JPH02300263A - Polymer material - Google Patents

Polymer material

Info

Publication number
JPH02300263A
JPH02300263A JP12040689A JP12040689A JPH02300263A JP H02300263 A JPH02300263 A JP H02300263A JP 12040689 A JP12040689 A JP 12040689A JP 12040689 A JP12040689 A JP 12040689A JP H02300263 A JPH02300263 A JP H02300263A
Authority
JP
Japan
Prior art keywords
polymer
rubber
static electricity
human body
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12040689A
Other languages
Japanese (ja)
Inventor
Seiichi Inamura
稲村 聖一
Yoshiyuki Kusayanagi
草柳 芳之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokushin Industries Corp
Hokushin Industry Co Ltd
Original Assignee
Hokushin Industries Corp
Hokushin Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokushin Industries Corp, Hokushin Industry Co Ltd filed Critical Hokushin Industries Corp
Priority to JP12040689A priority Critical patent/JPH02300263A/en
Publication of JPH02300263A publication Critical patent/JPH02300263A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polymer material capable of removing electrostatic interference without using earth by compounding a polymer with an ultrafine carbon fiber, thereby lowering the surface resistance of the polymer below a specified value. CONSTITUTION:The conductivity of a polymer is controlled by compounding a polymer (e.g. a rubbery material such as butadiene, a plastic material such as PE, or a coating material such as oil paint) with an ultrafine carbon fiber and lowering the surface resistance of the polymer to 10<11>OMEGA or below. It is thus possible to remove electricity without using earth and the electricity removing effect is extremely good. This polymer is effective when it is used for various products wherein electrostatic interference is apt to occur.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、静電気対策を施した新規な高分子材料に関し
、特に静電気障害の発生し易いものに用いて好適である
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a new polymeric material with anti-static measures, and is particularly suitable for use in materials susceptible to electrostatic damage.

〈従来の技術及び発明が解決しようとする課題〉従来よ
り、例えば印刷機、複写機、プリンター等の機器内にお
いては、紙、フィルム等の絶縁体が搬送されろ際に、接
触、I9[擦、剥離等により静電気が発生し、このため
、巻き付き2紙づまりなど問題が発生している。
<Prior art and problems to be solved by the invention> Conventionally, when insulating materials such as paper and films are conveyed in equipment such as printing machines, copying machines, and printers, contact and I9 [rubbing] occur. Static electricity is generated due to peeling, etc., which causes problems such as wrapping and paper jams.

このため、従来においては、帯電防止剤を添加したり、
導電性カーボンを添加したローラを用い、静電気の発生
を低減している。
For this reason, in the past, antistatic agents were added,
A roller containing conductive carbon is used to reduce the generation of static electricity.

しかしながら、前者は湿度が低いと効果が下ったり、後
者はアースを用いなければならないという問題がある。
However, the former has problems in that it becomes less effective when the humidity is low, and the latter requires the use of a ground connection.

また、除電した後に再度帯電してしまった紙やフィルム
の除電については、困難であるという問題がある。
Further, there is a problem in that it is difficult to remove static electricity from paper or film that has become charged again after static electricity removal.

一方、人体に帯電した静電気が導体への接触の際に放電
し、強いショックを感じることは一般に知られている。
On the other hand, it is generally known that static electricity charged in the human body is discharged when the human body comes into contact with a conductor, causing a person to feel a strong shock.

このため、従来では、人体が帯電しないように種々の対
策がとらねているが、発生原因が多岐に亙ろため、決め
手となるものがない。
For this reason, conventionally, various measures have been taken to prevent the human body from being charged with electricity, but there is no decisive factor since the causes of this occurrence are wide-ranging.

このように、静電気障害(8i器の誤動作や人体からの
放電ショック等)に対する対策としては、未だ不十分で
あるのが現状である。
As described above, the current situation is that countermeasures against electrostatic disturbances (malfunction of 8i devices, discharge shock from the human body, etc.) are still insufficient.

本発明は以上述べた事情に鑑み、アースなしでしかも静
電気障害を除去し得る新規な高分子材料を提供すること
を目的とする。
In view of the above-mentioned circumstances, it is an object of the present invention to provide a novel polymer material that can eliminate electrostatic interference without the need for grounding.

く課題を解決するための手段〉 前記目的を達成するための本発明の高分子材料の構成は
、ポリマーに超極細炭素la維を配合してなり、ポリマ
ーの表面抵抗が10”1Ω以下であることを特徴とする
Means for Solving the Problems> The composition of the polymeric material of the present invention for achieving the above object is that ultrafine carbon la fibers are blended with a polymer, and the surface resistance of the polymer is 10" or less than 1 Ω. It is characterized by

ここで、本発明でポリマーとは、例えばゴム材料、プラ
スチック材料、塗料等を挙げることができろ。
Here, in the present invention, polymers include, for example, rubber materials, plastic materials, paints, and the like.

上記ゴム材料としては、例えば天然ゴム(NR)、イソ
プレンゴム(IR)、ブタジェンゴム(BR)、1,2
−ポリブタジェンゴム(1,2−BR)、スチレン−ブ
タジェンゴム(SBR)、クロロプレンゴム(CR)。
Examples of the above-mentioned rubber materials include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), 1,2
-Polybutadiene rubber (1,2-BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR).

ニトリルゴム(NBR)、ブチルゴム(I IR) 。Nitrile rubber (NBR), butyl rubber (IIR).

エチレン−プロピレンゴム(EPM、EPDM)。Ethylene-propylene rubber (EPM, EPDM).

クロロスルホン化ポリエチレン(CSM)。Chlorosulfonated polyethylene (CSM).

アクリルゴム(ACM、ANN)、エピクロルヒドリン
ゴム(Go、EC0)、 多FIt化ゴム(T)、シリ
コーンゴム(Q)、フッ素コム(FKM、FZ)、ウレ
タンゴム(U)等の種々のゴム材料を挙げることができ
ろ。このゴム系材料に、例えば軟化剤、充てん剤。
Various rubber materials such as acrylic rubber (ACM, ANN), epichlorohydrin rubber (Go, EC0), multi-FIt rubber (T), silicone rubber (Q), fluorine rubber (FKM, FZ), urethane rubber (U), etc. Can you name it? For example, softeners and fillers are added to this rubber-based material.

加硫剤、加硫促進剤、加硫促進助剤、酸化防止剤、オゾ
ン劣化防止剤等を目的に合わせて、適宜配合すればよい
Vulcanizing agents, vulcanization accelerators, vulcanization accelerators, antioxidants, ozone deterioration inhibitors, etc. may be appropriately blended depending on the purpose.

上記プラスチック材料としては、例えばポリエチレン(
PE)、、l?リブロビレン(p p) 。
Examples of the above-mentioned plastic materials include polyethylene (
PE),,l? Ribrovirene (pp).

ポリオレフィン誘導体、ポリスチレン(PS) 。Polyolefin derivative, polystyrene (PS).

含ハロゲン系プラスチック、アクリル系プラスチック、
ポリ酢酸ビニル(PVAC)及びその誘導体等の付加重
合系プラスチック、例えばアルキッド樹脂、不飽和ポリ
エステル樹脂、ホリエチレンテレフタレー) (PET
)。
Halogen-containing plastics, acrylic plastics,
Addition polymer plastics such as polyvinyl acetate (PVAC) and its derivatives, such as alkyd resins, unsaturated polyester resins, polyethylene terephthalate (PET)
).

ポリブチレンテレフタレート(PB’T)、ポリカーボ
ネート、ポリフェニレンオキシド(ppo)、ポリイミ
ド(pH,ポリアミド(PA)、シリコーン樹脂(31
)等の重縮合系プラスデック、例えばフェノール樹脂(
PF)、尿素樹脂(UF)、メラミン樹脂(MF)等の
付加縮合系プラスチック、例えばポリウレタン(AU:
 エーテル型、EtJ:エステル型)、エポキシ樹脂等
の重付加系プラスチック、ポリアセタール、ポリエーテ
ル系プラスチック等の開環重合系プラスチック等の各種
プラスチックを挙げることができる。
Polybutylene terephthalate (PB'T), polycarbonate, polyphenylene oxide (ppo), polyimide (pH), polyamide (PA), silicone resin (31
) and other polycondensation-based plus decks, such as phenolic resins (
Addition condensation plastics such as PF), urea resins (UF), and melamine resins (MF), such as polyurethane (AU:
Examples include various plastics such as polyaddition plastics such as ether type (EtJ: ester type), epoxy resins, and ring-opening polymerization plastics such as polyacetal and polyether plastics.

上記塗料としては、油性塗料、合成樹脂塗料、セルロー
ス誘導体塗料、酒精塗料、水性塗料、エマルジョン塗料
、粉体塗料、電着塗料等の各種塗料を挙げることができ
ろ。
Examples of the above-mentioned paints include various paints such as oil-based paints, synthetic resin paints, cellulose derivative paints, alcoholic paints, water-based paints, emulsion paints, powder paints, and electrodeposition paints.

上記ポリマーに配合される超極細炭素繊維とは、繊維径
の極めて細い例えば数μmのものであり、その配合量は
ポリマー100部に対して、2〜30部、好ましくは5
〜10部がよい。
The ultrafine carbon fibers to be blended into the above polymer are those with extremely thin fiber diameters, for example, several micrometers, and the blending amount is 2 to 30 parts, preferably 5 parts to 100 parts of the polymer.
~10 parts is good.

これは2部息下であると除電効果が少なく、また30部
以上とすると成形性に問題があるからである。
This is because if the amount is 2 parts, the static elimination effect will be low, and if it is 30 parts or more, there will be problems with moldability.

この超極細炭素繊維は、発生した静電気をコロナ放電と
して空気中に放電するもので、その除電機構を第1図を
参照して説明する。
This ultrafine carbon fiber discharges the generated static electricity into the air as a corona discharge, and its static elimination mechanism will be explained with reference to FIG. 1.

第1図(alに示す静電気が帯電した帯電物体10が、
超極細炭素繊維CFに近づくと(あるいはその逆)、導
体である超極細炭素繊維CFには、静電誘導により電界
が生じる。そして、超極細炭素繊維CFの先端が極めて
細いのでその電界は強く、まわりの空気を絶縁破壊し電
離が起こりの、θのイオンが発生する。これがコロナ放
電であり、発生したイオンのうち帯電物体と逆の極性の
イオンが引きつけられて、中和が起こる(第1図(bl
参照)。
A charged object 10 charged with static electricity shown in FIG.
When approaching the ultra-fine carbon fiber CF (or vice versa), an electric field is generated in the ultra-fine carbon fiber CF, which is a conductor, due to electrostatic induction. Since the tip of the ultra-fine carbon fiber CF is extremely thin, the electric field is strong, causing dielectric breakdown of the surrounding air and ionization, generating ions of θ. This is a corona discharge, and among the generated ions, ions with the opposite polarity to the charged object are attracted and neutralization occurs (Figure 1 (bl
reference).

どのようにして帯電物体は除電されることとなる。How can a charged object be neutralized?

また、ここで起こるコロナ放電は火花放電などとは異な
り、放電に伴う発生エネルギーは微弱で引火やICを破
壊するようなエネルギーは有していない。
Further, the corona discharge that occurs here is different from spark discharge and the like, and the energy generated due to the discharge is weak and does not have enough energy to ignite or destroy the IC.

この除電機構を相乗的に高めろために、ゴム系材料の電
気抵抗(Ω)を10“1Ω以下、望ましくは10’以下
として、導電性をコントロールするようにすればよい。
In order to synergistically enhance this static elimination mechanism, the electrical resistance (Ω) of the rubber material may be set to 10' or less, preferably 10' or less, and the conductivity may be controlled.

この導電性をコントロールするものとしては、例えばカ
ーボンブラック、金属微粉末。
Examples of things that control this conductivity include carbon black and fine metal powder.

酸化At or Znの複塩をあげることができる。A double salt of oxidized Ator or Zn can be mentioned.

また、本発明の高分子材料を特に人体帯電対策用材料に
用いる場合には、人体へのショックを緩和するため、電
気抵抗(R)を106Ω<R<10”Ω、望ましくは1
06Ω<R<1010Ωとし、超極細炭素繊維の配合量
(V)もポリマー100部に対して、1部<V<10部
、望ましくは3部くvく8部とするのがよい。
In addition, when the polymeric material of the present invention is used particularly as a material for preventing static electricity on the human body, the electrical resistance (R) should be 106Ω<R<10”Ω, preferably 1
06Ω<R<1010Ω, and the blending amount (V) of the ultrafine carbon fiber is preferably 1 part <V<10 parts, preferably 3 parts to 8 parts, based on 100 parts of the polymer.

本発明の高分子材料はコロナ放電により除電されるため
、アースを必ずしも設ける必要がなく、更に動的耐久性
が高<、湿度依存性が全くない。このようなゴム系材料
は静電気の発生するおそれのある工業品、家庭用品。
Since the polymer material of the present invention eliminates static electricity by corona discharge, it is not necessarily necessary to provide a ground, and furthermore, it has high dynamic durability and has no humidity dependence. These rubber-based materials are industrial products and household items that may generate static electricity.

その他あらゆる物に用いて有用である。It is useful for all other things.

この反応例の一例を第1表(機能部品用材料)、第2表
(人体帯電対策用材料)に示す。
An example of this reaction is shown in Table 1 (materials for functional parts) and Table 2 (materials for countermeasures against human body static electricity).

第1表(機能部品用材料) く試 験 例〉 次に、本発明の効果を示すゴム材料を用いた試験例につ
いて説明する。
Table 1 (Materials for Functional Parts) Test Examples> Next, test examples using rubber materials that demonstrate the effects of the present invention will be described.

試験例1 第2図ta+〜(C1を参照して機能部品用材料に用い
る場合の試験例について説明する。
Test Example 1 A test example in which the material is used as a functional component material will be described with reference to FIG. 2 ta+ (C1).

物体11に静電高圧発生器12を用いて帯電させた(第
2図(al参照)。次に、超極細炭素繊維(繊維径6〜
7μm「ツルディオン」(商品名:(11東し製;以下
本試験例について同様)を添加し、且つ表面抵抗(R)
を3X10’Ωとした機能性部品用のゴム材料13を、
上記帯電物体11に接触させ除電した。
The object 11 was charged using an electrostatic high-voltage generator 12 (see FIG. 2 (al). Next, ultrafine carbon fibers (fiber diameter 6 to
Added 7 μm "Tsurdion" (trade name: (manufactured by 11 Toshi; the same applies to this test example below), and the surface resistance (R)
Rubber material 13 for functional parts with 3 x 10'Ω,
The charge was removed by contacting the charged object 11.

この際アースをしない場合(絶縁)と、アースをした場
合(アース有)とで、除電前と除電後の帯電圧を帯電圧
測定@14を用いて測定した。
At this time, the charged voltage before and after static elimination was measured using a charged voltage measurement@14 in the case where no grounding was performed (insulated) and when the grounding was performed (grounded).

この測定結果を第3表に示す。The measurement results are shown in Table 3.

比較例1 試験例1で用いたゴム材料の代9に、2種類の一般的ゴ
ム材料(比−1−a:導電性態。
Comparative Example 1 In place of the rubber material used in Test Example 1, two types of general rubber materials (ratio -1-a: conductive state) were used.

比−1−b:導電性有)を用いて試験例1と同様に操作
した。
The same procedure as in Test Example 1 was performed using Ratio-1-b: conductive.

これらの結果を第3表に示す。These results are shown in Table 3.

第3表 第3表に示すように、アース無の場合においても本試験
例の高分子材料は、導電性及び空中放電の相乗効果によ
り、除電効果が高いことが判る。また、アースした場合
にも、高導電性のゴム材料に比べて除電効果が高かった
As shown in Table 3, it can be seen that even in the case of no earthing, the polymer material of this test example has a high static elimination effect due to the synergistic effect of conductivity and air discharge. Furthermore, even when grounded, the static elimination effect was higher than that of highly conductive rubber materials.

試験例2 次に、第3図(al〜(c)を参照して人体帯電対策用
に月いる場合の試験例について説明する。
Test Example 2 Next, with reference to FIGS. 3(a-1) to (c), a test example in which a moon is used as a countermeasure against electrostatic charge on the human body will be described.

本試験例では超極細炭素繊維を添加し、且つ表面抵抗(
R)をI×10I0Ωとした人体帯電対策用のゴム材料
(アース有)15を用いた。帯電圧を10 KVとして
、静電高圧発生器12によって物体11に静電気を発生
させて、絶縁板16に立ったまま、該帯電した物体11
に人体17を接触させ、人体17に帯電させた。次いで
上記ゴム材料15に接触させ、その前後の帯電圧を帯電
圧測定器14で測定し、静電気除去率を求めた。また接
触時の人体に感じる放電シ曹ツクの有無も調べた。
In this test example, ultrafine carbon fiber was added and the surface resistance (
A rubber material (grounded) 15 for countermeasures against electrostatic charge on the human body was used in which R) was set to I×10I0Ω. With a charging voltage of 10 KV, static electricity is generated on the object 11 by the electrostatic high voltage generator 12, and the charged object 11 is moved while standing on the insulating plate 16.
The human body 17 was brought into contact with the human body 17, and the human body 17 was electrically charged. Next, it was brought into contact with the rubber material 15, and the charged voltage before and after that was measured by the charged voltage measuring device 14, and the static electricity removal rate was determined. We also investigated whether or not there was an electrical discharge sensation felt on the human body upon contact.

比較例2 試験例2で用いたゴム材料の代りに、試−1のゴム系材
料及び2種類の一般的ゴム材料(導電性なし、導電性有
り)を用いて、試験例2と同様に操作した。
Comparative Example 2 In place of the rubber material used in Test Example 2, the rubber material of Test-1 and two types of general rubber materials (non-conductive, conductive) were used, and the same procedure as in Test Example 2 was carried out. did.

この結果を第4表に示す。The results are shown in Table 4.

第4表 比−1−a  一般的ゴム材料(導電性態)比−1−b
     な   (g導電性)第4表に示すように、
本試験例の人体帯電対策用のゴム材料は人体の帯電シラ
ツクを感じることなく静電気を除去することができる。
Table 4 Ratio-1-a General rubber material (conductive state) Ratio-1-b
(g conductivity) As shown in Table 4,
The rubber material used to prevent electrostatic charges on the human body in this test example can remove static electricity without feeling the electrostatic charge on the human body.

く実 施 例〉 以下の本発明の好適な実施例を説明する。Example of implementation Preferred embodiments of the present invention will be described below.

実施例1 機能性部品用のゴム材料として下記配合により、複写機
の搬送用ローラに用いろローラを製作した。
Example 1 A roller for use in a conveyance roller of a copying machine was manufactured using the following formulation as a rubber material for functional parts.

配   合 中高ニトリルゴム     100 (部)ステアリン
酸         1 亜鉛華     5 カーボンブラック      20 促進剤     2 硫   黄            2計      
     140 * 「ツルディオン」 (商品名:@東し製)in径6
〜7μm 前述した試験例1 (アース無)と同様に、基準電圧を
15〜18 KVとし、除電前後の帯電圧及び静電気除
去率を求めた。
Mixed medium high nitrile rubber 100 (parts) Stearic acid 1 Zinc white 5 Carbon black 20 Accelerator 2 Sulfur 2 total
140 * "Tsurdion" (Product name: @ Azuma) in diameter 6
~7 μm Similarly to Test Example 1 (no ground) described above, the reference voltage was set to 15 to 18 KV, and the charged voltage before and after static electricity removal and the static electricity removal rate were determined.

この結果を第5表に示す。The results are shown in Table 5.

尚、この材料特性は第6表に示す通やであった。The material properties were as shown in Table 6.

第5表 第6表 上記ローラを、紙づま9等の時々発生する複写機に用い
たところ、紙づまり等のトラブルはほとんどなくなっt
二。
Table 5 Table 6 When the above roller was used in a copying machine where paper jams sometimes occur, troubles such as paper jams almost disappeared.
two.

これは、従来の導電性ローラを用いた場合、帯電した絶
縁性の紙は一時は除電されるが、搬送されてローラと離
れろ際に再び帯電現像が起きてしまっていた。しかしな
がら、本実施例にがかるローラを用いれば、該ローラと
接触して除電した後に、該ローラと離れる際にも配合さ
れた超極細炭素繊維の空中放電作用によって紙に帯電す
るのを防止するようにしているからである。
This is because when a conventional conductive roller is used, the electrically charged insulating paper is temporarily neutralized, but when it is conveyed and separated from the roller, charging and development occur again. However, if the roller according to this embodiment is used, even after contact with the roller and removing static electricity, the paper will be prevented from being charged due to the air discharge action of the ultra-fine carbon fibers blended in, even when separated from the roller. This is because it is.

実施例2 人体帯電対策用のゴム材料として、下記配合により、キ
ーボードマットに用いるシートを製作した。
Example 2 A sheet for use in a keyboard mat was manufactured using the following formulation as a rubber material for preventing static electricity on the human body.

配   合 中高ニトリルゴム     100 (部)ステアリン
酸         1 亜鉛華     5 ホワイトカーボン      40 プロセスオイル       10 促進剤     2 硫   黄            2計      
      168 * 「ツルディオン」 (商品名:■東し製)繊維径6
〜7μm 前述し7た試験例2と同様に除電前後の帯電圧及び静電
気除去率を求めた。
Compound Medium high nitrile rubber 100 (parts) Stearic acid 1 Zinc white 5 White carbon 40 Process oil 10 Accelerator 2 Sulfur 2 total
168 * "Tsurdion" (Product name: ■ Made by Toshi) Fiber diameter 6
~7 μm In the same manner as in Test Example 2 described above, the charged voltage before and after static electricity removal and the static electricity removal rate were determined.

この結果を第7表に示す。The results are shown in Table 7.

尚この材料特性は第6表に示す通りであった。The properties of this material were as shown in Table 6.

上記得られたシートをキーボードマットとして用いた結
果、静電気トラブルは全く感じなかった。
When the sheet obtained above was used as a keyboard mat, no problems with static electricity were felt.

〈発明の効果〉 以上、試験例、実施例とともに詳しく述べたように本発
明の高分子材料は、ポリマーに超極細炭素繊維を配合さ
せると共に導電性をコントロールしたので、アースなし
で除電可能となり、しかもその除電効果が極めて効率の
良いものとなり、各種静電気障害の発生し易い製品に用
いて好適である。
<Effects of the Invention> As described above in detail with the test examples and examples, the polymer material of the present invention combines ultrafine carbon fibers with the polymer and controls the conductivity, so that static electricity can be eliminated without the need for grounding. Furthermore, the static elimination effect is extremely efficient, making it suitable for use in products that are prone to various electrostatic disturbances.

4図面の簡単な説明 第1図(al、tb)は超極細炭素wA維の除電機構を
示す概略図、第2図(al〜(C)は機能部品用材料と
して用いた高分子材料の試験例の説明図、第3図(al
〜tc+は人体帯電対策用材料として用いた高分子材料
の試験例の説明図である。
4 Brief explanation of the drawings Figure 1 (al, tb) is a schematic diagram showing the static elimination mechanism of ultrafine carbon wA fibers, Figure 2 (al to (C) is a test of polymer materials used as materials for functional parts) Example explanatory diagram, Figure 3 (al
~tc+ is an explanatory diagram of a test example of a polymer material used as a material for preventing static electricity on the human body.

図  面  中、 10は帯電物体、 11は物体、 12は静電高圧発生器、 13は機能性部品用のゴム材料、 14は帯電圧測定器、 15は人体帯電対策用のゴム材料、 16は絶縁板、 17は人体である。In the figure, 10 is a charged object, 11 is an object, 12 is an electrostatic high voltage generator; 13 is a rubber material for functional parts; 14 is a charging voltage measuring device; 15 is a rubber material for preventing static electricity on the human body; 16 is an insulating plate; 17 is a human body.

特  許  出  願  人 北辰工業株式会社 代    理    人Patent applicant Hokushin Industries Co., Ltd. People

Claims (1)

【特許請求の範囲】[Claims] ポリマーに超極細炭素繊維を配合してなり、ポリマーの
表面抵抗が10^1^1Ω以下であることを特徴とする
高分子材料。
A polymeric material made by blending ultrafine carbon fibers with a polymer, and characterized in that the surface resistance of the polymer is 10^1^1Ω or less.
JP12040689A 1989-05-16 1989-05-16 Polymer material Pending JPH02300263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12040689A JPH02300263A (en) 1989-05-16 1989-05-16 Polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12040689A JPH02300263A (en) 1989-05-16 1989-05-16 Polymer material

Publications (1)

Publication Number Publication Date
JPH02300263A true JPH02300263A (en) 1990-12-12

Family

ID=14785427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12040689A Pending JPH02300263A (en) 1989-05-16 1989-05-16 Polymer material

Country Status (1)

Country Link
JP (1) JPH02300263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321071A (en) * 1991-10-29 1994-06-14 Nitto Boseki Co., Ltd. Short fiber-containing polymer composition and method for controlling electrical resistance of the polymer composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133155A (en) * 1981-02-12 1982-08-17 Mitsubishi Rayon Co Ltd Electrically-conductive resin
JPS59133219A (en) * 1983-01-19 1984-07-31 Mitsubishi Rayon Co Ltd Production of new polymer composition
JPS63286469A (en) * 1987-05-19 1988-11-24 Asahi Chem Ind Co Ltd Composition for molding carbon fiber composite resin
JPH0277442A (en) * 1988-09-14 1990-03-16 Showa Denko Kk Electrically conductive thermoplastic resin composition
JPH02212370A (en) * 1988-09-02 1990-08-23 Nikkiso Co Ltd Composite material
JPH02228340A (en) * 1989-03-01 1990-09-11 Asahi Chem Ind Co Ltd Pressure-sensitive conductive rubber composition
JPH02255864A (en) * 1988-12-20 1990-10-16 Asahi Chem Ind Co Ltd Resin composition for conductive sliding member
JPH02276839A (en) * 1989-04-19 1990-11-13 Japan Synthetic Rubber Co Ltd Thermoplastic elastomer composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133155A (en) * 1981-02-12 1982-08-17 Mitsubishi Rayon Co Ltd Electrically-conductive resin
JPS59133219A (en) * 1983-01-19 1984-07-31 Mitsubishi Rayon Co Ltd Production of new polymer composition
JPS63286469A (en) * 1987-05-19 1988-11-24 Asahi Chem Ind Co Ltd Composition for molding carbon fiber composite resin
JPH02212370A (en) * 1988-09-02 1990-08-23 Nikkiso Co Ltd Composite material
JPH0277442A (en) * 1988-09-14 1990-03-16 Showa Denko Kk Electrically conductive thermoplastic resin composition
JPH02255864A (en) * 1988-12-20 1990-10-16 Asahi Chem Ind Co Ltd Resin composition for conductive sliding member
JPH02228340A (en) * 1989-03-01 1990-09-11 Asahi Chem Ind Co Ltd Pressure-sensitive conductive rubber composition
JPH02276839A (en) * 1989-04-19 1990-11-13 Japan Synthetic Rubber Co Ltd Thermoplastic elastomer composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321071A (en) * 1991-10-29 1994-06-14 Nitto Boseki Co., Ltd. Short fiber-containing polymer composition and method for controlling electrical resistance of the polymer composition

Similar Documents

Publication Publication Date Title
CA1230372A (en) Method and apparatus for uniformly charging a moving web
US8320817B2 (en) Charge removal from a sheet
KR930001121B1 (en) Flexible electrically conductive sheet
US5567494A (en) Rolls for electrostatic charge
US7609999B2 (en) Apparatus for charging an image transfer surface
US20120099911A1 (en) Concurrently removing sheet charge and curl
JPH02300263A (en) Polymer material
JPH07296985A (en) Vapor ionizing device
JP2002289394A (en) Method and device for eliminating static charge of insulating sheet
JP2006196255A (en) Discharge treatment device of sheet, discharge treatment method thereof and porous polyester film
JP3517968B2 (en) Insulating web static elimination method and web manufacturing method
JP2008230826A (en) Manufacturing device and manufacturing method for sheet roll body
CN110036695B (en) Static electricity removing device and static electricity removing method
JP3658828B2 (en) Method and apparatus for charging polymer film and method for producing polymer film roll
Schubert et al. Electrostatic charging phenomena on material web electro field meter measurements in a production machine and their interpretation
JPWO2017159441A1 (en) Insulating sheet neutralizing method and insulating sheet neutralizing device
JP2002240995A (en) Manufacturing method and winding device for insulative sheet roll body and product thereof
JP2004039421A (en) Method and device for manufacturing electric insulating sheet
JPH09119956A (en) Method for confirming static charge removed state with toner
Ji et al. Separating discharges on electrified insulating sheet
JP2007115559A (en) Static charge eliminator of electrical insulation sheet and manufacturing method of the same
KR0181552B1 (en) Discharge and vibration damper
JPS596705B2 (en) Electrostatic coating method for defective conductive articles
JP3310069B2 (en) Image forming device
Tabata et al. General characteristics of a newly developed bipolar static charge eliminator