JPH09283955A - Heat radiation sheet - Google Patents

Heat radiation sheet

Info

Publication number
JPH09283955A
JPH09283955A JP8834896A JP8834896A JPH09283955A JP H09283955 A JPH09283955 A JP H09283955A JP 8834896 A JP8834896 A JP 8834896A JP 8834896 A JP8834896 A JP 8834896A JP H09283955 A JPH09283955 A JP H09283955A
Authority
JP
Japan
Prior art keywords
thermal conductivity
heat dissipation
carbon fiber
heat
dissipation sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8834896A
Other languages
Japanese (ja)
Inventor
Susumu Kajita
進 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8834896A priority Critical patent/JPH09283955A/en
Publication of JPH09283955A publication Critical patent/JPH09283955A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat radiation sheet of high heat conductivity. SOLUTION: A graphite carbon fiber 1 whose average aspect ratio is below 3 is dispersed in a matrix resin 2 to form a heat radiation sheet A. The graphite carbon fiber 1 can be dispersed in the matrix resin 2 so that its fiber longitudinal direction gets in random direction. As a result, though there is anisotropy in heat conductivity in the graphite carbon fiber 1, the heat radiation sheet A whose heat conductivity in its thickness direction is equal to that in its surface direction perpendicular to the thickness direction is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品等と放熱
器との間に配置され、電子部品等から発生する熱を放熱
器に伝えて放熱するために使用される放熱シートに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat radiating sheet which is arranged between an electronic component and the like and a heat radiator and which is used for transmitting heat generated from the electronic component and the like to the heat radiator and radiating the heat. .

【0002】[0002]

【従来の技術】近年、パーソナルコンピュータ(パソコ
ン)やワークステーションなどの著しい進化や普及と共
に、これらに使用されるマイクロプロセッサー(MP
U)の高性能化が進んでいる。しかし、トランジスタ集
積度やクロック周波数の増加によるMPUの高性能化が
進む一方で、それに伴うMPUからの発熱量の増加をど
う処理するかが深刻な問題となりつつある。この対策と
して、動作電圧の低減やMPUの未使用部分への電力供
給カットなど、さまざまな方策がチップメーカーにより
検討されているが、これにもかかわらず高性能化による
発熱量の増加が年々進んでいるのが実情である。
2. Description of the Related Art In recent years, with the remarkable evolution and popularization of personal computers (PCs) and workstations, microprocessors (MP
U) is improving its performance. However, while the performance of MPUs is increasing due to the increase in transistor integration and the clock frequency, how to deal with the increase in the amount of heat generated by the MPUs is becoming a serious problem. As measures against this, various measures such as reduction of operating voltage and cutting of power supply to unused parts of MPU are being considered by chip makers, but nevertheless, the increase in heat generation due to higher performance is advancing year by year. The reality is that

【0003】一方、半導体のパッケージングなどに用い
る放熱器は様々な工夫がなされており、例えば、放熱効
率を上げるために、通風効率を考慮しながら表面積を大
きくしたアルミニウム放熱フィンや、このアルミニウム
放熱フィンに小型ファンモーターを組み合わせたものな
どが開発され、実用化されている。そして、従来は放熱
器が不要であったMPUについても、上記のように発熱
量の増加によって、放熱器を用いなければ放熱し切れな
くなっている。すなわち、MPUの表面に放熱器を設
け、MPUから発熱される熱を放熱器から放熱させるよ
うにしている。
On the other hand, radiators used for semiconductor packaging and the like have been devised in various ways. For example, in order to improve heat radiation efficiency, aluminum heat radiation fins having a large surface area while taking ventilation efficiency into consideration, and this aluminum heat radiation are used. A combination of fins and a small fan motor has been developed and put into practical use. Even in the MPU that does not require a radiator in the past, due to the increase in the amount of heat generated as described above, heat cannot be completely radiated without using the radiator. That is, a radiator is provided on the surface of the MPU so that the heat generated by the MPU is radiated from the radiator.

【0004】このように放熱のためにMPUなどの電子
部品に放熱器を設けるにあたって、通常は電子部品と放
熱器との間に放熱シートを配置する。電子部品と放熱器
とを直接接合すると、放熱器の接合面の微小な反りやう
ねりから、電子部品と放熱器の間に空隙が生じ、この空
隙が熱伝導の大きな抵抗となる。このために、電子部品
と放熱器の間に放熱シートを配置して放熱器の接合面の
微小な反りやうねりに沿わせることによって、電子部品
と放熱器の間に空隙が生じることを防ぐようにしている
のである。
When a radiator is provided on an electronic component such as an MPU for heat dissipation as described above, a radiator sheet is usually arranged between the electronic component and the radiator. When the electronic component and the radiator are directly joined, a gap is generated between the electronic component and the radiator due to a slight warp or undulation of the joint surface of the radiator, and this void becomes a large resistance for heat conduction. For this reason, a heat dissipation sheet is placed between the electronic parts and the heat sink to prevent the formation of voids between the electronic parts and the heat sink by following the slight warpage or undulation of the joint surface of the heat sink. I am doing it.

【0005】放熱シートとしては、柔軟性を持ったゴム
性状のものや、両面に接着剤をコーティングしたテープ
状のものなどがあるが、放熱シートの熱伝導率を上げる
ために、特開平3−151658号公報等で提供されて
いるように窒化ホウ素(BN)やアルミナなどの無機フ
ィラーをマトリックス樹脂に混合分散することが行なわ
れている。特に発熱量の大きい高性能MPUには無機フ
ィラーを配合して高熱伝導率化が図られた放熱シートを
介して放熱器を取り付けることがなされている。
As the heat dissipation sheet, there are a flexible rubber-like one and a tape-like one having both sides coated with an adhesive. In order to increase the heat conductivity of the heat dissipation sheet, Japanese Patent Laid-Open No. As disclosed in Japanese Patent No. 151658, etc., an inorganic filler such as boron nitride (BN) or alumina is mixed and dispersed in a matrix resin. Particularly, a high-performance MPU that generates a large amount of heat has been incorporated with an inorganic filler to attach a radiator via a heat-dissipating sheet having a high thermal conductivity.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述の
ようにMPUの発熱量は益々増加していく傾向にあり、
またノートパソコンやサブノートパソコンに代表される
ように電子機器の小型化も進行しており、MPUなどの
電子部品を非常に狭いスペースに納めなければならない
というニーズも増加しており、あまり大きな放熱器を取
り付けることができず、放熱のためのスペースを大きく
取ることができない場合が多い。
However, as mentioned above, the calorific value of the MPU tends to increase more and more,
In addition, the miniaturization of electronic devices such as notebook PCs and sub-notebook PCs is progressing, and the need to store electronic parts such as MPU in a very narrow space is also increasing. In many cases, it is not possible to attach a container and take a large space for heat dissipation.

【0007】従ってMPU等の電子部品から発生した熱
をできるだけ効率良く放熱器から放熱することができる
ようにする必要があり、このためには、電子部品と放熱
器との間に介在される放熱シートの熱抵抗をできるだけ
低減して、電子部品から放熱器への熱伝導の効率を高め
る必要がある。つまり放熱シートの熱伝導率をできるだ
け高くする必要がある。
Therefore, it is necessary to dissipate the heat generated from the electronic components such as MPU from the radiator as efficiently as possible. For this purpose, the heat radiation interposed between the electronic components and the radiator is required. It is necessary to reduce the thermal resistance of the sheet as much as possible to improve the efficiency of heat conduction from the electronic components to the radiator. That is, it is necessary to increase the thermal conductivity of the heat dissipation sheet as much as possible.

【0008】しかし、特開平3−151658号公報等
で提供されている、無機フィラーとして窒化ホウ素を混
入した放熱シートの熱伝導率は4W/mK程度であり、
現時点ではもはや十分であるとはいえない。本発明は上
記の点に鑑みてなされたものであり、熱伝導性の高い放
熱シートを提供することを目的とするものである。
However, the heat conductivity of the heat dissipation sheet provided with Japanese Patent Application Laid-Open No. 3-151658, in which boron nitride is mixed as an inorganic filler, is about 4 W / mK,
At this point it is no longer sufficient. The present invention has been made in view of the above points, and an object thereof is to provide a heat dissipation sheet having high thermal conductivity.

【0009】[0009]

【課題を解決するための手段】本発明に係る放熱シート
は、平均アスペクト比(繊維長/繊維径)が3未満の黒
鉛質炭素繊維をマトリックス樹脂中に分散させて形成さ
れたことを特徴とするものである。また請求項2の発明
は、黒鉛質炭素繊維の繊維長方向の熱伝導率が100W
/mK以上であることを特徴とするものである。
The heat dissipation sheet according to the present invention is characterized in that it is formed by dispersing graphite carbon fibers having an average aspect ratio (fiber length / fiber diameter) of less than 3 in a matrix resin. To do. The invention according to claim 2 has a thermal conductivity of 100 W in the fiber length direction of the graphitic carbon fiber.
/ MK or more.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。本発明では無機質フィラーとして、窒化ホウ素や
アルミナ等よりも高熱伝導率を有する黒鉛質炭素繊維を
用いる。黒鉛質炭素繊維は、石油ピッチもしくは石炭ピ
ッチのうち、異方性ピッチを原料として、熔融紡糸、不
融化、炭化などの工程を経て、最終的に1600℃〜3
000℃程度の高温で熱処理することによって黒鉛化し
て製造されている。この高温での熱処理によって、黒鉛
結晶の層間隔が狭くなると共に同時に結晶子の大きさが
大きくなり、黒鉛の熱伝導性や電気伝導性が高くなるこ
とが知られている。
Embodiments of the present invention will be described below. In the present invention, graphitic carbon fiber having a higher thermal conductivity than boron nitride, alumina, etc. is used as the inorganic filler. Graphite carbon fiber is made from anisotropic pitch of petroleum pitch or coal pitch as a raw material, and undergoes processes such as melt spinning, infusibilization, and carbonization, and finally 1600 ° C to 3 ° C.
It is manufactured by graphitizing by heat treatment at a high temperature of about 000 ° C. It is known that the heat treatment at this high temperature narrows the layer spacing of the graphite crystals and at the same time increases the size of the crystallites, thereby increasing the thermal conductivity and electrical conductivity of the graphite.

【0011】またピッチを出発原料として用いるものと
は別に、気相成長により黒鉛質炭素繊維を合成する方法
もあり、気相成長炭素繊維(VGCF:Vaper−G
rown Carbon−Fiber)として知られて
いる。これは炭化水素ガスを鉄などの遷移金属を触媒と
して熱分解し、繊維状の炭素として成長させるものであ
り、上記のピッチ系の黒鉛質炭素繊維と同様に熱処理す
ることによって黒鉛化させるが、このものも熱処理温度
が高い程、熱伝導性が向上する傾向がある。
In addition to the method of using pitch as a starting material, there is also a method of synthesizing graphitic carbon fiber by vapor phase growth, such as vapor phase grown carbon fiber (VGCF: Vaper-G).
It is known as a row carbon-fiber). This is to pyrolyze a hydrocarbon gas using a transition metal such as iron as a catalyst and grow it as fibrous carbon, which is graphitized by heat treatment similar to the above pitch-based graphitic carbon fiber. Also in this case, the higher the heat treatment temperature, the higher the thermal conductivity tends to be.

【0012】上記のように黒鉛質炭素繊維の熱伝導率は
出発原料や調製方法、熱処理温度によって変わってくる
ものであり、各種の熱伝導率の黒鉛質炭素繊維が市販品
として提供されている。また、黒鉛質炭素繊維は熱伝導
率に異方性があるという特徴がある。黒鉛の結晶の基本
的な構造は図2に示すように、炭素原子からなる正六角
環がその平面上で多数連なって巨大な網状平面を作り、
この網状平面が平行に積み重なった層状構造をとってい
る。そして黒鉛質炭素繊維の熱伝導率は、この正六角環
の網状平面の方向(図2のa−b方向)が高く、網状平
面と垂直な方向、すなわち層が積み重なる方向(図2の
c方向)が低くなっている。網状平面と垂直な方向の熱
伝導率は網状平面の方向の熱伝導率に比べて200分の
1から400分の1程度であるといわれている。例え
ば、黒鉛の結晶が理想的な状態に近いものでは、網状平
面の方向の熱伝導率が300Kで1950W/mKであ
るのに対して、網状平面と垂直な方向の熱伝導率は5.
7W/mKであるという報告がある。
As described above, the thermal conductivity of the graphitic carbon fiber varies depending on the starting material, the preparation method, and the heat treatment temperature. Graphitic carbon fibers having various thermal conductivities are commercially available. . Further, the graphitic carbon fiber has a characteristic that the thermal conductivity is anisotropic. As shown in Fig. 2, the basic structure of a graphite crystal is that a large number of regular hexagonal rings of carbon atoms are connected in a row to form a huge mesh plane.
It has a layered structure in which the mesh planes are stacked in parallel. The thermal conductivity of the graphitic carbon fiber is high in the direction of the mesh plane of the regular hexagonal ring (the ab direction in FIG. 2) and in the direction perpendicular to the mesh plane, that is, the direction in which the layers are stacked (the c direction in FIG. 2). ) Is low. It is said that the heat conductivity in the direction perpendicular to the mesh plane is about 1/200 to 1/400 of the heat conductivity in the direction of the mesh plane. For example, when the graphite crystal is close to an ideal state, the thermal conductivity in the direction of the mesh plane is 1950 W / mK at 300K, whereas the thermal conductivity in the direction perpendicular to the mesh plane is 5.
There is a report that it is 7 W / mK.

【0013】一方、黒鉛質炭素繊維の場合、繊維の長手
方向(繊維長方向)は、黒鉛の結晶の上記の正六角環の
網状平面の方向(図2のa−b方向)と一致し、繊維の
径方向は、網状平面と垂直な方向(図2のc方向)と一
致する。従って、黒鉛質炭素繊維では繊維長方向の熱伝
導率は高く、繊維径方向の熱伝導率は低く、例えば繊維
長方向の熱伝導率が1000W/mKであっても、繊維
径方向は5W/mK以下程度の熱伝導率しか得られない
場合がある。
On the other hand, in the case of the graphitic carbon fiber, the longitudinal direction of the fiber (fiber length direction) coincides with the direction of the mesh plane of the regular hexagonal ring of the graphite crystal (direction ab in FIG. 2), The radial direction of the fiber coincides with the direction perpendicular to the mesh plane (direction c in FIG. 2). Therefore, in the graphitic carbon fiber, the thermal conductivity in the fiber length direction is high and the thermal conductivity in the fiber diameter direction is low. For example, even if the thermal conductivity in the fiber length direction is 1000 W / mK, the fiber diameter direction is 5 W / mK. In some cases, only thermal conductivity of about mK or less can be obtained.

【0014】黒鉛質炭素繊維はこのように異方性はある
が、熱伝導率が極めて高いということも特徴である。す
なわち、現在市販されている窒化ホウ素は62W/mK
程度の熱伝導率である。これに対して、黒鉛質炭素繊維
の熱伝導率は既述のように熱処理温度などの諸条件で変
わってくるが、例えば石油ピッチを出発原料とし、30
00℃で熱処理を施したものでは、繊維長方向の熱伝導
率が1000W/mK程度の高い熱伝導率になる。
Although the graphitic carbon fiber has anisotropy as described above, it is also characterized in that the thermal conductivity is extremely high. That is, the currently commercially available boron nitride is 62 W / mK
Degree of thermal conductivity. On the other hand, the thermal conductivity of the graphitic carbon fiber changes depending on various conditions such as the heat treatment temperature as described above.
When the heat treatment is performed at 00 ° C., the thermal conductivity in the fiber length direction is as high as about 1000 W / mK.

【0015】従って、このような高い熱伝導率を有する
黒鉛質炭素繊維を粉砕したミルドをマトリックス樹脂に
混入することによって、熱伝導率の高い放熱シートを得
ることができるが、黒鉛質炭素繊維の熱伝導率には異方
性があるので、黒鉛質炭素繊維のマトリックス樹脂中で
の配向性が重要となる。すなわち、放熱シートは通常、
電子部品などの発熱体と放熱器との間に挟んで使用され
るために、放熱シートの熱伝導性は面方向よりも厚み方
向で重要であり、放熱シートの面方向の熱伝導率が低く
ても、放熱シートの厚み方向の熱伝導率が高ければ、電
子部品などの発熱体からの熱は疎外を余り受けることな
しに放熱器にスムーズに伝えられ、放熱器から効率良く
放熱される。このことからして、黒鉛質炭素繊維の熱伝
導率の高い方向、すなわち繊維長方向が放熱シートの厚
み方向に平行に並ぶように配向させるのが良いことが分
かる。
Therefore, a heat dissipation sheet having a high thermal conductivity can be obtained by mixing a milled material obtained by crushing such a graphite carbon fiber having a high thermal conductivity with a matrix resin. Since the thermal conductivity is anisotropic, the orientation of the graphitic carbon fiber in the matrix resin is important. That is, the heat dissipation sheet is usually
Since it is used by sandwiching it between a heat generator such as an electronic component and a radiator, the heat conductivity of the heat dissipation sheet is more important in the thickness direction than in the surface direction, and the heat conductivity in the surface direction of the heat dissipation sheet is low. However, if the heat dissipation sheet has a high thermal conductivity in the thickness direction, the heat from the heating element such as an electronic component can be smoothly transferred to the radiator without being largely subjected to alienation, and the heat can be efficiently radiated from the radiator. From this, it can be seen that it is preferable to orient the graphite carbon fibers so that the direction in which the thermal conductivity is high, that is, the fiber length direction is aligned parallel to the thickness direction of the heat dissipation sheet.

【0016】しかし現実的には、放熱シートの厚み方向
と平行に黒鉛質炭素繊維の繊維方向を並べるのは非常に
困難である。すなわち、黒鉛質炭素繊維を粉砕したミル
ドをマトリックス樹脂と混練し、ドクターブレード法な
どで図1(a)に示すような放熱シートAを成形した場
合、黒鉛質炭素繊維1はマトリックス樹脂2の成形の際
の流れ方向に従って配向し、図1(b)のように黒鉛質
炭素繊維1の殆どはその繊維長方向が放熱シートAの厚
み方向(図1(a)のz方向)とは垂直な放熱シートA
の面方向(図1(a)のx−y方向)を向くように配向
してしまう。これはマトリックス樹脂2の流動に対して
抵抗となる黒鉛質炭素繊維1が、最も抵抗の少ない方向
に向こうとするからであり、この配向の傾向は黒鉛質炭
素繊維1のアスペクト比(繊維長/繊維径)が大きい
程、大きくなる。従って、放熱シートAの厚み方向には
黒鉛質炭素繊維1の熱伝導率が低い繊維径方向が配向
し、放熱シートAの面方向には黒鉛質炭素繊維1の熱伝
導率が高い繊維長方向が配向することになり、この結
果、例えば繊維径が10μm、繊維長が50μm以上、
つまりアスペクト比が5以上の黒鉛質炭素繊維1を用い
た場合、放熱シートAの熱伝導率は、厚み方向が面方向
の1/10以下になり、厚み方向に熱伝導性の高い放熱
シートAを得ることは難しい。
However, in reality, it is very difficult to arrange the graphite carbon fibers in the fiber direction parallel to the thickness direction of the heat dissipation sheet. That is, when the milled crushed graphitic carbon fiber is kneaded with the matrix resin and the heat dissipation sheet A as shown in FIG. 1 (a) is molded by the doctor blade method or the like, the graphitic carbon fiber 1 is molded into the matrix resin 2. 1B, most of the graphite carbon fibers 1 have a fiber length direction perpendicular to the thickness direction of the heat dissipation sheet A (z direction in FIG. 1A), as shown in FIG. 1B. Heat dissipation sheet A
Will be oriented so as to face the surface direction (x-y direction in FIG. 1A). This is because the graphitic carbon fiber 1 that is resistant to the flow of the matrix resin 2 tends to move in the direction of the least resistance, and this orientation tendency is due to the aspect ratio of the graphitic carbon fiber 1 (fiber length / fiber length / The larger the fiber diameter, the larger. Therefore, in the thickness direction of the heat dissipation sheet A, the fiber diameter direction in which the thermal conductivity of the graphite carbon fiber 1 is low is oriented, and in the surface direction of the heat dissipation sheet A, the direction of the fiber length in which the thermal conductivity of the graphite carbon fiber 1 is high. Are oriented, and as a result, for example, the fiber diameter is 10 μm, the fiber length is 50 μm or more,
That is, when the graphitic carbon fiber 1 having an aspect ratio of 5 or more is used, the heat conductivity of the heat dissipation sheet A becomes 1/10 or less in the thickness direction and the heat dissipation sheet A having high heat conductivity in the thickness direction. Hard to get.

【0017】このような問題に対して、前述の特開平3
−151658号公報において、フィラーの長手方向を
放熱シートの厚み方向に配向させる方法が提案されてい
る。その第一の方法は、マトリックス樹脂とフィラーと
の混練物を押出機によりシート状に押し出し、この押し
出したシートを厚み方向と平行にスライスした後、スラ
イス面でプレスして放熱シートに成形する方法であり、
第二の方法は、マトリックス樹脂100重量部に対して
フィラーを200重量部以上配合して混練することによ
ってフィラーの外周にマトリックス樹脂をコーティング
された粉末ゴム状成形材料を作製し、これを金型に入れ
て厚み方向と垂直な方向に圧力をかけて成形するという
方法である。これらの方法によってフィラーの長手方向
を放熱シートの厚み方向に配向させることは可能であ
る。しかしながら、第一の方法では、押出成形、スライ
ス、プレスと幾つもの工程を必要として生産効率が悪
く、また第二の方法では厚み方向と垂直な方向に圧力を
かけて成形するために例えば厚みが0.2mm程度の薄
い放熱シートを成形することは非常に困難であり、いず
れも放熱シートを製造する方法としては実用的ではな
い。
With respect to such a problem, the above-mentioned Japanese Patent Laid-Open No. Hei 3
No. 151,658 proposes a method of orienting the longitudinal direction of the filler in the thickness direction of the heat dissipation sheet. The first method is a method of extruding a kneaded product of a matrix resin and a filler into a sheet shape by an extruder, slicing the extruded sheet in parallel with the thickness direction, and pressing the sliced surface to form a heat dissipation sheet. And
In the second method, 200 parts by weight or more of a filler is mixed with 100 parts by weight of a matrix resin and kneaded to prepare a powdery rubber-like molding material in which the outer periphery of the filler is coated with a matrix resin, and the powder rubber-like molding material is used in a mold It is a method of putting in and molding in a direction perpendicular to the thickness direction. By these methods, the longitudinal direction of the filler can be oriented in the thickness direction of the heat dissipation sheet. However, the first method requires several steps such as extrusion molding, slicing, and pressing, resulting in poor production efficiency, and the second method involves applying pressure in a direction perpendicular to the thickness direction, so that, for example, the thickness is It is very difficult to mold a thin heat dissipation sheet of about 0.2 mm, and neither is practical as a method for manufacturing the heat dissipation sheet.

【0018】そこで本発明者は、熱伝導率に異方性のあ
る黒鉛質炭素繊維1を、放熱シートAの厚み方向に繊維
長方向を配向させる非実用的な方法を採用するのではな
く、繊維長方向がランダムな方向に向くようにすること
によって、厚み方向の熱伝導率が高い放熱シートAを得
るようにした。マトリックス樹脂2中で黒鉛質炭素繊維
1がその繊維長方向がランダムな方向を向くように混入
された図1(c)の放熱シートAは、その厚み方向(図
1(a)のz方向)の熱伝導率は厚み方向と垂直な面方
向(図1(a)のx−y方向)の熱伝導率と等しくなる
が、黒鉛質炭素繊維1の繊維長方向が厚み方向と垂直な
方向に配向する図1(b)の放熱シートAに比べて、厚
み方向の熱伝導率ははるかに高い値が得られるものであ
り、しかも黒鉛質炭素繊維1は窒化ホウ素等よりも熱伝
導率の高いものが得られるので、従来のものよりも厚み
方向の熱伝導率が高い放熱シートAを得ることができる
のである。
Therefore, the inventor of the present invention does not adopt an impractical method of orienting the graphite carbon fiber 1 having anisotropy in thermal conductivity in the fiber length direction in the thickness direction of the heat dissipation sheet A. The heat dissipation sheet A having a high thermal conductivity in the thickness direction was obtained by making the fiber length directions randomly oriented. The heat dissipation sheet A of FIG. 1 (c), in which the graphite carbon fibers 1 are mixed in the matrix resin 2 so that the fiber length directions thereof are randomly oriented, is the thickness direction (z direction of FIG. 1 (a)). The thermal conductivity of is equal to the thermal conductivity in the plane direction perpendicular to the thickness direction (xy direction in FIG. 1A), but the fiber length direction of the graphitic carbon fiber 1 is in the direction perpendicular to the thickness direction. The heat conductivity in the thickness direction is much higher than that of the oriented heat dissipation sheet A of FIG. 1B, and the graphite carbon fiber 1 has a higher heat conductivity than boron nitride or the like. Thus, the heat dissipation sheet A having a higher thermal conductivity in the thickness direction than the conventional one can be obtained.

【0019】ここで既述のように、黒鉛質炭素繊維のア
スペクト比が大きい程、黒鉛質炭素繊維はマトリックス
樹脂の成形時の流れ方向に配向する傾向が高くなる。そ
こで本発明者は、黒鉛質炭素繊維を平均アスペクト比が
3未満になるように調整しておき、この黒鉛質炭素繊維
をマトリックス樹脂に混練して用いることによって、放
熱シートAを成形する際にマトリックス樹脂の流れに黒
鉛質炭素繊維の向きが影響を受けず、黒鉛質炭素繊維は
その繊維長方向がランダムな方向に向くことを、実験的
に確認して本発明を完成したものである。
As described above, the larger the aspect ratio of the graphite carbon fiber, the higher the tendency of the graphite carbon fiber to be oriented in the flow direction during the molding of the matrix resin. Therefore, the present inventor has adjusted the graphite carbon fiber so that the average aspect ratio is less than 3, and kneads the graphite carbon fiber with the matrix resin to use it when molding the heat dissipation sheet A. The present invention has been completed by experimentally confirming that the direction of the graphitic carbon fibers is not affected by the flow of the matrix resin and the fiber length directions of the graphitic carbon fibers are randomly oriented.

【0020】この平均アスペクト比が3未満の黒鉛質炭
素繊維としては、黒鉛質炭素繊維のストランド等を粉砕
して得たものを使用するこができるが、石油や石炭のメ
ソフェーズピッチから得られるメソフェーズ小球体の黒
鉛化物を使用することもできるものであり、このものは
形状が球体であるのでアスペクト比は1である。また繊
維径よりも繊維長が短いアスペクト比が1未満の黒鉛質
炭素繊維も用いることができるのはいうまでもない。従
って本発明において平均アスペクト比の下限は特に設定
されないが、実用的には平均アスペクト比0.5程度を
下限とするのがよい。
As the graphitic carbon fibers having an average aspect ratio of less than 3, those obtained by crushing strands of the graphitic carbon fibers can be used, but mesophase obtained from mesophase pitch of petroleum or coal. It is also possible to use a graphitized product of small spheres, which has a spherical shape and thus has an aspect ratio of 1. Needless to say, a graphitic carbon fiber having a fiber length shorter than the fiber diameter and an aspect ratio of less than 1 can also be used. Therefore, the lower limit of the average aspect ratio is not particularly set in the present invention, but it is practically preferable to set the average aspect ratio to about 0.5 as the lower limit.

【0021】また既述のように、黒鉛質炭素繊維の熱伝
導率は出発原料や調製方法、熱処理温度によって変わっ
てくるが、本発明では繊維長方向の熱伝導率が100W
/mK以上の黒鉛質炭素繊維を用いるのが好ましい。繊
維長方向の熱伝導率が100W/mK未満の黒鉛質炭素
繊維を用いた場合には、無機フィラーとして窒化ホウ素
を使用したものと有意な差を出すことが難しくなる。黒
鉛質炭素繊維の熱伝導率が高ければ高い程、放熱シート
Aの熱伝導率も高めることができるので、黒鉛質炭素繊
維の熱伝導率の上限は特に設定されるものではないが、
黒鉛質炭素繊維の繊維長方向の熱伝導率が2000W/
mK以上を超えるものを製造することは難しく、実用的
にはこれが上限である。
As described above, the thermal conductivity of the graphitic carbon fiber varies depending on the starting material, the preparation method and the heat treatment temperature, but in the present invention, the thermal conductivity in the fiber length direction is 100 W.
It is preferable to use a graphitic carbon fiber of / mK or more. When a graphitic carbon fiber having a thermal conductivity in the fiber length direction of less than 100 W / mK is used, it becomes difficult to obtain a significant difference from the one using boron nitride as the inorganic filler. The higher the thermal conductivity of the graphitic carbon fiber, the higher the thermal conductivity of the heat dissipation sheet A, so the upper limit of the thermal conductivity of the graphitic carbon fiber is not particularly set,
The thermal conductivity of graphite carbon fiber in the fiber length direction is 2000 W /
It is difficult to manufacture those having a mK of more than mK, and this is the upper limit for practical use.

【0022】一方、マトリックス樹脂としては可撓性を
有するものを用いる必要がある。放熱シートはMPUな
どの電子部品と放熱器との間に挟み込んで使用すること
によって、電子部品と放熱器との間に空隙が生じないよ
うにすると共に、電子部品と放熱器との間に生じる熱的
な応力や放熱器から電子部品への振動などを吸収・緩衝
することを重要な役割としているものであり、外的な力
に対して放熱シートAを変形させるためにマトリックス
樹脂として可撓性を有するものを用いるのである。
On the other hand, it is necessary to use a flexible matrix resin. By using the heat dissipation sheet by sandwiching it between an electronic component such as MPU and the radiator, a space is not generated between the electronic component and the radiator, and the heat dissipation sheet is generated between the electronic component and the radiator. It plays an important role in absorbing and buffering thermal stress and vibration from the radiator to the electronic components, and is flexible as a matrix resin to deform the radiator sheet A against external force. The one that has the property is used.

【0023】このようなマトリックス樹脂としては特に
限定するものではないが、柔軟性に優れているという点
でシリコーンゲルもしくはシリコーンゴムなどが好まし
く、その他、ポリブタジエン系、ブタジエンスチレン
系、ブタジエンアクリロニトリル系、ポリクロロプレン
系、ポリイソプレン系、クロルスルホン化ポリエチレン
系、ポリイソブチレン系、イソブチレンイソプレン系、
アクリル系、多硫化系、ウレタン系、フッ素系などの合
成ゴムを例示することができる。
The matrix resin is not particularly limited, but silicone gel or silicone rubber is preferable because of its excellent flexibility, and other polybutadiene, butadiene styrene, butadiene acrylonitrile, poly, etc. Chloroprene type, polyisoprene type, chlorosulfonated polyethylene type, polyisobutylene type, isobutylene isoprene type,
Acrylic, polysulfide, urethane, and fluorine-based synthetic rubbers can be exemplified.

【0024】マトリックス樹脂に混合する黒鉛質炭素繊
維の量については、黒鉛質炭素繊維の量が多いほうが熱
伝導率が高くなるが、黒鉛質炭素繊維の量が多くなり過
ぎると放熱シートの成形性や強度に問題が生じる。従っ
て、限定する趣旨ではないが、熱伝導率と成形性や強度
のバランスを考慮すると、マトリックス樹脂に対して黒
鉛質炭素繊維を20〜70vol%の範囲で混合するの
が好ましく、40〜60vol%の範囲がより好まし
い。
Regarding the amount of the graphitic carbon fiber mixed in the matrix resin, the larger the amount of the graphitic carbon fiber is, the higher the thermal conductivity is. However, when the amount of the graphitic carbon fiber is too large, the formability of the heat dissipation sheet is improved. And strength problems occur. Therefore, although not intended to be limited, it is preferable to mix the graphitic carbon fiber in the range of 20 to 70 vol% with respect to the matrix resin in consideration of the balance between the thermal conductivity and the formability and strength, and 40 to 60 vol%. Is more preferable.

【0025】そして、マトリックス樹脂に黒鉛質炭素繊
維を混合して混練し、これをシート成形することによっ
て放熱シートを得ることができる。シート成形法として
は各種の工法を採用することができ、特に限定されない
が、薄い放熱シートの場合にはドクターブレード法やカ
レンダー成形法が適しており、厚い放熱シートの場合に
は押出成形法が適している。ドクターブレード法は例え
ば図3に示すようにしてシートを成形する方法である。
すなわち、コンベアベルト5の上にガラス板6を敷き並
べ、この上方にキャスティングヘッド7とブレード8と
を配置し、キャスティングヘッド7とブレード8の間に
マトリックス樹脂に黒鉛質炭素繊維を混合して調製した
スラリー9を供給する。そしてコンベアベルト5の上に
ガラス板6を介して離型処理をしたPETフィルムなど
の離型フィルム10を供給し、図3の矢印のようにコン
ベアベルト5と共に送ってこの離型フィルム7をキャス
ティングヘッド7とブレード8の下側を通過させ、ブレ
ード8で厚みを調整しながら離型フィルム7の上に所定
厚みでスラリー9を塗布し、そしてこれを硬化させるこ
とによって放熱シートAを成形することができる。上記
のいずれの成形法においても、成形の際にマトリックス
樹脂はシートの面方向に流動されるので、黒鉛質炭素繊
維をランダムな向きに分散させた放熱シートを製造する
には、平均アスペクト比が3未満の黒鉛質炭素繊維を用
いる必要がある。
Then, the heat dissipation sheet can be obtained by mixing the matrix resin with the graphite carbon fiber, kneading the mixture, and forming the sheet into a sheet. As the sheet forming method, various construction methods can be adopted and are not particularly limited, but a doctor blade method and a calendar forming method are suitable for a thin heat dissipation sheet, and an extrusion forming method is used for a thick heat dissipation sheet. Is suitable. The doctor blade method is a method of forming a sheet as shown in FIG. 3, for example.
That is, glass plates 6 are laid side by side on a conveyor belt 5, a casting head 7 and a blade 8 are arranged above this, and a matrix resin is mixed with a graphitic carbon fiber between the casting head 7 and the blade 8. The prepared slurry 9 is supplied. Then, a release film 10 such as a PET film which has been subjected to a release treatment is supplied onto the conveyor belt 5 via a glass plate 6, and is sent together with the conveyor belt 5 as shown by an arrow in FIG. 3 to cast the release film 7. Forming the heat dissipation sheet A by passing the head 7 and the lower side of the blade 8 and applying the slurry 9 with a predetermined thickness on the release film 7 while adjusting the thickness with the blade 8 and curing the same. You can In any of the above-mentioned molding methods, the matrix resin is flown in the surface direction of the sheet at the time of molding, so to produce a heat-dissipating sheet in which graphite carbon fibers are dispersed in random directions, the average aspect ratio is It is necessary to use less than 3 graphitic carbon fibers.

【0026】[0026]

【実施例】以下、本発明を実施例によって例証する。 (実施例1)繊維長方向の熱伝導率が1000W/m
K、繊維径方向の熱伝導率が5W/mK、繊維径が10
μmで平均繊維長が10μmの黒鉛質炭素繊維(平均ア
スペクト比1)を用い、これを2液性付加反応型シリコ
ーンゲル(東レダウコーニングシリコーン株式会社製
「SE−1885」)に40vol%の配合量で混合し
て混練した。この混練スラリーを、表面に離型処理がさ
れたPETフィルムの上に流して図3に示すドクターブ
レード法により厚み0.5mmに成形し、そしてこれを
80℃で30分間硬化処理を施すことによって、放熱シ
ートを得た。
The present invention will now be illustrated by examples. (Example 1) The thermal conductivity in the fiber length direction is 1000 W / m.
K, thermal conductivity in the fiber diameter direction is 5 W / mK, fiber diameter is 10
Graphite carbon fiber having an average fiber length of 10 μm and an average aspect ratio of 1 μm was used, and 40 vol% of this was added to a two-component addition reaction type silicone gel (“SE-1885” manufactured by Toray Dow Corning Silicone Co., Ltd.). The amounts were mixed and kneaded. By pouring this kneading slurry onto a PET film having a release treatment on its surface to form a thickness of 0.5 mm by the doctor blade method shown in FIG. 3, and subjecting this to a curing treatment at 80 ° C. for 30 minutes. , Got the heat dissipation sheet.

【0027】(実施例2)繊維長方向の熱伝導率が10
00W/mK、繊維径方向の熱伝導率が5W/mK、繊
維径が10μmで平均繊維長が25μmの黒鉛質炭素繊
維を(平均アスペクト比2.5)用いるようにした他
は、実施例1と同様にして放熱シートを得た。
Example 2 The thermal conductivity in the fiber length direction is 10
Example 1 except that a graphite carbon fiber having an average thermal fiber length of 00 W / mK, a thermal conductivity of 5 W / mK in the fiber radial direction, a fiber diameter of 10 μm, and an average fiber length of 25 μm (average aspect ratio 2.5) was used. A heat dissipation sheet was obtained in the same manner as.

【0028】(実施例3)繊維長方向の熱伝導率が11
0W/mK、繊維径方向の熱伝導率が1W/mK、繊維
径が10μmで平均繊維長が10μmの黒鉛質炭素繊維
(平均アスペクト比1)を用いるようにした他は、実施
例1と同様にして放熱シートを得た。 (実施例4)繊維長方向の熱伝導率が80W/mK、繊
維径方向の熱伝導率が1W/mK、繊維径が10μmで
平均繊維長が10μmの黒鉛質炭素繊維(平均アスペク
ト比1)を用いる他は、実施例1と同様にして放熱シー
トを得た。
(Example 3) The thermal conductivity in the fiber length direction was 11
Same as Example 1 except that 0 W / mK, thermal conductivity in the fiber diameter direction of 1 W / mK, fiber diameter of 10 μm and average fiber length of 10 μm were used for the graphitic carbon fiber (average aspect ratio 1). A heat dissipation sheet was obtained. Example 4 Graphite carbon fiber having a thermal conductivity of 80 W / mK in the fiber length direction, a thermal conductivity of 1 W / mK in the fiber diameter direction, a fiber diameter of 10 μm and an average fiber length of 10 μm (average aspect ratio 1). A heat dissipation sheet was obtained in the same manner as in Example 1 except that was used.

【0029】(比較例1)繊維長方向の熱伝導率が10
00W/mK、繊維径方向の熱伝導率が5W/mK、繊
維径が10μmで平均繊維長が100μmの黒鉛質炭素
繊維(平均アスペクト比10)を用いるようにした他
は、実施例1と同様にして放熱シートを得た。
Comparative Example 1 The thermal conductivity in the fiber length direction is 10
The same as Example 1 except that the graphite carbon fiber (average aspect ratio 10) of 00 W / mK, thermal conductivity of 5 W / mK in the fiber diameter direction, fiber diameter of 10 μm and average fiber length of 100 μm was used. A heat dissipation sheet was obtained.

【0030】(比較例2)熱伝導率が62W/mK、平
均粒径が10μmの窒化ホウ素粉を用い、これを実施例
1と同じ2液性付加反応型シリコーンゲルに40vol
%の配合量で混合して混練した。この混練物を、表面に
離型処理がされたPETフィルムを用いて、カレンダー
成形法により厚み0.5mmに成形し、そしてこれを8
0℃で30分間硬化処理を施すことによって、放熱シー
トを得た。
Comparative Example 2 Boron nitride powder having a thermal conductivity of 62 W / mK and an average particle size of 10 μm was used. The same two-component addition reaction type silicone gel as in Example 1 was mixed with 40 vol.
% And mixed and kneaded. This kneaded material was molded into a thickness of 0.5 mm by a calender molding method using a PET film having a surface subjected to a mold release treatment,
A heat dissipation sheet was obtained by performing a curing treatment at 0 ° C. for 30 minutes.

【0031】上記のように実施例1〜4及び比較例1,
2について、放熱シートの厚み方向(図1(a)のz方
向)、と面方向(図1(a)のx−y方向)の熱伝導率
をJIS A 1412に規定される平板比較法に基づ
いて測定した。結果を表1に示す。
As described above, Examples 1 to 4 and Comparative Example 1,
Regarding No. 2, the thermal conductivity in the thickness direction (z direction of FIG. 1A) and the plane direction (xy direction of FIG. 1A) of the heat dissipation sheet was compared with the flat plate comparison method defined in JIS A 1412. It measured based on. The results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1にみられるように、平均アスペクト比
が10の黒鉛質炭素繊維を用いた比較例1のものは、黒
鉛質炭素繊維が配向するために放熱シートの厚み方向の
熱伝導率が低いが、平均アスペクト比が3未満の黒鉛質
炭素繊維を用いた各実施例のものは、放熱シートの厚み
方向と面方向の熱伝導率が近くなっており、放熱シート
の厚み方向の熱伝導率は十分なものであった。また実施
例3,4及び比較例2を比較すると、黒鉛質炭素繊維と
して繊維長方向の熱伝導率が100W/mK以上のもの
を用いるのが好ましいことが確認される。
As can be seen from Table 1, in Comparative Example 1 using the graphitic carbon fibers having an average aspect ratio of 10, the thermal conductivity in the thickness direction of the heat dissipation sheet is due to the orientation of the graphitic carbon fibers. The heat conductivity in the thickness direction of the heat dissipation sheet is close to the heat conductivity in the thickness direction of the heat dissipation sheet in each of the examples using the graphite carbon fibers having a low average aspect ratio of less than 3. The rate was sufficient. Further, when Examples 3 and 4 and Comparative Example 2 are compared, it is confirmed that it is preferable to use a graphite carbon fiber having a thermal conductivity of 100 W / mK or more in the fiber length direction.

【0034】[0034]

【発明の効果】上記のように本発明に係る放熱シート
は、平均アスペクト比が3未満の黒鉛質炭素繊維をマト
リックス樹脂中に分散させて形成するようにしたので、
成形の際のマトリックス樹脂の流れに黒鉛質炭素繊維の
向きが影響を受けなくなって、黒鉛質炭素繊維をその繊
維長方向がランダムな方向に向くようにマトリックス樹
脂中に分散させることができるものであり、黒鉛質炭素
繊維は熱伝導率に異方性があるにもかかわらず、厚み方
向の熱伝導率が厚み方向と垂直な面方向の熱伝導率と近
い放熱シートを得ることができるものであり、熱伝導率
の高い黒鉛質炭素繊維によって従来のものよりも厚み方
向の熱伝導率が高く、熱伝導性に優れた放熱シートを得
ることができるものである。
As described above, the heat dissipation sheet according to the present invention is formed by dispersing graphite carbon fibers having an average aspect ratio of less than 3 in a matrix resin.
The direction of the graphitic carbon fiber is not affected by the flow of the matrix resin during molding, and the graphitic carbon fiber can be dispersed in the matrix resin so that the fiber length direction is randomly oriented. However, even though the graphitic carbon fiber has anisotropy in thermal conductivity, it is possible to obtain a heat dissipation sheet whose thermal conductivity in the thickness direction is close to that in the plane direction perpendicular to the thickness direction. Therefore, the heat dissipation sheet having a higher thermal conductivity in the thickness direction than that of the conventional one can be obtained by the graphite carbon fiber having a high thermal conductivity, and the heat dissipation sheet can be obtained.

【0035】また黒鉛質炭素繊維として繊維長方向の熱
伝導率が100W/mK以上のものを用いることによっ
て、従来のものよりも厚み方向の熱伝導率が高い放熱シ
ートを確実に得ることができるものである。
By using a graphite carbon fiber having a thermal conductivity of 100 W / mK or more in the fiber length direction, it is possible to reliably obtain a heat dissipation sheet having a higher thermal conductivity in the thickness direction than the conventional one. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は放熱シートの斜視図、(b)は黒鉛質
炭素繊維の繊維長方向が面方向に配向した放熱シートの
断面図、(c)は黒鉛質炭素繊維の繊維長方向がランダ
ムな向きを向く放熱シートの断面図である。
1A is a perspective view of a heat-dissipating sheet, FIG. 1B is a cross-sectional view of a heat-dissipating sheet in which the fiber length direction of the graphitic carbon fiber is oriented in the plane direction, and FIG. 1C is a fiber length direction of the graphitic carbon fiber. FIG. 3 is a cross-sectional view of a heat dissipation sheet having random orientations.

【図2】黒鉛の結晶構造を示す図である。FIG. 2 is a diagram showing a crystal structure of graphite.

【図3】ドクターブレード法を示す概略図である。FIG. 3 is a schematic view showing a doctor blade method.

【符号の説明】[Explanation of symbols]

1 黒鉛質炭素繊維 2 マトリックス樹脂 A 放熱シート 1 Graphitic carbon fiber 2 Matrix resin A Heat dissipation sheet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均アスペクト比が3未満の黒鉛質炭素
繊維をマトリックス樹脂中に分散させて形成されたこと
を特徴とする放熱シート。
1. A heat dissipation sheet formed by dispersing graphite carbon fibers having an average aspect ratio of less than 3 in a matrix resin.
【請求項2】 黒鉛質炭素繊維の繊維長方向の熱伝導率
が100W/mK以上であることを特徴とする請求項1
に記載の放熱シート。
2. The thermal conductivity in the fiber length direction of the graphitic carbon fiber is 100 W / mK or more.
Heat dissipation sheet described in.
JP8834896A 1996-04-10 1996-04-10 Heat radiation sheet Withdrawn JPH09283955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8834896A JPH09283955A (en) 1996-04-10 1996-04-10 Heat radiation sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8834896A JPH09283955A (en) 1996-04-10 1996-04-10 Heat radiation sheet

Publications (1)

Publication Number Publication Date
JPH09283955A true JPH09283955A (en) 1997-10-31

Family

ID=13940337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8834896A Withdrawn JPH09283955A (en) 1996-04-10 1996-04-10 Heat radiation sheet

Country Status (1)

Country Link
JP (1) JPH09283955A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088249A (en) * 2000-09-12 2002-03-27 Polymatech Co Ltd Thermoconductive polymer composition and thermoconductive molded body
JP2002088250A (en) * 2000-09-12 2002-03-27 Polymatech Co Ltd Thermoconductive polymer composition and thermoconductive molded body
JP2002235279A (en) * 2001-02-08 2002-08-23 Showa Denko Kk Vapor-grown carbon fiber coated with electrical insulator, method for producing the same, and use thereof
EP1265281A2 (en) 2001-06-06 2002-12-11 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
JP2003509574A (en) * 1999-09-17 2003-03-11 ハネウエル・インターナシヨナル・インコーポレーテツド Compliant and crosslinkable thermal interface material
US6652958B2 (en) 2000-10-19 2003-11-25 Polymatech Co., Ltd. Thermally conductive polymer sheet
WO2003097736A1 (en) * 2002-05-16 2003-11-27 Bridgestone Corporation Rubber composition
US6794035B2 (en) 2001-10-02 2004-09-21 Polymatech Co., Ltd. Graphitized carbon fiber powder and thermally conductive composition
JP2006137860A (en) * 2004-11-12 2006-06-01 Hitachi Chem Co Ltd Thermal conductive sheet
WO2006126606A1 (en) * 2005-05-26 2006-11-30 Techno Polymer Co., Ltd. Heat-conductive resin composition and molded item containing the same
JP2007002231A (en) * 2005-05-26 2007-01-11 Techno Polymer Co Ltd Thermally conductive resin composition and molded article
US7252795B2 (en) 2003-08-26 2007-08-07 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
US7291381B2 (en) 2002-04-10 2007-11-06 Polymatech Co., Ltd. Thermally conductive formed article and method of manufacturing the same
JP2007291267A (en) * 2006-04-26 2007-11-08 Teijin Ltd Thermally conductive molding material and molded sheet using this
JP2010506366A (en) 2006-10-12 2010-02-25 ディーエスエム アイピー アセッツ ビー.ブイ. Lighting device
JP2013229338A (en) * 2006-07-11 2013-11-07 Dsm Ip Assets Bv Lamp socket
KR20180071790A (en) * 2016-12-20 2018-06-28 인하대학교 산학협력단 Epoxy composites containing pitch coated glass fiber
US10106672B2 (en) 2012-07-07 2018-10-23 Dexerials Corporation Heat conductive sheet
JP2021113389A (en) * 2016-08-26 2021-08-05 日本グラファイトファイバー株式会社 Pitch-based carbon milled fiber, thermally conductive molded body, and method for producing pitch-based carbon milled fiber
US11618247B2 (en) 2019-11-01 2023-04-04 Sekisui Polymatech Co., Ltd. Thermally conductive sheet and production method for same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509574A (en) * 1999-09-17 2003-03-11 ハネウエル・インターナシヨナル・インコーポレーテツド Compliant and crosslinkable thermal interface material
JP2002088249A (en) * 2000-09-12 2002-03-27 Polymatech Co Ltd Thermoconductive polymer composition and thermoconductive molded body
JP2002088250A (en) * 2000-09-12 2002-03-27 Polymatech Co Ltd Thermoconductive polymer composition and thermoconductive molded body
US6730731B2 (en) 2000-09-12 2004-05-04 Polymatech Co., Ltd Thermally conductive polymer composition and thermally conductive molded article
US6652958B2 (en) 2000-10-19 2003-11-25 Polymatech Co., Ltd. Thermally conductive polymer sheet
JP2002235279A (en) * 2001-02-08 2002-08-23 Showa Denko Kk Vapor-grown carbon fiber coated with electrical insulator, method for producing the same, and use thereof
EP1265281A2 (en) 2001-06-06 2002-12-11 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
US7264869B2 (en) 2001-06-06 2007-09-04 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
EP1265281A3 (en) * 2001-06-06 2004-05-12 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
US6794035B2 (en) 2001-10-02 2004-09-21 Polymatech Co., Ltd. Graphitized carbon fiber powder and thermally conductive composition
US7291381B2 (en) 2002-04-10 2007-11-06 Polymatech Co., Ltd. Thermally conductive formed article and method of manufacturing the same
WO2003097736A1 (en) * 2002-05-16 2003-11-27 Bridgestone Corporation Rubber composition
US7402340B2 (en) 2003-08-26 2008-07-22 Matsushita Electric Industrial Co., Ltd. High thermal conductive element, method for manufacturing same, and heat radiating system
US7252795B2 (en) 2003-08-26 2007-08-07 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
JP2006137860A (en) * 2004-11-12 2006-06-01 Hitachi Chem Co Ltd Thermal conductive sheet
JP2007002231A (en) * 2005-05-26 2007-01-11 Techno Polymer Co Ltd Thermally conductive resin composition and molded article
WO2006126606A1 (en) * 2005-05-26 2006-11-30 Techno Polymer Co., Ltd. Heat-conductive resin composition and molded item containing the same
JP2007291267A (en) * 2006-04-26 2007-11-08 Teijin Ltd Thermally conductive molding material and molded sheet using this
JP2013229338A (en) * 2006-07-11 2013-11-07 Dsm Ip Assets Bv Lamp socket
JP2010506366A (en) 2006-10-12 2010-02-25 ディーエスエム アイピー アセッツ ビー.ブイ. Lighting device
US10106672B2 (en) 2012-07-07 2018-10-23 Dexerials Corporation Heat conductive sheet
EP2871674B1 (en) * 2012-07-07 2020-12-02 Dexerials Corporation Thermally conductive sheet
EP3790044A1 (en) * 2012-07-07 2021-03-10 Dexerials Corporation Heat conductive sheet
JP2021113389A (en) * 2016-08-26 2021-08-05 日本グラファイトファイバー株式会社 Pitch-based carbon milled fiber, thermally conductive molded body, and method for producing pitch-based carbon milled fiber
KR20180071790A (en) * 2016-12-20 2018-06-28 인하대학교 산학협력단 Epoxy composites containing pitch coated glass fiber
US11618247B2 (en) 2019-11-01 2023-04-04 Sekisui Polymatech Co., Ltd. Thermally conductive sheet and production method for same

Similar Documents

Publication Publication Date Title
JPH09283955A (en) Heat radiation sheet
US6482520B1 (en) Thermal management system
JP5779693B2 (en) Thermally conductive sheet, manufacturing method thereof, and semiconductor device
US6503626B1 (en) Graphite-based heat sink
JP4772239B2 (en) Graphitized carbon powder and thermally conductive composite composition
US6538892B2 (en) Radial finned heat sink
JP4663153B2 (en) Thermally conductive composite composition
JP2002363421A (en) Thermally conductive molded material and method for producing the same
JP2003060134A (en) Heat conductive sheet
JPH11302545A (en) Silicone rubber composite
KR102614679B1 (en) thermal conductive sheet
JP2003321554A (en) Heat-conductive molding and method for producing the same
US20220289932A1 (en) Thermally conductive sheet and method for producing same
JPH10298433A (en) Silicone rubber composition and heat-radiating sheet
JP3721272B2 (en) Method for producing thermally conductive resin molding
JP2000185328A (en) Heat conductive silicone moldings and manufacture thereof and use applications
JP6983345B1 (en) Thermally conductive sheet and electronic equipment
US20230227709A1 (en) Flowable hardenable composition, thermally conductive composition, and electronic heat sink assembly including the same
TWI697556B (en) Thermal interface material composition and method of fabricating the same
JP3757636B2 (en) Method for producing heat conductive silicone rubber composition for forming heat radiating sheet and heat conductive silicone rubber composition for forming heat radiating sheet
JP2000294698A (en) Heat conductive spacer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701