. Examples of the crosslinking method include a method of adding iodine, a peroxide, a metal oxide, and the like, and crosslinking by heating, A method in which a photopolymerization initiator is added and crosslinking is performed by irradiation with light, a method in which crosslinking is performed by irradiating an electron beam or radiation, and the like.
本発明に係る気相成長炭素繊維は通常のカーボンファイバー (C F ) (平均直 径 5 μ m〜、 長さ 1 0 0 μ m程度) の 1 0 _ 2〜 1 0 - 1倍程度のオーダーの微細 な繊維状構造体であるため、 カーボンファイバーを添加する場合よりも分散性 等の問題を生じにくく、 かつ、 同様の性能向上効果を得ることができる利点が ある。 本発明においては、 この気相成長炭素繊維をゴム組成物の充填材として 用いたことにより、 少量の添加で優れた諸特性向上効果を得ることができる。 本発明の酸化処理した気相成長炭素繊維において、 酸化処理の方法としては、 本発明の目的を達成し得る方法であれば特に限定されず、 化学的処理であって も物理的処理であってもよい。 Vapor-grown carbon fiber according to the present invention is generally of carbon fibers (CF) (average diameter 5 mu m to, the length 1 0 0 mu about m) of 1 0 _ 2 to 1 0 - 1 times of the order Since it is a fine fibrous structure, there is an advantage that a problem such as dispersibility does not easily occur as compared with the case where carbon fiber is added, and a similar performance improving effect can be obtained. In the present invention, by using the vapor-grown carbon fiber as a filler for the rubber composition, an excellent effect of improving various properties can be obtained with a small amount of addition. In the oxidized vapor-grown carbon fiber of the present invention, the method of the oxidizing treatment is not particularly limited as long as the object of the present invention can be achieved, and it may be a chemical treatment or a physical treatment. Is also good.
化学的処理としては、 硝酸、 硫酸、 過塩素酸又はこれらの酸の混合物で処理 する方法が簡便に行えるとの観点から好ましい。 これらの酸処理の条件として は、酸の種類等に応じて適宜選択できる力 効果的に処理し得るとの観点から、 処理温度は 2 0〜 8 0 °C程度、 p Hは 0〜 2程度が好ましい。  As the chemical treatment, a method of treating with nitric acid, sulfuric acid, perchloric acid or a mixture of these acids is preferable from the viewpoint that it can be easily performed. The conditions of these acid treatments are as follows: from the viewpoint that the treatment can be carried out effectively, which can be appropriately selected according to the kind of the acid, etc., the treatment temperature is about 20 to 80 ° C, and the pH is about 0 to 2 Is preferred.
また、酸化性気体で処理することも好適に行い得る。ここで酸化性気体とは、 気相成長炭素繊維を酸化する能力を有する気体であればよく、 具体的にはォゾ ン、 硝酸ガス、 亜硝酸ガス、 硫酸ガス、 亜硫酸ガスなどをいう。 これらの酸化 性気体は単独でまたは 2種以上を混合して、 使用することができる。  Further, treatment with an oxidizing gas can also be suitably performed. Here, the oxidizing gas may be any gas having the ability to oxidize the vapor grown carbon fiber, and specifically includes ozone, nitric acid gas, nitrous acid gas, sulfuric acid gas, sulfurous acid gas, and the like. These oxidizing gases can be used alone or in combination of two or more.
酸化性気体としてオゾンを使用する場合、 そのオゾン濃度は市販のオゾン発 生器を使用して発生する濃度で十分である。 また、 硝酸ガス、 硫酸ガスなどを 使用する場合は、 市販される N O Xや S O Xなどの標準ガスボンべから供給さ れるガスを用いることができ、 処理温度は室温〜 2 5 0 0 °C程度の範囲で行い 得る。  When using ozone as the oxidizing gas, the concentration of ozone generated using a commercially available ozone generator is sufficient. When nitric acid gas or sulfuric acid gas is used, commercially available gas supplied from a standard gas cylinder such as NOX or SOX can be used, and the processing temperature is from room temperature to about 250 ° C. I can do it.
物理的処理としては、 コロナ放電処理、 プラズマ処理等が挙げられ、 それぞ れの条件は、 適宜選択できるが、 いずれの場合も反応成分を気相成長炭素繊維 の表面と効果的に接触させるために、 気相成長炭素繊維を静置する条件では厚 く しすぎないように、 あるいは放電発生場所、 プラズマ発生場所に気相成長炭 素繊維を導入して反応させる場合には電流などを多く流し過ぎないように留意 する。 Examples of the physical treatment include corona discharge treatment, plasma treatment, and the like.Each condition can be appropriately selected, but in each case, the reaction components are effectively brought into contact with the surface of the vapor-grown carbon fiber. In addition, do not allow the vapor-grown carbon fiber to be too thick under the condition where it is allowed to stand still, or apply a large amount of current when introducing the vapor-grown carbon fiber to the place where discharge or plasma is generated and react. Be careful not to I do.
次に、 本発明の表面を樹脂コーティングした気相成長炭素繊維における樹脂 コーティングの方法としては、 本発明の目的を達成し得る方法であれば特に限 定されないが、 簡便であるとの観点から有機溶剤又は水系溶剤に溶解させた溶 液に気相成長炭素繊維を含浸させる方法が好ましい。  Next, the method of resin coating on the vapor-grown carbon fiber whose surface is coated with a resin according to the present invention is not particularly limited as long as the method can achieve the object of the present invention. A method of impregnating the vapor-grown carbon fiber with a solution dissolved in a solvent or an aqueous solvent is preferable.
有機溶剤としては、 トルエン、 キシレン、 へキサン、 アセトン、 エタノール、 テトラヒ ドロフラン等、 及びそれらの混合物などが拳げられ、 樹脂が水溶性の ものであれば水ある :いは必要に応じて有機溶媒を混合したり、 界面活性剤など を添加した水系添加剤が挙げられる。 含浸の際の温度条件は限定されないが、 使用する溶液の沸点以下で、 かつ、 粘度がなるべく低くなるような条件が好ま しい。 As the organic solvent, toluene, xylene, hexane, acetone, ethanol, as tetrahydrofuran and the like, and are fist up and mixtures thereof, as long as the resin is soluble is water: There is optionally an organic solvent And an aqueous additive to which a surfactant or the like is added. The temperature conditions for the impregnation are not limited, but it is preferable that the temperature is lower than the boiling point of the solution to be used and the viscosity is as low as possible.
本発明で使用される樹脂は、 本発明の効果を達成し得るものであれば特に限 定されないが、 極性部分を有することが好ましい。 特には、 極性基を有するモ ノマーを共重合した樹脂であるか又は極性基を有する物質で変性した樹脂であ ることが好ましく、 例えばマレイン酸を共重合したポリエチレン等が挙げられ る。  The resin used in the present invention is not particularly limited as long as it can achieve the effects of the present invention, but preferably has a polar portion. In particular, a resin obtained by copolymerizing a monomer having a polar group or a resin modified by a substance having a polar group is preferable, and examples thereof include polyethylene copolymerized with maleic acid.
本発明における気相成長炭素繊維は上記酸化処理及び/又は樹脂コーティン グ処理に加えて、 カップリング剤で処理することができる。 カップリング剤と しては、 チタネ一ト系、 アルミニウム系、 シラン系のカップリング剤が例示さ れ、 該カップリング剤を溶剤に溶解し、 気相成長炭素繊維に含浸する等の方法 で処理することができる。  The vapor-grown carbon fiber in the present invention can be treated with a coupling agent in addition to the oxidation treatment and / or the resin coating treatment. Examples of the coupling agent include titanate-based, aluminum-based, and silane-based coupling agents. The coupling agent is dissolved in a solvent, and treated by a method such as impregnating the vapor-grown carbon fiber. can do.
上記酸化処理及び 又は樹脂コーティング処理をする場合には、 これらの処 理を施す気相成長炭素繊維としては、 特に制限されず、 適宜必要性能に応じた 繊維径、繊維長、 ァスぺク ト比のものを用いることができる力 平均直径が 0 . 0 4〜 0 . 4 μ πιの範囲であるものが好ましく、 さらには 0 . 0 5〜 0 . 3 mの範囲であるもの、 特には 0 . 0 7〜 0 . 3 μ πιの範囲であるものが好まし レ、。 また平均長さが 0 . 5〜 5 0 /i mの範囲であるものが好ましく、 さらには :! 〜 3 0 μ ιηの範囲であるもの、 特には 1 . 5〜 2 5 mの範囲であるものが 好ましい。 また、 比表面積が 5〜 5 0 m2/7 g、 特には 8 ~ 3 O m2Z gの範囲で あるものを用いることが好ましい。 具体的には、 市販品として、 例えば、 昭和 電工 (株) 製の気相法炭素繊維 VGCF (登録商標) を用いることができる。 また本発明では、 ゴム材料を基材とし、 充填材として平均アスペク ト比が 1 0未満である気相成長炭素繊維を配合したゴム組成物も発明の範囲に包含され る。 平均アスペク ト比が 1 0未満であれば、 その他の形状的制約は特になく、 これら低ァスぺクト比の気相成長炭素繊維の製造方法も特に限定されない。 例 えば通常の方法で作製した長い繊維を短く粉砕してァスぺク ト比を低減する方 法が挙げられる。 具体的には、 ポールミル混合機や乳鉢を用いてメカニカルに 粉砕する方法、 水系あるいは有機溶媒中に分散させて超音波をかけて粉碎する 方法などがあり、 これらをふるいわけして平均ァスぺク ト比 10未満の気相成 長炭素繊維を得ることができる。 In the case of performing the oxidation treatment and / or the resin coating treatment, the vapor-grown carbon fiber to be subjected to these treatments is not particularly limited, and the fiber diameter, the fiber length, and the length according to the required performance as appropriate. It is preferable that the force average diameter is in the range of 0.4 to 0.4 μππ, more preferably in the range of 0.05 to 0.3 m, especially 0. A range of 0.7 to 0.3 μπι is preferred. Further, those having an average length in a range of 0.5 to 50 / im are preferable, and those having an average length in a range of:! To 30 μιη, and particularly in a range of 1.5 to 25 m. Is preferred. The specific surface area of 5~ 5 0 m 2/7 g , especially in the range of 8 ~ 3 O m 2 Z g It is preferable to use a certain one. Specifically, as a commercially available product, for example, vapor-grown carbon fiber VGCF (registered trademark) manufactured by Showa Denko KK can be used. In the present invention, a rubber composition containing a rubber material as a base material and a vapor-grown carbon fiber having an average aspect ratio of less than 10 as a filler is also included in the scope of the present invention. As long as the average aspect ratio is less than 10, there are no particular restrictions on the shape, and the method for producing the vapor-grown carbon fiber having a low aspect ratio is not particularly limited. For example, there is a method in which a long fiber produced by a usual method is pulverized into a short length to reduce an aspect ratio. Specifically, there are a method of mechanically pulverizing using a pole mill mixer or a mortar, a method of dispersing in an aqueous or organic solvent and pulverizing by applying ultrasonic waves, and sieving these. Vapor-phase grown carbon fibers with a cut ratio of less than 10 can be obtained.
本発明に係る気相成長炭素繊維は平均ァスぺクト比が 10未満であれば、 そ の平均直径は特に限定されないが、 平均直径は 0. 04〜0. 4 πιの範囲が 好ましく、 さらには 0. 05〜0, 3 ΠΙ、 特には 0. 07〜0. 3 mの範 囲であることが好ましい。 またその長さについては特に制限されず、 平均直径 に応じて、 平均アスペク ト比が 10未満となる範囲をとり得る。 さらに、 比表 面積は 5〜50m2Zg、 特には 8〜30 m2/ gの範囲であることが好ましい。 また、 本発明に係る平均ァスぺクト比 10未満の気相成長炭素繊維の原料と なる長繊維の気相成長炭素繊維の形状についても特に制限はなく、 例えば市販 品である昭和電工 (株) 製の気相法炭素繊維 VGCF (登録商標) を用いるこ とができる。 The average diameter of the vapor-grown carbon fiber according to the present invention is not particularly limited as long as the average aspect ratio is less than 10, but the average diameter is preferably in the range of 0.04 to 0.4 πι. Is preferably in the range of 0.05 to 0.3 m, particularly preferably in the range of 0.07 to 0.3 m. The length is not particularly limited, and may have a range in which the average aspect ratio is less than 10, depending on the average diameter. Furthermore, specific surface area of 5 to 50 m 2 Zg, and particularly preferably in the range of 8~30 m 2 / g. Further, there is no particular limitation on the shape of the vapor-grown carbon fiber of the long fiber which is a raw material of the vapor-grown carbon fiber having an average aspect ratio of less than 10 according to the present invention. For example, a commercially available product, Showa Denko KK ) Can be used.
尚、 平均ァスぺク ト比が 10未満である気相成長炭素繊維は酸化処理及び/ 又は表面の樹脂コーティングをすることができ、 その処理方法及び条件につい ては上述したのと同様である。 さらに酸ィヒ処理及び Z又は表面の樹脂コーティ ングに加えて、 力ップリング剤処理をすることもできる。  The vapor-grown carbon fiber having an average aspect ratio of less than 10 can be subjected to oxidation treatment and / or resin coating on the surface, and the treatment method and conditions are the same as described above. . Further, in addition to acid treatment and Z or surface resin coating, a force coupling agent treatment can also be performed.
本発明の気相成長炭素繊維の配合量は、 ゴム組成物全量に対して 0. 1〜2 0体積%の範囲が好ましい。 配合量がこの範囲内であると、 所期の性能を十分 に得ることができるとともに、 混合や成型等における作業性が良好となるから である。 また、 同様の観点からさらに 0. 2〜 1 5体積%の範囲とすることが 好ましい。 The compounding amount of the vapor grown carbon fiber of the present invention is preferably in the range of 0.1 to 20% by volume based on the total amount of the rubber composition. If the compounding amount is within this range, the desired performance can be sufficiently obtained, and the workability in mixing, molding and the like becomes good. In addition, from the same viewpoint, the range may be further set to 0.2 to 15 volume%. preferable.
また、本発明のゴム組成物は、 ヤング率が 0 . 5〜1 O MP aの範囲であるこ とが好ましい。 ヤング率がこの範囲であるとクリープ性ゃ強度といったゴム物 性が良好であり、 またゴム弾性の面からも好ましいからである。 また、 J I S A硬度は好ましくは 3 0〜9 0の範囲である。  Further, the rubber composition of the present invention preferably has a Young's modulus in a range of 0.5 to 1 OMPa. When the Young's modulus is in this range, the rubber properties such as creep property and strength are good, and the rubber elasticity is preferable. Also, the JISA hardness is preferably in the range of 30 to 90.
本発明の組成物においては、 気相成長炭素繊維以外の各種充填材を配合する ことができ、 その配合量はゴム組成物全量に対して、 1〜6 0体積%、 特には 1〜4 0体積%の範囲が好ましい。 充填材としては、 必要に応じて種々のもの を選択できるが、 カーボンブラック及び/又はシリカを含有することが好まし い。 組成物中にカーボンブラック及び Z又はシリ力が適量含有されていると、 気相成長炭素繊維のみを添加した場合に比してより高い補強効果が得られる。 カーボンブラックとしては、 H A F級のものなど公知のものを使用することが できる。 尚、 ゴム組成物の混合、成型などの手法としては、 通常のゴムの混合、 成型に使用される公知の手法を用いることができ、 特に制限はない。  In the composition of the present invention, various fillers other than the vapor-grown carbon fiber can be blended, and the blending amount is 1 to 60% by volume, particularly 1 to 40% by volume based on the total amount of the rubber composition. A range of volume% is preferred. Various fillers can be selected as needed, but it is preferable to contain carbon black and / or silica. When the composition contains an appropriate amount of carbon black and Z or silicium, a higher reinforcing effect can be obtained as compared with the case where only the vapor-grown carbon fiber is added. As the carbon black, known ones such as HAF class carbon black can be used. The method of mixing and molding the rubber composition can be a known method used for ordinary mixing and molding of rubber, and is not particularly limited.
本発明のゴム組成物は、 気相成長炭素繊維を少量配合することによって、 他 の物性を大きく変化することなく、 また、 成型加工性も損なうことなく、 熱伝 導性、電気伝導性などの特性の大幅な向上が可能となるために、電気電子部品、 タイヤ、 ベルト、 その他各種製品に幅広く使用することが可能である。 尚、 本 発明のゴム,袓成物には、 ゴム業界で一般に使用されている添加剤、 例えば、 加 硫剤、 加硫促進剤、 補強材、 老化防止剤、 軟化剤等、 通常のゴム用添加剤を適 宜使用することが可能である。  The rubber composition of the present invention is characterized in that, by blending a small amount of vapor-grown carbon fiber, it does not significantly change other physical properties and does not impair molding processability, and has thermal conductivity, electrical conductivity, etc. Since the characteristics can be greatly improved, it can be widely used for electrical and electronic parts, tires, belts, and other various products. The rubber and the composition of the present invention may contain additives generally used in the rubber industry, such as vulcanizing agents, vulcanization accelerators, reinforcing materials, antioxidants, and softening agents. Additives can be used as appropriate.
次に、 本発明を実施例によりさらに詳しく説明するが、 本発明はこれらの例 によってなんら限定されるものではない。  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(物性評価法)  (Physical property evaluation method)
実施例 1〜 6及び比較例 1〜 6で得られるゴムシートについて、 以下の物性 で評価した。  The following physical properties were evaluated for the rubber sheets obtained in Examples 1 to 6 and Comparative Examples 1 to 6.
( 1 ) 動的粘弾性  (1) Dynamic viscoelasticity
粘弾性試験機 (東洋精機 (株) 製レオログラフソリッド L—1 R型) を用い てゴムシートの 6 0。Cにおけるヒステリシスロス (t a n S ) を測定した。 (2) 熱伝導性 Use a viscoelasticity tester (Toyo Seiki Co., Ltd., Rheograph Solid L-1R type) to form a rubber sheet 60. Hysteresis loss (tan S) at C was measured. (2) Thermal conductivity
京都電子 (株) 製、 迅速熱伝導率計 QTM— 500を用いて測定した熱伝導 率で熱伝導性を評価した。  Thermal conductivity was evaluated based on the thermal conductivity measured using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Co., Ltd.
(3) 力学物性  (3) Mechanical properties
J I S K6253— 1993に準拠して 100°Cでの引っ張り時のモジュ ラスを測定し、 300%引っ張り時の値で評価した。  The modulus at the time of pulling at 100 ° C. was measured in accordance with JIS K6253—1993, and the value at the time of pulling at 300% was evaluated.
実施例 1 Example 1
2 Lのビーカーに気相法炭素繊維(昭和電工(株)製「VGCF」 (登録商標)) 40 gを入れ、 そこに濃硝酸 500 c cを静かに注ぎ入れ、 均一に混合するよ うにゆっく りと攪拌した。 時々攪拌しながら、 5日間放置後、 水で余分な硝酸 を洗浄除去した。 洗浄方法としては、 水の pHが 6になるまでデカンテーショ ンし、 吸引ろ過した。 その後エタノール 100 c cで吸引洗浄した。 得られた VGCFケーキを 60°Cの真空乾燥機にて重量が一定になるまで乾燥し、 酸処 理 V GCFを得た。  40 g of vapor grown carbon fiber (“VGCF” (registered trademark) manufactured by Showa Denko KK) is placed in a 2 L beaker, and 500 cc of concentrated nitric acid is gently poured into the beaker and slowly mixed so as to be evenly mixed. And stirred. After standing for 5 days with occasional stirring, excess nitric acid was washed off with water. As a washing method, decantation was performed until the pH of water reached 6, and suction filtration was performed. Thereafter, suction washing was performed with 100 cc of ethanol. The obtained VGCF cake was dried in a vacuum dryer at 60 ° C. until the weight became constant, to obtain an acid-treated V GCF.
該酸処理 VG C F及び各種添加剤を第 1表に示す配合内容にて、 ゴム材料と しての天然ゴム (NR) に配合し、 以下に示す混練り条件およびシート作製条 件に従い加硫ゴム組成物のシートを作製した。 尚、 第 1表中の配合量は全て重 量部を表す。 各種物性評価結果を第 1表に示す。  The acid-treated VG CF and various additives were blended with natural rubber (NR) as a rubber material in the composition shown in Table 1, and the vulcanized rubber was mixed according to the kneading conditions and sheet preparation conditions shown below. A sheet of the composition was made. The amounts in Table 1 all indicate parts by weight. Table 1 shows the results of various physical property evaluations.
混練り条件 Kneading conditions
ラボプラス トミル (東洋精機 (株) 製) を用いて、 NRを70°Cにて50 r pmで 3分間素練りした後、 第 1表に示す加硫促進剤および硫黄を除く各添加 剤を投入して、 70°Cにて 30 r pmで更に混合した (ノンプロ配合)。 得られ た混合物を取り出して、 冷却、 秤量した後、 残りの加硫促進剤および硫黄を投 入し、 プラベンダーを用いて、 50°Cにて 30 r pmで再度混合した (プロ配 合)。  Using a Labo Plastomill (manufactured by Toyo Seiki Co., Ltd.), masticate the NR at 70 rpm for 3 minutes at 50 rpm, and then add the vulcanization accelerators shown in Table 1 and the additives except sulfur. Then, the mixture was further mixed at 70 ° C. at 30 rpm (non-pro mixture). The resulting mixture was taken out, cooled and weighed, the remaining vulcanization accelerator and sulfur were added, and the mixture was mixed again at 50 ° C at 30 rpm using a pravender (Pro Mix) .
シート作製条件 Sheet preparation conditions
混練りした混合物を高温プレスを用いて 150°Cxl 5分にて加硫して、 lm m厚の加硫ゴムシートを作製した。 The mixture was kneaded with a vulcanization at 0.99 ° Cxl 5 minutes using a hot press to prepare a vulcanized rubber sheet lm m thick.
実施例 2 気相成長炭素繊維を硝酸処理するのに代えて、 コ口ナ処理をしたこと以外は 実施例 1と同様に加硫ゴムシートを作製した。 コロナ処理は以下のようにして 行った。 気相成長炭素繊維 1 0 gを、 ガラス性シャーレに入れ、 ガラス製の低 圧プラズマ発生装置チャンバ一内に置いた。 チャンバ一内をアルゴンに置換後、 酸素を 1 t o r rの濃度で導入し、 静電源 1 0 0 Wで操作して、 プラズマを発 生させ、 気相成長炭素繊維表面を改質した。 処理時間は 1 5分とした。 評価結 果を第 1表に示す。 Example 2 A vulcanized rubber sheet was produced in the same manner as in Example 1 except that the vapor-grown carbon fiber was subjected to a corner treatment instead of the nitric acid treatment. Corona treatment was performed as follows. 10 g of the vapor-grown carbon fiber was placed in a glass petri dish and placed in a glass low-pressure plasma generator chamber. After the inside of the chamber was replaced with argon, oxygen was introduced at a concentration of 1 torr, and a plasma was generated by operating with an electrostatic power of 100 W to modify the surface of the vapor grown carbon fiber. The processing time was 15 minutes. Table 1 shows the evaluation results.
実施例 3 Example 3
気相成長炭素繊維を硝酸処理するのに代えて、 オゾン処理をしたこと以外は 実施例 1と同様に加硫ゴムシ一トを作製した。 オゾン処理は以下のように行つ た。 気相成長炭素繊維をほうろう処理したトレイに、 厚みが 2 c m程度になる ように入れ、 トレィをガラス製デシケータに入れた。 オゾン発生器 (東急車輛 製 S O— 0 3 UN型) の最大能力 (オゾン発生量 0 . 7 g /時間) で発生させた オゾンをデシケータ内に導入し、 室温で 2 4時間処理した。 評価結果を第 1表 に示す。 .  A vulcanized rubber sheet was produced in the same manner as in Example 1 except that the vapor-grown carbon fiber was treated with ozone instead of nitric acid. Ozone treatment was performed as follows. Vapor-grown carbon fibers were placed in a tray treated with enamel so as to have a thickness of about 2 cm, and the tray was placed in a glass desiccator. Ozone generated at the maximum capacity (0.7 g / hour of ozone generation) of an ozone generator (SO-03 manufactured by Tokyu Corporation) was introduced into the desiccator and treated at room temperature for 24 hours. Table 1 shows the evaluation results. .
比較例 1 Comparative Example 1
気相成長炭素繊維を酸化処理せずに使用したこと以外は実施例 1と同様に加 硫ゴムシートを作製した。 評価結果を第 1表に示す。  A vulcanized rubber sheet was produced in the same manner as in Example 1 except that the vapor-grown carbon fiber was used without being oxidized. Table 1 shows the evaluation results.
比較例 2 Comparative Example 2
気相成長炭素繊維を使用せず、 第 1表に示す配合内容にて、 ゴム材料として の天然ゴム (N R ) と、 各種添加剤とを混合し、 実施例 1と同様に加硫ゴム組 成物のシートを作製した。 評価結果を第 1表に示す。 A natural rubber (NR) as a rubber material and various additives were mixed with the content shown in Table 1 without using vapor-grown carbon fiber, and a vulcanized rubber composition was prepared in the same manner as in Example 1. A sheet of the product was produced. Table 1 shows the evaluation results.
第 1表 Table 1
Figure imgf000010_0001
Figure imgf000010_0001
1) 昭和電工 (株) 製、 気相法炭素繊維 (VGCF (登録商標)) (繊維径 0. 15 w m、 繊維長 10〜 20 μ m) 1) Vapor-grown carbon fiber (VGCF (registered trademark)) manufactured by Showa Denko KK (fiber diameter 0.15 wm, fiber length 10-20 μm)
2) H A F級カーボンブラック  2) H A F grade carbon black
3) N— (1, 3—ジメチルブチル) 一 N,一フエ二ルー P—フエ二レンジァ ン  3) N— (1,3-dimethylbutyl) 1 N, 1 f P-phenylene
4) N—シクロへキシルー 2—べンゾチアジル ·スルフェンアミ ド 実施例 4  4) N-Cyclohexyl 2-benzothiazyl sulfenamide Example 4
昭和電工 (株) 製、 気相法炭素繊維 (VGCF (登録商標)) (繊維径 0. 1 5μιτα、 繊維長 10〜 20 μπι) を粉碎、 ふるいわけを行い、 平均ァスぺク ト比 3の気相成長炭素繊維を得た。 ゴム材料としての天然ゴム (NR) と上記平均 ァスぺクト比 3の気相成長炭素繊維及ぴ各種添加剤とを第 1表に示す配合内容 にて混合し、 以下に示す混練り条件およぴシート作製条件に従い加硫ゴム組成 物のシートを作製した。 尚、 第 1表中の配合量は全て重量部を表す。 評価結果 を第 2表に示す。 尚、 混練り条件及びシート作製条件は実施例 1に示したのと同様である。 比較例 3 Vapor-grown carbon fiber (VGCF (registered trademark)) (fiber diameter 0.15μιτα, fiber length 10-20 μπι) manufactured by Showa Denko Co., Ltd. is pulverized and sieved to obtain an average aspect ratio of 3 Was obtained. Natural rubber (NR) as a rubber material, the above-mentioned vapor-grown carbon fiber having an average aspect ratio of 3 and various additives were mixed according to the blending contents shown in Table 1, and the kneading conditions and the following conditions were used. A sheet of the vulcanized rubber composition was prepared according to the sheet preparation conditions. The amounts in Table 1 all indicate parts by weight. Table 2 shows the evaluation results. The kneading conditions and sheet preparation conditions are the same as those described in Example 1. Comparative Example 3
気相成長炭素繊維として、 平均ァスぺク ト比 100のものを使用した以外は 実施例 4と同様に加硫ゴムシートを作製した。 評価結果を第 2表に示す。  A vulcanized rubber sheet was produced in the same manner as in Example 4, except that a vapor-grown carbon fiber having an average aspect ratio of 100 was used. Table 2 shows the evaluation results.
比較例 4 Comparative Example 4
気相成長炭素繊維を使用せず、 第 2表に示す配合内容にて、 ゴム材料として の天然ゴム (NR) と、 各種添加剤とを混合し、 実施例 4と同様に加硫ゴム組 成物のシートを作製した。 評価結果を第 2表に示す。 第 2表  The natural rubber (NR) as the rubber material and various additives were mixed with the compounding content shown in Table 2 without using the vapor-grown carbon fiber, and vulcanized rubber was formed in the same manner as in Example 4. A sheet of the product was produced. Table 2 shows the evaluation results. Table 2
Figure imgf000011_0001
実施例 5
Figure imgf000011_0001
Example 5
2 Lのビーカーに気相法炭素繊維(昭和電工(株)製「VGC F」 (登録商標)) 40 gを入れ、 約 0. 3 gのマレイン酸共重合ポリエチレン (二ュクレル) を 溶解させたトルエン 50 Omlを静かに注ぎ入れ、 均一に混合するようにゆつ く りと攪拌した。 時々攪拌しながら、 約 3時間放置後、 60°Cの真空乾燥機に て重量が一定になるまで乾燥し、 榭脂コ一ティング VGCFを得た。 Into a 2 L beaker, 40 g of vapor grown carbon fiber (“VGC F” (registered trademark) manufactured by Showa Denko KK) was added, and about 0.3 g of maleic acid copolymerized polyethylene (Ducrel) was dissolved. Toluene (50 Oml) was gently poured and stirred gently so as to mix uniformly. Leave for about 3 hours with occasional stirring, then place in a vacuum dryer at 60 ° C. And dried until the weight became constant to obtain a resin coating VGCF.
尚、 使用した VGC Fは線径が 150 n m、 長さ 1 5 μπι (ァスぺク ト比 1 00) であり、 1本あたりの表面積が 7. 10 X 1 CI-8 cm2 (比表面積 14 m 2/g)、体積が 2. 65 X 10— 13 cm3、重量が 5. 3 X 10— 13 gであった。 比重 1の樹脂が、 VGCF表面を 5 nm覆うと仮定すると必要樹脂量は 0. 0 07 g/g (樹脂 0. 28 g/VGCF40 g) と計算された。 The VGC F used had a wire diameter of 150 nm, a length of 15 μπι (aspect ratio of 100), and a surface area of 7.10 X 1 CI- 8 cm 2 (specific surface area). 14 m 2 / g), the volume was 2.65 × 10-13 cm 3 , and the weight was 5.3 × 10-13 g. Assuming that a resin having a specific gravity of 1 covers the VGCF surface by 5 nm, the required resin amount was calculated to be 0.007 g / g (0.28 g of resin / 40 g of VGCF).
該コーティング処理 VGCF及び各種添加剤を第 3表に示す配合内容にて、 ゴム材料としての天然ゴム (NR) に配合し、 以下に示す混練り条件おょぴシ ート作製条件に従い加硫ゴム組成物のシートを作製した。 ]¾、 第 3表中の配合 量は全て重量部を表す。 各種物性評価結果を第 3表に示す。  The coating treatment VGCF and various additives were blended with natural rubber (NR) as a rubber material according to the blending content shown in Table 3, and the vulcanized rubber was mixed according to the kneading conditions and sheet preparation conditions shown below. A sheet of the composition was made. ] ¾, all amounts in Table 3 represent parts by weight. Table 3 shows the results of various physical property evaluations.
尚、 混練り条件及びシート作製条件は実施例 1に示したのと同様である。 実施例 6  The kneading conditions and sheet preparation conditions are the same as those described in Example 1. Example 6
マレイン酸変性ポリエチレンに代えて、 未変性ポリエチレンを使用したこと 以外は実施例 5と同様に加硫ゴムシートを作製した。 評価結果を第 3表に示す。 比較例 5  A vulcanized rubber sheet was produced in the same manner as in Example 5, except that unmodified polyethylene was used instead of maleic acid-modified polyethylene. Table 3 shows the evaluation results. Comparative Example 5
樹脂コーティングをしていない気相成長炭素繊維を使用したこと以外は実施 例 5と同様に加硫ゴムシートを作製した。 評価結果を第 3表に示す。  A vulcanized rubber sheet was produced in the same manner as in Example 5, except that a vapor-grown carbon fiber without resin coating was used. Table 3 shows the evaluation results.
比較例 6 Comparative Example 6
気相成長炭素繊維を配合せず、 第 3表に示す配合割合としたこと以外は実施 例 5と同様にして加硫ゴムを作製した。 評価結果を第 3表に示す。 A vulcanized rubber was produced in the same manner as in Example 5 except that the vapor-grown carbon fiber was not used and the mixing ratio shown in Table 3 was used. Table 3 shows the evaluation results.
第 3表 Table 3
Figure imgf000013_0001
産業上の利用可能性
Figure imgf000013_0001
Industrial applicability
本発明のゴム組成物によれば、 少量の添加であっても、 他の諸物性を大きく 変化させることなく、 また、 成型加工性を損なうこともなく、 熱伝導性や電気 伝導性などの特性の大幅な向上効果を得ることができ、 特に高い熱伝導率及び 高温領域での高いモジュラスを保持したままで t a η δ値が低減される。 従つ て、 本発明の加硫ゴム組成物は、 電気電子部品、 タイヤ、 ベルト、 その他各種 製品に幅広く使用することが可能である。  According to the rubber composition of the present invention, even when added in a small amount, properties such as thermal conductivity and electrical conductivity are not significantly changed without significantly changing other physical properties, and without impairing moldability. The ta η δ value can be reduced while maintaining particularly high thermal conductivity and high modulus in a high-temperature region. Therefore, the vulcanized rubber composition of the present invention can be widely used for electric and electronic parts, tires, belts, and other various products.

Claims

請求の範囲 The scope of the claims
1 . ゴム材料を基材とし、 充填材として酸化処理した気相成長炭素繊維、 平均 ァスぺク ト比が 1 0未満である気相成長炭素繊維及び表面に樹脂コーティング した気相成長炭素繊維から選ばれる少なくとも 1つを配合することを特徴とす るゴム組成物。 1. Oxidized vapor-grown carbon fiber with rubber material as base material, vapor-grown carbon fiber with average aspect ratio less than 10 and vapor-grown carbon fiber with resin-coated surface A rubber composition comprising at least one compound selected from the group consisting of:
2 . 前記酸化処理が硝酸、 硫酸、 過塩素酸又はこれらの混合物で処理すること である請求項 1記載のゴム組成物。 2. The rubber composition according to claim 1, wherein the oxidation treatment is a treatment with nitric acid, sulfuric acid, perchloric acid, or a mixture thereof.
3 . 前記酸化処理が酸化性気体で処理することである請求項 1記載のゴム組成 物。 3. The rubber composition according to claim 1, wherein the oxidizing treatment is a treatment with an oxidizing gas.
4 . 前記酸化性気体がオゾン、 硝酸ガス、 亜硝酸ガス、 硫酸ガス、 亜硫酸ガス から選ばれる少なくとも 1種である請求項 3記載のゴム組成物。 4. The rubber composition according to claim 3, wherein the oxidizing gas is at least one selected from the group consisting of ozone, nitric acid gas, nitrous acid gas, sulfuric acid gas, and sulfurous acid gas.
5 . 前記酸化処理が物理的酸化処理である請求項 1記載のゴム組成物。 5. The rubber composition according to claim 1, wherein the oxidation treatment is a physical oxidation treatment.
6 . 前記物理的酸化処理がコロナ放電処理、 プラズマ処理から選ばれる少なく とも 1種である請求項 5記載のゴム組成物。 6. The rubber composition according to claim 5, wherein the physical oxidation treatment is at least one selected from corona discharge treatment and plasma treatment.
7 . 前記樹脂コーティングが樹脂を有機溶剤又は水系溶剤に溶解させた溶液に 気相成長炭素繊維を含浸させることでなされる請求項 1記載のゴム組成物。 7. The rubber composition according to claim 1, wherein the resin coating is performed by impregnating a solution obtained by dissolving a resin in an organic solvent or an aqueous solvent with vapor-grown carbon fibers.
8 . 前記樹脂が極性部分を有する樹脂である請求項 1又は 7に記載のゴム組成 物。 8. The rubber composition according to claim 1, wherein the resin is a resin having a polar part.
9 . 前記極性部分を有する樹脂が、 極性基を有するモノマーを共重合した樹脂 であるか又は極性基を.有する物質で変性したものである請求項 8記載のゴム組 成物。 9. The rubber set according to claim 8, wherein the resin having a polar portion is a resin obtained by copolymerizing a monomer having a polar group or a resin modified with a substance having a polar group. Adult.
1 0. 前記気相成長炭素繊維の配合量がゴム組成物全量に対して、 0. 1〜2 0体積%である請求項 1〜 9のいずれかに記載のゴム組成物。  10. The rubber composition according to any one of claims 1 to 9, wherein the amount of the vapor-grown carbon fiber is 0.1 to 20% by volume based on the total amount of the rubber composition.
1 1. 前記気相成長炭素繊維が、 直径 0. 04〜0. である請求項 1〜1 1. The vapor-grown carbon fiber has a diameter of 0.04 to 0.0.
10のいずれかに記載のゴム組成物。 11. The rubber composition according to any one of 10.
1 2. 前記気相成長炭素繊維が、 長さ 0. 5〜50 x mである請求項 1〜 1 1 のいずれかに記載のゴム組成物。 12. The rubber composition according to any one of claims 1 to 11, wherein the vapor-grown carbon fiber has a length of 0.5 to 50 x m.
1 3. J I S A硬度が 30〜90である請求項 1〜1 2のいずれかに記載の ゴム組成物。 13. The rubber composition according to any one of claims 1 to 12, wherein the JISA hardness is 30 to 90.
14. 前記気相成長炭素繊維以外の充填材をゴム組成物全量に対して、 1〜6 0体積%配合することを特徴とする請求項 1〜 14のいずれかに記載のゴム組 成物。 14. The rubber composition according to any one of claims 1 to 14, wherein a filler other than the vapor-grown carbon fiber is blended in an amount of 1 to 60% by volume based on the total amount of the rubber composition.
1 5. 前記気相成長炭素繊維以外の充填材がカーボンブラックおよび Zまたは シリカである請求項 14記載のゴム組成物。 15. The rubber composition according to claim 14, wherein the filler other than the vapor grown carbon fiber is carbon black and Z or silica.
PCT/JP2003/005886 2002-05-16 2003-05-12 Rubber composition WO2003097736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003235937A AU2003235937A1 (en) 2002-05-16 2003-05-12 Rubber composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-141921 2002-05-16
JP2002141920A JP2003327753A (en) 2002-05-16 2002-05-16 Rubber composition
JP2002-141919 2002-05-16
JP2002-141920 2002-05-16
JP2002141921A JP4090268B2 (en) 2002-05-16 2002-05-16 Rubber composition
JP2002141919 2002-05-16

Publications (1)

Publication Number Publication Date
WO2003097736A1 true WO2003097736A1 (en) 2003-11-27

Family

ID=29553981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005886 WO2003097736A1 (en) 2002-05-16 2003-05-12 Rubber composition

Country Status (2)

Country Link
AU (1) AU2003235937A1 (en)
WO (1) WO2003097736A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044721A1 (en) * 2007-10-01 2009-04-09 Bridgestone Corporation Rubber composition
CN106751679A (en) * 2016-12-26 2017-05-31 吴中区穹窿山倪源交通器材经营部 A kind of carbon fiber modifying makrolon material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289843A (en) * 1988-05-16 1989-11-21 Asahi Chem Ind Co Ltd Rubber composition for tire
JPH01289844A (en) * 1988-05-16 1989-11-21 Asahi Chem Ind Co Ltd Rubber composition
JPH02212370A (en) * 1988-09-02 1990-08-23 Nikkiso Co Ltd Composite material
JPH02298530A (en) * 1989-05-15 1990-12-10 Asahi Chem Ind Co Ltd Pressure-sensitive conductive rubber composition
JPH09283955A (en) * 1996-04-10 1997-10-31 Matsushita Electric Works Ltd Heat radiation sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289843A (en) * 1988-05-16 1989-11-21 Asahi Chem Ind Co Ltd Rubber composition for tire
JPH01289844A (en) * 1988-05-16 1989-11-21 Asahi Chem Ind Co Ltd Rubber composition
JPH02212370A (en) * 1988-09-02 1990-08-23 Nikkiso Co Ltd Composite material
JPH02298530A (en) * 1989-05-15 1990-12-10 Asahi Chem Ind Co Ltd Pressure-sensitive conductive rubber composition
JPH09283955A (en) * 1996-04-10 1997-10-31 Matsushita Electric Works Ltd Heat radiation sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044721A1 (en) * 2007-10-01 2009-04-09 Bridgestone Corporation Rubber composition
CN106751679A (en) * 2016-12-26 2017-05-31 吴中区穹窿山倪源交通器材经营部 A kind of carbon fiber modifying makrolon material and preparation method thereof

Also Published As

Publication number Publication date
AU2003235937A1 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
Salaeh et al. Influence of modified natural rubber and structure of carbon black on properties of natural rubber compounds
Kaewsakul et al. Cooperative effects of epoxide functional groups on natural rubber and silane coupling agents on reinforcing efficiency of silica
JP6650476B2 (en) Rubber composition for tire
Shanmugharaj et al. Influence of aminosilane‐functionalized carbon nanotubes on the rheometric, mechanical, electrical and thermal degradation properties of epoxidized natural rubber nanocomposites
KR20080050735A (en) A method for preparation of silicone rubber/carbon nanotube composites with electrical insulating properties
JP2021059695A (en) Surface-treated nano cellulose master batch
JP7295520B2 (en) Rubber composition for tires
George et al. Epoxidized natural rubber as a reinforcement modifier for silica‐filled nitrile rubber
JP5391022B2 (en) Composite, rubber composition and pneumatic tire
JP4090385B2 (en) Rubber composition
JP7339535B2 (en) Rubber composition for tire
WO2003097736A1 (en) Rubber composition
JP4090268B2 (en) Rubber composition
JP2019001979A (en) Compound for producing elastic composite material and method for producing elastic composite material
CN114426703A (en) Silicon dioxide-based modified anti-aging agent and preparation method and application thereof
Liang et al. Polydopamine Modified Rice Husk-derived Silicon Carbon Black Used as Green Filler in Natural Rubber/Butadiene Rubber: Design, Processing and Properties
JP7215672B2 (en) Rubber masterbatch and manufacturing method thereof
JP2011006551A (en) Manufacturing method for rubber composition
Vaudreuil et al. Dispersion characteristics and properties of poly (methyl methacrylate)/multi-walled carbon nanotubes nanocomposites
JP2003327753A (en) Rubber composition
Katueangngan et al. Interfacial interactions of silica and natural rubber enhanced by hydroxyl telechelic natural rubber as interfacial modifier
CN105037855A (en) Modified cable material preparation method based on nanofiller
JP2011006552A (en) Rubber composition, reinforcing agent for rubber, and manufacturing method therefor
Sarkar et al. Nano silicon carbide embodied soy protein bionanocomposites
Song et al. Preparation and characterization of γ‐irradiated crosslinked silicone rubber/organoattapulgite composites

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase