JPH0277442A - Electrically conductive thermoplastic resin composition - Google Patents

Electrically conductive thermoplastic resin composition

Info

Publication number
JPH0277442A
JPH0277442A JP23086388A JP23086388A JPH0277442A JP H0277442 A JPH0277442 A JP H0277442A JP 23086388 A JP23086388 A JP 23086388A JP 23086388 A JP23086388 A JP 23086388A JP H0277442 A JPH0277442 A JP H0277442A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
carbon black
conductive
resin composition
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23086388A
Other languages
Japanese (ja)
Inventor
Kunio Iwasaki
岩崎 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP23086388A priority Critical patent/JPH0277442A/en
Publication of JPH0277442A publication Critical patent/JPH0277442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain an electrically conductive thermoplastic resin composition having retained mechanical strength and surface smoothness and excellent electromagnetic wave shielding properties and electrostatic prevention by blending a thermoplastic resin with a specific amount of carbon black or graphite powder and carbon fiber produced by vapor phase method. CONSTITUTION:The aimed resin composition obtained by blending a thermoplastic resin (e.g., polyolefin resin or styrene based resin) with (A) A1: 5-20wt.% carbon black (e.g., acetylene black or channel black) or graphite (e.g., natural graphite) and A2: 1-40wt.% vapor phase method-manufactured carbon fiber, produced by substrate method or floating method and having preferably 0.1-1mum diameter and preferably 0.1-1mum length or (B) B1: 0.5-5wt.% electrically conductive carbon black (e.g., super conductive furnace or conductive furnace) and B2: 1-30wt.% vapor phase carbon fiber similar to the component A2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電磁波遮蔽、静電防止に優れた導電性熱可塑性
樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a conductive thermoplastic resin composition that is excellent in shielding electromagnetic waves and preventing static electricity.

(従来の技術) 熱可塑性樹脂にPAN系、又はピンチ系の炭素繊維ある
いは、カーボンブラック、または黒鉛を均一に分散させ
て導電性を付与することは知られている。
(Prior Art) It is known to impart conductivity to a thermoplastic resin by uniformly dispersing PAN-based or pinch-based carbon fibers, carbon black, or graphite.

しかしながらPAN系、又はピッチ系の炭素繊維を熱可
塑性樹脂に配合すると機械的強度の低下はあまり見られ
ないが表面の平滑さに問題が有り、再現性のある固有抵
抗値を樹脂組成物に付与しにくい。又一方、カーボンブ
ラック、あるいは黒鉛を熱可塑性樹脂に配合すると、表
面の平滑さは問題ないが機械的強度を低下させる。
However, when PAN-based or pitch-based carbon fibers are blended into thermoplastic resin, there is not much of a decrease in mechanical strength, but there are problems with surface smoothness, and a reproducible specific resistance value is imparted to the resin composition. It's hard to do. On the other hand, when carbon black or graphite is blended into a thermoplastic resin, the surface smoothness is not a problem, but the mechanical strength is reduced.

更には、カーボンブラックあるいは黒鉛の単独配合によ
り、導電性を付与した樹脂組成物の最大の欠点は再現性
のある固有抵抗値を樹脂組成物に付与しにくい点である (発明が解決しようとする課題) カーボンブラックあるいは、黒鉛を例えば40重量%程
度以上の高充填率で配合すると所望の高い導電率は得ら
れるが、かかる高充填率水準での配合は1機械的強度の
低下をもたらすのみならず、該水準を超えた量に見合う
導電性の向上はみられない。
Furthermore, the biggest drawback of resin compositions that have been imparted with electrical conductivity by blending carbon black or graphite alone is that it is difficult to impart reproducible specific resistance values to the resin composition (this is what the invention seeks to solve). Issue) If carbon black or graphite is blended at a high filling rate of, for example, 40% by weight or more, the desired high electrical conductivity can be obtained, but blending at such a high filling level will only result in a decrease in mechanical strength. First, there is no improvement in conductivity commensurate with the amount exceeding this level.

また、熱可塑性樹脂にカーボンブラックあるいは黒鉛と
、PAN系、又はピッチ系の炭素繊維を配合すると、成
形品の表面平滑性を害する欠点を有する。
Furthermore, when carbon black or graphite and PAN-based or pitch-based carbon fibers are blended into a thermoplastic resin, there is a drawback that the surface smoothness of the molded product is impaired.

本発明の目的は1機械的強度及び表面平滑性に優れ、か
つ高い導電性を持つ電磁波遮蔽、静電防止の効果のある
導電性熱可塑性樹脂組成物を提供することにある。
An object of the present invention is to provide a conductive thermoplastic resin composition which has excellent mechanical strength and surface smoothness, has high conductivity, and is effective in shielding electromagnetic waves and preventing static electricity.

(mgを解決するための手段) 本発明者は、上記の目的を達成するために鋭意研究した
結果、熱可塑性樹脂に所定量のカーボンブラックあるい
は黒鉛粉末又は、導電性カーボンブラックと気相法炭素
繊維を配合することにより、機械的強度および表面平滑
性を保持し、しかも所望の導電性を安定して発現する成
形品を、得ることを発見して本件発明を完成した。
(Means for Solving mg) As a result of intensive research to achieve the above object, the present inventor has discovered that a thermoplastic resin contains a predetermined amount of carbon black or graphite powder, or conductive carbon black and vapor grown carbon. The present invention was completed by discovering that by blending fibers, a molded article that maintains mechanical strength and surface smoothness and stably exhibits the desired electrical conductivity can be obtained.

即ち本件発明の要旨は、5.0〜20.0重量%のカー
ボンブラックまたは黒鉛粉末と1.0〜40重量%の気
相法炭素繊維を含む熱可塑性樹脂からなる、導電性熱可
塑性樹脂組成物及び、0゜5〜5.0重量%の導電性カ
ーボンブラックと1゜0〜30重量%の気相法炭素繊維
を含む熱可塑性樹脂からなる、導電性熱可塑性樹脂組成
物にある。
That is, the gist of the present invention is a conductive thermoplastic resin composition comprising a thermoplastic resin containing 5.0 to 20.0% by weight of carbon black or graphite powder and 1.0 to 40% by weight of vapor-grown carbon fiber. and a conductive thermoplastic resin composition comprising a thermoplastic resin containing 0.5 to 5.0% by weight of conductive carbon black and 1.0 to 30% by weight of vapor-grown carbon fiber.

以下1本発明の詳細な説明する。Hereinafter, one aspect of the present invention will be explained in detail.

本発明で使用されるカーボンブラック、黒鉛としては、
アセチレンブラック、チャンネルブラック、ファーネス
ブラック、天然黒鉛、人造黒鉛等を挙げることができ、
これらの1種、または2種以上を用いることもできる。
Carbon black and graphite used in the present invention include:
Examples include acetylene black, channel black, furnace black, natural graphite, and artificial graphite.
One type or two or more types of these can also be used.

また導電性カーボンブラックとしてはスーパー・コンダ
クテイブ・フアーネス(S、  C,F)、コンダクテ
イブ・フアーネス(C,F)、  およびエクストラ・
コンダクテイブ・フアーネス(X。
Conductive carbon blacks include super conductive furnaces (S, C, F), conductive furnaces (C, F), and extra conductive furnaces.
Conductive Furness (X.

C,F)等を挙げることができ、これらの1種、又は2
種以上を用いることもできる。
C, F), etc., and one or two of these
More than one species can also be used.

カーボンブラック、導電性カーボンブラック、黒鉛の形
状は1分散性、流動性を向上させるために粒径の小さな
もの、またストラクチュアの発達したものを用いること
が好ましく、導電性カーボンブラックでは例えばファー
ネスブラックの1種である、ケッチエンブラックが特に
好ましい。
It is preferable to use carbon black, conductive carbon black, and graphite with a small particle size and a well-developed structure in order to improve monodispersity and fluidity. For conductive carbon black, for example, furnace black One type, Ketchen Black, is particularly preferred.

カーボンブラックまたは黒鉛の配合量は、導電性の付与
、機械的特性の向上環から組成物中5゜0〜20.0重
量%の範囲内であり、導電性カーボンブラックの配合量
は組成物中0.5〜5.0重量%の範囲内である。前記
配合量がそれぞれ5゜0重量%、0.5重量%未満では
、樹脂中で導電性を付与出来るほどの凝集構造が構成さ
れず、導電性を向上させることはできない。
The blending amount of carbon black or graphite is within the range of 5.0 to 20.0% by weight in the composition from the viewpoint of imparting conductivity and improving mechanical properties. It is within the range of 0.5 to 5.0% by weight. If the blending amounts are less than 5.0% by weight and 0.5% by weight, respectively, a cohesive structure sufficient to impart electrical conductivity will not be formed in the resin, making it impossible to improve electrical conductivity.

一方、それぞれ20重量%、5.0重量%を超えて使用
すると電気的特性は向上するが、機械的特性の低下の傾
向が著しくなる8本発明の目的は、該限界量を超えずに
電気的特性の優れた組成物を得るところにある。
On the other hand, if they are used in amounts exceeding 20% by weight and 5.0% by weight, respectively, the electrical properties will improve, but the mechanical properties will tend to deteriorate markedly. The goal is to obtain a composition with excellent physical properties.

本発明においてはカーボンブラックは通常のものの外、
導電性カーボンブラックが使用されるが、後者は導電性
が高いので、少量でも電気的特性の向上がはかれるので
より好ましい。
In the present invention, in addition to ordinary carbon black,
Conductive carbon black is used, and the latter is more preferred because it has high conductivity and can improve electrical properties even in small amounts.

導電性カーボンブラックの添加量の上限が低いのは、少
量の配合量の添加でも通常のカーボンブラックにみられ
る無定形構造ゆえに導電性の極めて劣るカーボンブラッ
クとは異なり、表面層がグラファイト構造を有すること
、および凝集構造が発達していることによる電流の伝播
が良好なことの理由による。
The reason why the upper limit of the amount of conductive carbon black added is low is that the surface layer has a graphite structure, unlike carbon black, which has extremely poor conductivity due to the amorphous structure found in ordinary carbon black even when added in a small amount. This is because the current propagation is good due to the well-developed cohesive structure.

本発明に使用される気相法炭素繊維は、基板法。The vapor grown carbon fiber used in the present invention is produced using a substrate method.

浮遊法、のいずれによって製造された気相法炭素繊維も
用いることができる。例えば特開昭60−27700号
、特開昭62−78217号に記載された炭素繊維を挙
げることが出来る。
Vapor-grown carbon fibers produced by either the floating method or the floating method can also be used. For example, carbon fibers described in JP-A-60-27700 and JP-A-62-78217 can be mentioned.

またこれらの方法で作られた炭素繊維で2000℃以上
のような高温で処理した繊維も含まれる。
It also includes carbon fibers made by these methods that have been treated at high temperatures of 2000°C or higher.

本発明に用いられる気相法炭素繊維は直径0. 1〜1
μm、長さ1.0μm〜1.ommが好ましい。
The vapor grown carbon fiber used in the present invention has a diameter of 0. 1-1
μm, length 1.0 μm to 1. omm is preferred.

カーボンブラック又は、黒鉛と併用される気相法炭素繊
維の配合量は、目標とする導電性の程度に応じて、組成
物中1.0〜40重量%の[囲。
The amount of vapor-grown carbon fiber used in combination with carbon black or graphite is 1.0 to 40% by weight in the composition, depending on the target degree of conductivity.

導電性カーボンブラックの場合は1.0〜30重量%の
範囲である。
In the case of conductive carbon black, it ranges from 1.0 to 30% by weight.

この配合量が1. 0重量%未満では、樹脂中で導電性
が付与できる程度の凝集構造が形成されず、したがって
カーボンブラック、導電性カーボンブラックとの併用効
果が殆ど期待できない。
This blending amount is 1. If it is less than 0% by weight, an aggregated structure sufficient to impart conductivity will not be formed in the resin, and therefore almost no effect can be expected when used in combination with carbon black or conductive carbon black.

他方配合量がそれぞれ、上限である40重量%。On the other hand, the upper limit of each compounding amount is 40% by weight.

30重量%をこえると、気相法炭素繊維と樹脂のみでは
溶融時の流動性はよいが、カーボンブラック、黒鉛、導
電性カーボンブラックと併用することにより、流動性は
悪くなり成形することが困難となる。又、これらの上限
値を超えて高充填率で配合しても、高い導電率は維持す
るが、かかる高充填率水準で配合しても、該水準を超え
た量に見合う導電性の向上はみられない。
If it exceeds 30% by weight, the fluidity during melting is good with only vapor grown carbon fiber and resin, but when used in combination with carbon black, graphite, and conductive carbon black, the fluidity deteriorates and it is difficult to mold. becomes. Also, even if blended at a high filling rate exceeding these upper limits, high conductivity will be maintained, but even if blended at such a high filling rate level, the conductivity will not improve commensurately with the amount exceeding the level. I can't see it.

本発明に使用する熱可塑性樹脂としては、基本的に限定
されるものではなく、成形分野で使用される樹脂を有効
に用いることができ、ポリエチレン、ポリプロピレン等
のポリオレフィン樹脂、ポリスチレン、ABS、A]f
tJJ旨等のスチレン系樹脂、ナイロン6、ナイロン6
6、ナイロン12等のポリアミド樹脂、ポリエチレンテ
レフタレート。
The thermoplastic resin used in the present invention is basically not limited, and resins used in the molding field can be effectively used, including polyolefin resins such as polyethylene and polypropylene, polystyrene, ABS, A] f
Styrenic resin such as tJJ, nylon 6, nylon 6
6. Polyamide resin such as nylon 12, polyethylene terephthalate.

ポリブチレンテレフタレート樹脂、ポリアセタール、ポ
リフェニレンサルファイド、ポリスルホン、ポリエーテ
ルケトン、ポリエーテルスルホン等のエンジニアリング
プラスチック等である。
These include engineering plastics such as polybutylene terephthalate resin, polyacetal, polyphenylene sulfide, polysulfone, polyetherketone, and polyethersulfone.

これらの熱可塑性樹脂については、その1種のみを使用
できるほか2種以上の組合せとして使用することもでき
、またこの種の熱可塑性樹脂について、通常使用される
種々の添加剤、たとえば潤滑剤、可塑剤、安定剤等が予
め配合されているものであってもよい。
These thermoplastic resins can be used alone or in combination of two or more types, and various commonly used additives such as lubricants, Plasticizers, stabilizers, etc. may be added in advance.

熱可塑性樹脂に、カーボンブラック、導電性カーボンブ
ラック、又は、黒鉛及び気相法炭素繊維を配合する方法
は任意であって、  Ifla者を例えば。
Any method may be used to blend carbon black, conductive carbon black, or graphite and vapor grown carbon fiber into the thermoplastic resin.

バンバリーミキサ−、ニーダ−、ヘンシェルミキサー等
の適宜のブレンダーを用いて、常法により均一に混練す
る混合法を自由に採用することができる。
A mixing method of uniformly kneading in a conventional manner using an appropriate blender such as a Banbury mixer, a kneader, or a Henschel mixer can be freely adopted.

本発明は、熱可塑性樹脂中にカーボンブラック等と、気
相法炭素繊維を配合することにより表面平滑性に優れ、
導電性の大なる成形物としたものであるがその理由は次
のように考えられる。
The present invention has excellent surface smoothness by blending carbon black etc. and vapor grown carbon fibers into a thermoplastic resin.
The reason for this is thought to be as follows.The molded product is highly conductive.

それは、気相法炭素繊維の特質である (イ)アスペクト比が大きい。This is a characteristic of vapor grown carbon fiber. (b) Large aspect ratio.

(ロ)繊維が微細なため成形物中での凝集構造が発達し
やすい。
(b) Since the fibers are fine, agglomerated structures tend to develop in the molded product.

(ハ)表面積が大である。(c) Large surface area.

等の導電性に寄与する諸特性が相乗して、電流の伝播が
良好となり、カーボンブラック等と気相法炭素IR維の
配合による、当該組成物の導電性の向上に寄与するもの
と考えられる。 以下実施例を挙げて本発明を具体的に
説明する。
It is thought that the various properties that contribute to conductivity, such as, synergistically improve the propagation of current, and that the combination of carbon black, etc. and vapor-grown carbon IR fibers contributes to improving the conductivity of the composition. . The present invention will be specifically explained below with reference to Examples.

(実施例1及び比較例1) ポリプロピレン樹脂(昭和電工(株)製5MA410)
、カーボンブラック(11!気化学工業(株)環デンカ
ブラック)、気相法炭素繊維(フェロセンを触媒としベ
ンゼンを原料として浮遊法で生成したもの)を、第1表
に示す割合で配合し溶融混練してペレットを得た。気相
法炭素繊維は大部分直径0.1〜1μm、長さ1μm〜
2 m mのものである。
(Example 1 and Comparative Example 1) Polypropylene resin (5MA410 manufactured by Showa Denko K.K.)
, carbon black (11! Kandenka Black manufactured by Ki Kagaku Kogyo Co., Ltd.), and vapor grown carbon fiber (produced by the floating method using ferrocene as a catalyst and benzene as a raw material) in the proportions shown in Table 1 and melted. Pellets were obtained by kneading. Most vapor grown carbon fibers have a diameter of 0.1 to 1 μm and a length of 1 μm or more.
It is 2 mm.

次いで、得られたペレットを通常行なわれているポリプ
ロピレン樹脂の成形条件で成形した。
Next, the obtained pellets were molded under the usual molding conditions for polypropylene resin.

得られた各テストピースについて、三菱油化(株)の表
面抵抗計を用いて電気的性質を測定した。
The electrical properties of each test piece obtained were measured using a surface resistance meter manufactured by Mitsubishi Yuka Co., Ltd.

その結果を比較例と共に第1表に示す。The results are shown in Table 1 along with comparative examples.

第1表に示した体積固有抵抗値からも明かなように、カ
ーボンブラックと気相法炭素繊維の併用により優れた導
電性と、成形性が得られた。また実施例(1−1〜1−
3)はいずれも表面平滑性は良好であった。
As is clear from the volume resistivity values shown in Table 1, excellent conductivity and moldability were obtained by using carbon black and vapor-grown carbon fiber in combination. In addition, Examples (1-1 to 1-
3) had good surface smoothness.

(実施例2及び比較例2) 実施例1のカーボンブラックに代わって、黒鉛微粉(昭
和電工(株)製UFG−2)を第2表に示す割合で配合
した以外は、実施例1と同じ条件でポリプロピレン樹脂
の成形物を得た。
(Example 2 and Comparative Example 2) Same as Example 1 except that graphite fine powder (UFG-2 manufactured by Showa Denko K.K.) was blended in the proportion shown in Table 2 instead of the carbon black of Example 1. A molded product of polypropylene resin was obtained under these conditions.

得られた各テストピースについて、三菱油化(株)の表
面抵抗形を用いて電気的特性を測定した。
The electrical characteristics of each test piece obtained were measured using a surface resistance type manufactured by Mitsubishi Yuka Co., Ltd.

その結果を比較例と共に第2表に示す。The results are shown in Table 2 together with comparative examples.

第2表に示した体積固有抵抗値からも明らかなように、
黒鉛と気相法炭素繊維の併用により優れた導電性が得ら
れた。また実施例(2−1〜2−2)はいずれも表面平
滑性は良好であった。
As is clear from the volume resistivity values shown in Table 2,
Excellent conductivity was obtained by using graphite and vapor-grown carbon fiber together. In addition, all of Examples (2-1 to 2-2) had good surface smoothness.

(実施例3〜8及び比較例3〜8) ポリプロピレン樹脂(昭和電工(株)製SMA−410
)、ケッチエンブラック(ライオンアクゾ(株)製ケッ
チエンブラック600JD)、  気相法炭素繊維(フ
ェロセンを触媒としベンゼンを原料として浮遊法で生成
した前記と同じものを。
(Examples 3 to 8 and Comparative Examples 3 to 8) Polypropylene resin (SMA-410 manufactured by Showa Denko Co., Ltd.)
), Ketchen Black (Ketchen Black 600JD manufactured by Lion Akzo Co., Ltd.), vapor-grown carbon fiber (same as above, produced by the floating method using ferrocene as a catalyst and benzene as a raw material).

第3表に示す割合で配合し溶融混練してペレットを得た
。次いで、得られたペレットを通常行なわれているポリ
プロピレン樹脂の成形条件で成形し得られた各テストピ
ースについて、三菱油化(株)の表面抵抗形を用いて電
気的性質を測定した。
They were blended in the proportions shown in Table 3 and melted and kneaded to obtain pellets. Next, the obtained pellets were molded under conventional polypropylene resin molding conditions, and the electrical properties of each test piece obtained were measured using a surface resistance model manufactured by Mitsubishi Yuka Co., Ltd.

その結果を比較例とともに第3表に示す。The results are shown in Table 3 along with comparative examples.

第3表に示した体積固有抵抗値、成形性からも明らかな
ように、ケッチエンブラックと気相法炭素繊維の併用に
より優れた導電性と、成形性が得られた。また実施例3
〜8はいずれも表面平滑性は良好であった。
As is clear from the volume resistivity and moldability shown in Table 3, excellent conductivity and moldability were obtained by using Ketchen Black and vapor-grown carbon fiber in combination. Also, Example 3
-8 had good surface smoothness.

(発明の効果) 本発明によれば成形品の機械的強度が高く表面の平滑性
に優れしかも任意の導電性を再現し得る樹脂組成物を提
供することができ、その工業的価値は大である。
(Effects of the Invention) According to the present invention, it is possible to provide a resin composition that provides molded articles with high mechanical strength, excellent surface smoothness, and can reproduce any desired conductivity, and its industrial value is great. be.

(以下余白)(Margin below)

Claims (4)

【特許請求の範囲】[Claims] (1)5.0〜20.0重量%のカーボンブラックと1
.0〜40重量%の気相法炭素繊維を含む熱可塑性樹脂
からなる導電性熱可塑性樹脂組成物。
(1) 5.0-20.0% by weight of carbon black and 1
.. A conductive thermoplastic resin composition comprising a thermoplastic resin containing 0 to 40% by weight of vapor-grown carbon fiber.
(2)0.5〜5.0重量%の導電性カーボンブラック
と1.0〜30重量%の気相法炭素繊維を含む熱可塑性
樹脂からなる導電性熱可塑性樹脂組成物。
(2) A conductive thermoplastic resin composition comprising a thermoplastic resin containing 0.5 to 5.0% by weight of conductive carbon black and 1.0 to 30% by weight of vapor-grown carbon fiber.
(3)5.0〜20重量%の黒鉛粉末と1.0〜40重
量%の気相法炭素繊維を含む熱可塑性樹脂からなる導電
性熱可塑性樹脂組成物。
(3) A conductive thermoplastic resin composition comprising a thermoplastic resin containing 5.0 to 20% by weight of graphite powder and 1.0 to 40% by weight of vapor-grown carbon fiber.
(4)導電性カーボンブラックがスーパー・コンダクテ
イブ・フアーネス(S.C.F)、コンダクテイブ・フ
アーネス(C.F)およびエクストラ・コンダクテイブ
・フアーネス(X.C.F)から選ばれた少くとも1種
のカーボンブラックである特許請求の範囲第2項記載の
導電性熱可塑性樹脂組成物。
(4) The conductive carbon black is at least one type selected from super conductive furnace (S.C.F), conductive furnace (C.F), and extra conductive furnace (X.C.F). The conductive thermoplastic resin composition according to claim 2, which is carbon black.
JP23086388A 1988-09-14 1988-09-14 Electrically conductive thermoplastic resin composition Pending JPH0277442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23086388A JPH0277442A (en) 1988-09-14 1988-09-14 Electrically conductive thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23086388A JPH0277442A (en) 1988-09-14 1988-09-14 Electrically conductive thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPH0277442A true JPH0277442A (en) 1990-03-16

Family

ID=16914487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23086388A Pending JPH0277442A (en) 1988-09-14 1988-09-14 Electrically conductive thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH0277442A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300263A (en) * 1989-05-16 1990-12-12 Hokushin Ind Inc Polymer material
WO1998039387A1 (en) * 1997-03-07 1998-09-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyacetal resin composition
WO2004059663A1 (en) * 2002-12-26 2004-07-15 Showa Denko K. K. Carbonaceous material for forming electrically conductive material and use thereof
JP2004221071A (en) * 2002-12-26 2004-08-05 Showa Denko Kk Carbonaceous material for conductive composition and its usage
WO2005034145A1 (en) * 2003-09-30 2005-04-14 General Electric Company Electrically conductive compositions, methods of manufacture thereof and articles derived from such compositions
JP2006225648A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Conductive resin composition, its production method and use
WO2009075322A1 (en) * 2007-12-12 2009-06-18 Starlite Co., Ltd. Resin-carbon composite material
JP2010018685A (en) * 2008-07-09 2010-01-28 Mitsubishi Plastics Inc Electroconductive resin film
JP2010043169A (en) * 2008-08-11 2010-02-25 Mikuni Color Ltd Polymeric composition and conductive material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168051A (en) * 1983-03-16 1984-09-21 Tokyo Ink Kk Electrically conductive resin composition
JPS60104160A (en) * 1983-11-11 1985-06-08 Asahi Chem Ind Co Ltd Thermoplastic resin composition
JPS63172722A (en) * 1987-01-13 1988-07-16 Yazaki Corp Electroconductive epoxy resin composition
JPH01287151A (en) * 1988-05-13 1989-11-17 Asahi Chem Ind Co Ltd Rubber composition
JPH01287155A (en) * 1988-05-13 1989-11-17 Asahi Chem Ind Co Ltd Rubber composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168051A (en) * 1983-03-16 1984-09-21 Tokyo Ink Kk Electrically conductive resin composition
JPS60104160A (en) * 1983-11-11 1985-06-08 Asahi Chem Ind Co Ltd Thermoplastic resin composition
JPS63172722A (en) * 1987-01-13 1988-07-16 Yazaki Corp Electroconductive epoxy resin composition
JPH01287151A (en) * 1988-05-13 1989-11-17 Asahi Chem Ind Co Ltd Rubber composition
JPH01287155A (en) * 1988-05-13 1989-11-17 Asahi Chem Ind Co Ltd Rubber composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300263A (en) * 1989-05-16 1990-12-12 Hokushin Ind Inc Polymer material
DE19882168B4 (en) * 1997-03-07 2005-07-21 Asahi Kasei Kabushiki Kaisha polyacetal resin
WO1998039387A1 (en) * 1997-03-07 1998-09-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyacetal resin composition
US6262165B1 (en) 1997-03-07 2001-07-17 Asahi Kasei Kabushiki Kaisha Polyacetal resin composition
WO2004059663A1 (en) * 2002-12-26 2004-07-15 Showa Denko K. K. Carbonaceous material for forming electrically conductive material and use thereof
JP2004221071A (en) * 2002-12-26 2004-08-05 Showa Denko Kk Carbonaceous material for conductive composition and its usage
CN100373503C (en) * 2002-12-26 2008-03-05 昭和电工株式会社 Carbonaceous material for forming electrically conductive material and use thereof
US7585434B2 (en) 2002-12-26 2009-09-08 Showa Denko K.K. Carbonaceous material for forming electrically conductive material and use thereof
KR101156012B1 (en) * 2002-12-26 2012-06-18 쇼와 덴코 가부시키가이샤 Carbonaceous material for electrically conductive material and use thereof
WO2005034145A1 (en) * 2003-09-30 2005-04-14 General Electric Company Electrically conductive compositions, methods of manufacture thereof and articles derived from such compositions
JP2006225648A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Conductive resin composition, its production method and use
WO2009075322A1 (en) * 2007-12-12 2009-06-18 Starlite Co., Ltd. Resin-carbon composite material
JP2009144000A (en) * 2007-12-12 2009-07-02 Starlite Co Ltd Resin-carbon composite material
JP2010018685A (en) * 2008-07-09 2010-01-28 Mitsubishi Plastics Inc Electroconductive resin film
JP2010043169A (en) * 2008-08-11 2010-02-25 Mikuni Color Ltd Polymeric composition and conductive material

Similar Documents

Publication Publication Date Title
JPH0238109B2 (en)
JP2603511B2 (en) Conductive plastic
JPH0277442A (en) Electrically conductive thermoplastic resin composition
JPS61155451A (en) Electrically conductive resin composition
JPH0416500B2 (en)
US5093035A (en) Conductive polyarylenesulphide mixtures containing carbon
JPS60124654A (en) Electrically conductive resin composition
JPS59155459A (en) Polyester resin composition
KR950012656B1 (en) Electric conductive resin product for shielding electromagnetic wave
JP6852223B2 (en) Conductive resin composition and its manufacturing method
JPS6324018B2 (en)
JPS624749A (en) Blend type electrically conductive composite material
JPH06889B2 (en) Polyphenylene sulfide resin composition
JPH01207356A (en) Electrically conductive thermoplastic resin composition
JP3370207B2 (en) Conductive polystyrene resin composition
JPH10158443A (en) Stampable sheet excellent in conductivity and mechanical strength
JPS61207465A (en) Electrically conductive thermoplastic resin composition
JPH05226092A (en) Electrostatic diffusion resin complex
JPS6399929A (en) Manufacture of electrically-conductive resin molding
JPH0247500B2 (en)
JPS61293241A (en) Electrically conductive elastomer composition containing vulcanized rubber powder
JP4429706B2 (en) Conductive thermoplastic resin composition and molded article using the same
JPS608335A (en) Electrically conductive resin composition
JPS58117239A (en) High electroconductivity flame-retardant thermoplastic forming composition
JPH0652838B2 (en) Resin composition for electromagnetic wave shielding