JPS6324018B2 - - Google Patents

Info

Publication number
JPS6324018B2
JPS6324018B2 JP54122970A JP12297079A JPS6324018B2 JP S6324018 B2 JPS6324018 B2 JP S6324018B2 JP 54122970 A JP54122970 A JP 54122970A JP 12297079 A JP12297079 A JP 12297079A JP S6324018 B2 JPS6324018 B2 JP S6324018B2
Authority
JP
Japan
Prior art keywords
density
weight
ethylene polymer
carbon black
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54122970A
Other languages
Japanese (ja)
Other versions
JPS5645933A (en
Inventor
Hiroshi Yui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP12297079A priority Critical patent/JPS5645933A/en
Publication of JPS5645933A publication Critical patent/JPS5645933A/en
Publication of JPS6324018B2 publication Critical patent/JPS6324018B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低密度エチレン重合体と高密度エチレ
ン重合体との特定割合混合組成物にカーボンブラ
ツクを配合した、成形加工性、成形品外観および
導電性の秀れた樹脂組成物に関する。熱可塑性樹
脂にカーボンブラツクを配合して導電性樹脂を得
ることは公知であり、低密度ポリエチレンについ
てもカーボンブラツク配合導電性樹脂組成物が検
討され電線の半導電層などの用途で実用化されて
いる。 しかしながら、従来のカーボンブラツク配合の
低密度ポリエチレンは成形加工性(混練性)や成
形外観が悪く、中でもカーボンブラツクの配合割
合の高いものが特に不良であると云つた欠点があ
り、応用範囲が極めて制約されるという大きな問
題点があつた。 この問題点を軽減せしめるために本発明者は先
ず公知の技術をカーボンブラツク配合の低密度ポ
リエチレン組成物に適用してその効果を確認し
た。 たとえば、カーボンブラツクを配合した熱可塑
性樹脂組成物の導電性をさらに向上させるために
提案された、互に相溶しにくい2種以上の材料を
主材とし、この主材の境界面にカーボンブラツク
を存在せしめる方法(特公昭49−14532号公報)
を低密度ポリエチレンおよび熱可塑性ポリウレタ
ンについて適用して詳細に検討した。その結果
は、単に低密度ポリエチレンにカーボンブラツク
を配合したものに比較して導電性能のある程度の
向上は認められたものの目的とする成形加工性の
改良は認められなかつた。 このような状況を踏まえて、本発明者は鋭意各
種検討を行つた結果、意外にも低密度ポリエチレ
ン重合体に密度0.945g/cm3以上のエチレン重合
体および特定フアーネスブラツクを所定量配合す
ることにより、極めて成形加工性、成形品外観が
秀れ、しかも導電性能も高められたカーボンブラ
ツク配合エチレン重合体組成物が得られることを
見出して本発明を完成した。 すなわち、本発明は下記(a)〜(c)の各成分からな
ることを特徴とする樹脂組成物であつて、(a)を(a)
+(b)基準で95〜35重量%、(b)を(a)+(b)基準で5〜
65重量%および(c)を(a)+(b)100重量部に対して3
〜100重量部配合した導電性樹脂組成物である。 (a) 密度0.915〜0.944g/cm3のエチレン重合体 (b) 密度0.945g/cm3以上のエチレン重合体 (c) スーパー・コンダクテイブ・フアーネス(S.
C.F.)、コンダクテイブ・フアーネス(C.F.)
およびエクストラ・コンダクテイブ・フアーネ
ス(X.C.F.)から選ばれた少なくとも1種のカ
ーボンブラツク 以下に本発明の内容を詳しく述べる。 本発明で使用する上記(a)成分である低密度エチ
レン重合体は、高圧重合あるいは低圧重合で得ら
れるエチレン単独重合体の他、エチレンとプロピ
レンを含む他のオレフイン1種以上とのブロツク
またはランダム共重合体、エチレンと酢酸ビニ
ル、アクリル酸、アクリル酸エステル、メタクリ
ル酸、メタクリル酸エステル、一般式RR′SiY2
(この式でRはオレフイン性不飽和の1価の炭化
水素基またはハイドロカーボオキシ基であり、各
Yは加水分解しうる有機基であり、R′は基Rか
または基Yである)で表わされるシラン化合物等
のビニルモノマーとの共重合体(エチレン重合体
とこれらビニルモノマーとのグラフト共重合体も
含む)などの中で密度が0.915〜0.944g/cm3の範
囲にあるものを対象とするものであるが、共重合
体の場合は、エチレンを少なくとも50重量%以上
含むものである。 これら低密度エチレン重合体は、組成物の成形
性、機械的性質等の要求性能に応じて適当なグレ
ードインデツクスのものを選定する。一般には、
メルトフローレート(MFR)が0.01〜30g/10
分のものが選ばれる。 低密度エチレン重合体には2,6−ジ−t−ブ
チル−4−メチルフエノール、1,1,3−トリ
−(2−メチル−4−ヒドロキシ−5−t−ブチ
ルフエニル)ブタン、テトラキス〔メチレン
(3,5−ジ−t−ブチル−4−ヒドロキシヒド
ロケイ皮酸エステル)〕メタンなどのフエノール
系酸化防止剤、ジラウリル−チオ−ジプロピオン
酸エステル、ジステアリル−チオ−ジプロピオン
酸エステルなどのイオウ系酸化防止剤などを必要
に応じて配合することができる。 また、プロピレン−エチレンランダム共重合ゴ
ム、プロピレン−エチレン−ジエンモノマー三元
共重合ゴム等の他の成分を組成物の物性改良のた
めに本発明の効果が消失しない範囲内で配合する
こともできる。 本発明で使用する(b)成分のエチレン重合体は、
密度が0.945g/cm3以上のエチレン重合体である。
かかるエチレン重合体は通常の所謂低圧法、すな
わち各種触媒の存在下で100気圧以下、好ましく
は35気圧以下で行なわれるエチレンの重合法で得
られる。その際プロピレン、1−ブテン、1−ペ
ンテン、1−ヘキセン等の他のα−オレフインを
微量混合フイードし、重合体総量で5重量%以
下、好ましくは3重量%以下共重合した高密度な
エチレン重合体であつてもよい。 本発明の効果は密度が0.945g/cm3以上のエチ
レン重合体が特異的にカーボンブラツク粒子と特
殊な相互作用を有することに起因すると推定され
るが、このような特異的な効果は本発明者らの詳
細な実験で初めて見出されたものであり、従来の
公知技術からは全く類推できなかつた。 密度が0.945g/cm3以上のエチレン重合体の中
では、密度が0.960g/cm3以上の高密度エチレン
重合体が特に好ましい。分子量は重量平均分子量
で数千〜数十万の間のものを選択し得る。 かかる高密度ポリエチレンにおいても、上記低
密度ポリエチレンの如き各種安定剤を配合してあ
つても差し支えない。 本発明で使用するカーボンブラツクは、比表面
積の大きいS.C.F.(Super Conductive Furnace)、
C.F.(Conductive Furnace)およびX.C.F.(Extra
Conductive Furnace)から選ばれた少なくとも
1種のものであり、これらは、少量の配合で高度
の導電性が得られる点で有利である。 これらは市販のものから適宜選んで使用でき、
例えば、S.C.F.としてはCabot社製「バルカン
SC」や「バルカンP」が、C.F.としては同じく
「バルカンC」が、またX.C.F.としてはAKZO社
製「ケツチエンブラツク」のほかCabot社製「バ
ルカンXC−72」や「CSX−99」が代表的であ
る。 本発明で用いるカーボンブラツクは、着色用や
充填用のカーボンブラツクにみられる無定形構造
ゆえに導電性の極めて劣るカーボンブラツクとは
異なり、表面層がグラフアイト構造を有する導電
性カーボンの中でも特に特定の高導電性フアーネ
スブラツクを選択的に用いるものである。なお、
この特定フアーネスブラツクにチヤンネルブラツ
クやアセチレンブラツク等の他のカーボンブラツ
クを従重量割合の範囲で配合した導電性複合カー
ボンブラツクも本発明の態様として用いることが
できる。 本発明は上述の如き低密度エチレン重合体、高
密度エチレン重合体およびカーボンブラツクを使
用するものであるが、それらの配合割合は、低密
度エチレン重合体と高密度エチレン重合体との合
計量に対して95〜35重量%、好ましくは80〜50重
量%、とりわけ75〜60重量%の低密度エチレン重
合体、同じ合計量に対して5〜65重量%、好まし
くは20〜50重量%、とりわけ25〜45重量%の高密
度エチレン重合体および同じ合計量100重量部に
対して3〜100重量部のカーボンブラツクである。 高密度エチレン重合体の量が上記の範囲未満
(低密度エチレン重合体が上記範囲超過)のもの
は、成形加工性、成形品外観、導電性全ての性質
が悪化し、また上記範囲超過のものは導電性が悪
化する。 カーボンブラツクの配合量が上記範囲未満では
導電性に乏しく、また上記範囲超過では機械的性
質が低下して好ましくない。 本発明組成物はバンバリーミキサー、ロール、
ブラベンダープラストグラフなどのバツチ式の混
練機のほかに、一軸押出機、二軸押出機などの連
続式の押出機で容易に得ることができる。配合順
序は特に限定されるものではなく、配合物を一度
に混合して混練する方法のほかに、初めにバツチ
式あるいは連続式の押出機で特定の高密度エチレ
ン重合体とカーボンブラツクを混練しておき、そ
の混練物と低密度エチレン重合体とを混練するこ
ともできる。また、特定の高密度エチレン重合体
とカーボンブラツクの混練物と低密度エチレン重
合体とをドライブレンドして押出成形等の成形工
程に供することも可能である。 カーボンブラツク配合樹脂組成物において樹脂
として低密度エチレン重合体に密度0.945g/cm3
以上の高密度エチレン重合体および特定フアーネ
スブラツクを所定量配合したものを用いることに
よつて、この高密度エチレン重合体の直鎖状ポリ
マー構造と特定フアーネスブラツクのグラフアイ
ト構造との化学構造的な親和性に基いて次に示す
予期せざる効果を得た。 (1) コンパウンド製造時の加工性が著しく改良さ
れ、液状添加剤などを使用せずに一軸押出機、
二軸押出機などの連続混練機で容易に混練する
ことができるようになつた。 (2) 各種成形性、たとえば射出成形性、押出成形
性が著しく改良された。初めに密度0.945g/
cm3以上のポリエチレン重合体とカーボンブラツ
クとを混練したマスターバツチを製造してお
き、このマスターバツチと低密度エチレン重合
体とをドライブレンドしたものを成形しながら
最終状態に混練、分散させる方法も採用するこ
とが可能となつた。この場合特に工程の簡略化
効果が著しい。 (3) 各種成形品とりわけ射出成形品および押出成
形品で問題であつた外観不良、例えばフローマ
ーク、光沢むらなどが著しく改良され、美麗な
外観の成形品が得られるようになつた。 (4) 同一カーボンブラツク配合量における導電性
を著しく向上せしめることができるようになつ
た。 (5) 上記(1)〜(4)の効果によつて従来高度の導電性
が確認されながら分散性、加工性が著しく悪く
使用困難であつたケツチエンブラツクを容易に
使用できるようになり、新しい高性能導電性エ
チレン重合体製品の開発が可能となつた。 これらの利点を有する本発明組成物は、特に帯
電防止用フイルム、半導電層、危険物用容器等に
好適である。 実施例 1 密度0.918g/cm3の低密度ポリプロピレン
(MFR=8.0g/10分)と密度0.965g/cm3の高密
度ポリエチレン(重量平均分子量13万)との各種
割合、低密度ポリエチレンと高密度ポリエチレン
との合計量100重量部に対して6重量部の「ケツ
チエンブラツク」および0.2重量部の2,6−ジ
−t−ブチル−4−メチルフエノールとを混合
し、ブラベンダープラストグラフで210℃で5分
間混練した。 この混練における混練性およびこの混練性を圧
縮成形して得た厚さ2mmのシートの体積固有抵抗
を表1に示した。ここで混練性は、組成物とした
ときの分散性が不良なものやトルクが高くなり、
混練時間の長くなるもの等を不良とし、又体積固
有抵抗はSRIS規格2301−1969のホイートストン
ブリツジ法によつて測定した。 表1から明らかな通り、実施例のものは比較例
のものに比較して混練性が良好であり、また導電
性の尺度である体積固有抵抗が極めて良好であつ
た。
The present invention relates to a resin composition having excellent moldability, molded product appearance, and electrical conductivity, which is obtained by blending carbon black into a mixed composition of a low-density ethylene polymer and a high-density ethylene polymer in a specific ratio. It is well known that conductive resins can be obtained by blending carbon black with thermoplastic resins, and conductive resin compositions containing carbon black have also been studied for low-density polyethylene and have been put to practical use in applications such as semiconductive layers for electric wires. There is. However, conventional low-density polyethylene containing carbon black has poor molding processability (kneadability) and poor molded appearance, especially those with a high proportion of carbon black, making it extremely difficult to apply. A big problem was that it was restricted. In order to alleviate this problem, the present inventor first applied a known technique to a low density polyethylene composition containing carbon black and confirmed its effectiveness. For example, in order to further improve the electrical conductivity of a thermoplastic resin composition containing carbon black, it has been proposed that the main material is two or more materials that are difficult to mix with each other, and carbon black is added to the interface between these main materials. (Special Publication No. 49-14532)
was applied to low-density polyethylene and thermoplastic polyurethane and studied in detail. The results showed that although a certain degree of improvement in electrical conductivity was observed compared to a product in which carbon black was simply blended with low-density polyethylene, the desired improvement in moldability was not observed. In light of these circumstances, the inventors of the present invention have conducted various studies, and have unexpectedly found that a predetermined amount of an ethylene polymer having a density of 0.945 g/cm 3 or more and a specific furnace black are blended into a low-density polyethylene polymer. The present invention was completed based on the discovery that a carbon black-containing ethylene polymer composition with extremely excellent molding processability, excellent molded product appearance, and improved electrical conductivity can be obtained by doing so. That is, the present invention is a resin composition characterized by comprising each of the following components (a) to (c), wherein (a) is
+95 to 35% by weight based on (b), 5 to 35% (b) based on (a) + (b)
65% by weight and (c) to 100 parts by weight of (a) + (b) 3
It is a conductive resin composition containing ~100 parts by weight. (a) Ethylene polymer with a density of 0.915 to 0.944 g/cm 3 (b) Ethylene polymer with a density of 0.945 g/cm 3 or more (c) Super conductive furnace (S.
CF), Conductive Furness (CF)
and Extra Conductive Furnace (XCF).The content of the present invention will be described in detail below. The low-density ethylene polymer used in the present invention, which is the component (a), is not only an ethylene homopolymer obtained by high-pressure polymerization or low-pressure polymerization, but also a block or random combination of ethylene and one or more other olefins containing propylene. Copolymer, ethylene and vinyl acetate, acrylic acid, acrylic ester, methacrylic acid, methacrylic ester, general formula RR′SiY 2
(In this formula, R is an olefinically unsaturated monovalent hydrocarbon group or a hydrocarboxylic group, each Y is a hydrolyzable organic group, and R' is a group R or a group Y). Targets copolymers with vinyl monomers such as silane compounds (including graft copolymers of ethylene polymers and these vinyl monomers) with a density in the range of 0.915 to 0.944 g/cm 3 However, in the case of a copolymer, it contains at least 50% by weight of ethylene. These low-density ethylene polymers are selected from those having an appropriate grade index depending on the required performance of the composition, such as moldability and mechanical properties. In general,
Melt flow rate (MFR) is 0.01 to 30g/10
The one for the minute is selected. Low-density ethylene polymers include 2,6-di-t-butyl-4-methylphenol, 1,1,3-tri-(2-methyl-4-hydroxy-5-t-butylphenyl)butane, and tetrakis[methylene (3,5-di-t-butyl-4-hydroxyhydrocinnamate ester)] Phenolic antioxidants such as methane, dilauryl-thio-dipropionic acid ester, distearyl-thio-dipropionic acid ester, etc. Sulfur-based antioxidants and the like can be added as necessary. In addition, other components such as propylene-ethylene random copolymer rubber, propylene-ethylene-diene monomer ternary copolymer rubber, etc. may be blended to improve the physical properties of the composition within a range that does not eliminate the effects of the present invention. . The ethylene polymer as component (b) used in the present invention is:
It is an ethylene polymer with a density of 0.945 g/cm 3 or more.
Such an ethylene polymer can be obtained by a conventional so-called low-pressure method, that is, a method for polymerizing ethylene carried out at a pressure of 100 atmospheres or less, preferably 35 atmospheres or less, in the presence of various catalysts. At that time, a trace amount of other α-olefins such as propylene, 1-butene, 1-pentene, and 1-hexene is mixed and fed, and high-density ethylene is copolymerized with a total polymer amount of 5% by weight or less, preferably 3% by weight or less. It may also be a polymer. It is presumed that the effect of the present invention is due to the fact that the ethylene polymer having a density of 0.945 g/cm 3 or more specifically has a special interaction with carbon black particles. This was discovered for the first time through detailed experiments by these researchers, and could not be inferred from conventional known techniques. Among ethylene polymers having a density of 0.945 g/cm 3 or more, high-density ethylene polymers having a density of 0.960 g/cm 3 or more are particularly preferred. The molecular weight can be selected from a weight average molecular weight of several thousand to several hundreds of thousands. Even in such high-density polyethylene, various stabilizers such as the above-mentioned low-density polyethylene may be blended. The carbon black used in the present invention is SCF (Super Conductive Furnace), which has a large specific surface area.
CF (Conductive Furnace) and XCF (Extra
conductive furnace), and these are advantageous in that a high degree of conductivity can be obtained with a small amount of blending. These can be selected and used from commercially available products.
For example, the SCF is "Vulcan" manufactured by Cabot.
``SC'' and ``Vulcan P'', CF is also ``Vulcan C'', and XCF is represented by AKZO's ``Ketschenblak'', as well as Cabot's ``Vulcan XC-72'' and ``CSX-99''. It is true. The carbon black used in the present invention is different from the carbon black used for coloring and filling, which has extremely poor conductivity due to its amorphous structure. A highly conductive furnace black is selectively used. In addition,
A conductive composite carbon black obtained by blending other carbon blacks such as channel black and acetylene black with the specific furnace black in a suitable weight ratio range can also be used as an embodiment of the present invention. The present invention uses the above-mentioned low-density ethylene polymer, high-density ethylene polymer, and carbon black, but the blending ratio thereof is determined based on the total amount of the low-density ethylene polymer and the high-density ethylene polymer. 95 to 35% by weight, preferably 80 to 50% by weight, especially 75 to 60% by weight of low density ethylene polymer, based on the same total amount, 5 to 65% by weight, preferably 20 to 50% by weight, especially 25-45% by weight high density ethylene polymer and 3-100 parts by weight carbon black for the same total amount of 100 parts by weight. If the amount of high-density ethylene polymer is less than the above range (low-density ethylene polymer exceeds the above range), the properties of molding processability, molded product appearance, and electrical conductivity will deteriorate, and if the amount exceeds the above range conductivity deteriorates. If the blending amount of carbon black is less than the above range, the conductivity will be poor, and if it exceeds the above range, the mechanical properties will deteriorate, which is not preferable. The composition of the present invention can be used in Banbury mixers, rolls,
In addition to batch-type kneaders such as Brabender Plastograph, it can be easily obtained using continuous extruders such as single-screw extruders and twin-screw extruders. The order of compounding is not particularly limited, and in addition to mixing and kneading the compounds at once, it is also possible to first knead a specific high-density ethylene polymer and carbon black in a batch or continuous extruder. It is also possible to knead the kneaded product with a low density ethylene polymer. It is also possible to dry blend a kneaded product of a specific high-density ethylene polymer and carbon black with a low-density ethylene polymer and subject the mixture to a molding process such as extrusion molding. In the carbon black blended resin composition, the low density ethylene polymer has a density of 0.945 g/cm 3 as the resin.
By using a mixture of the above high-density ethylene polymer and a specific furnace black in a predetermined amount, the chemical structure of the linear polymer structure of the high-density ethylene polymer and the graphite structure of the specific furnace black can be obtained. Based on this affinity, we obtained the following unexpected effects. (1) Processability during compound production has been significantly improved, and a single screw extruder can be used without using liquid additives.
It has become possible to easily knead with a continuous kneader such as a twin-screw extruder. (2) Various moldability such as injection moldability and extrusion moldability were significantly improved. Initially the density is 0.945g/
A method is also adopted in which a masterbatch is prepared by kneading a polyethylene polymer of cm 3 or more and carbon black, and a dry blend of this masterbatch and a low-density ethylene polymer is kneaded and dispersed into the final state while molding. It became possible. In this case, the effect of simplifying the process is particularly remarkable. (3) Appearance defects, such as flow marks and uneven gloss, which were problems in various molded products, especially injection molded products and extrusion molded products, have been significantly improved, and molded products with a beautiful appearance can now be obtained. (4) It has become possible to significantly improve the conductivity with the same amount of carbon black. (5) Due to the effects of (1) to (4) above, it is now possible to easily use ketchen black, which has previously been confirmed to have a high degree of conductivity but has extremely poor dispersibility and workability, making it difficult to use. It has become possible to develop new high-performance conductive ethylene polymer products. The composition of the present invention having these advantages is particularly suitable for antistatic films, semiconductive layers, containers for hazardous materials, and the like. Example 1 Various ratios of low density polypropylene with a density of 0.918 g/cm 3 (MFR = 8.0 g/10 min) and high density polyethylene with a density of 0.965 g/cm 3 (weight average molecular weight 130,000), low density polyethylene and high 6 parts by weight of "Ketschen Black" and 0.2 parts by weight of 2,6-di-t-butyl-4-methylphenol were mixed with 100 parts by weight of the total amount of density polyethylene, and the mixture was mixed with Brabender Plastograph. The mixture was kneaded at 210°C for 5 minutes. Table 1 shows the kneading properties in this kneading process and the volume resistivity of a 2 mm thick sheet obtained by compression molding the kneading properties. Here, the kneading property is determined by those with poor dispersibility and high torque when made into a composition.
Those with a long kneading time were judged as defective, and the volume resistivity was measured by the Wheatstone bridge method according to SRIS standard 2301-1969. As is clear from Table 1, the compositions of Examples had better kneading properties than those of Comparative Examples, and also had extremely good volume resistivity, which is a measure of electrical conductivity.

【表】 実施例 2 密度0.943g/cm3、酢酸ビニル含量25重量%、
MFR4g/10分のエチレン−酢酸ビニル共重合体
と密度0.965g/cm3の高密度ポリエチレンとの各
種割合および上記エチレン−酢酸ビニル共重合体
と高密度ポリエチレンとの合計量100重量部に対
して15重量部のフアーネスブラツク(Cabot社製
「CSX−99」)および0.2重量部の2,6−ジ−t
−ブチル−4−メチルフエノールとを混合し、ブ
ラベンダープラストグラフで190℃で5分間混練
した。 この混練における混練性およびこの混練物を圧
縮成形して得た厚さ2mmのシートの体積固有抵抗
を表2に示した。 表2から明らかな通り、実施例のものは比較例
のものに比較して混練性が著しく秀れ、また導電
性の尺度である体積固有抵抗が良好であつた。
[Table] Example 2 Density 0.943g/cm 3 , Vinyl acetate content 25% by weight,
Various proportions of ethylene-vinyl acetate copolymer with MFR of 4 g/10 minutes and high-density polyethylene with a density of 0.965 g/cm 3 and 100 parts by weight of the total amount of the above-mentioned ethylene-vinyl acetate copolymer and high-density polyethylene. 15 parts by weight of furnace black (Cabot "CSX-99") and 0.2 parts by weight of 2,6-jet.
-butyl-4-methylphenol and kneaded for 5 minutes at 190°C using a Brabender plastograph. Table 2 shows the kneading performance in this kneading and the volume resistivity of a 2 mm thick sheet obtained by compression molding this kneaded product. As is clear from Table 2, the compositions of Examples had significantly better kneading properties than those of Comparative Examples, and also had good volume resistivity, which is a measure of electrical conductivity.

【表】 実施例 3 密度0.924g/cm3、MFR4.5g/10分の低密度ポ
リエチレン100Kgと密度0.965g/cm3の高密度ポリ
エチレン(重量平均分子量13万)50Kgと「ケツチ
エンブラツク」6Kgとを1,1,3−トリ−(2
−メチル−4−ヒドロキシ−5−t−ブチルフエ
ニル)ブタン300gと共にスーパーミキサーで混
合した後、三菱重工製40mm径一軸押出機で連続混
練したところ、混練性は良好であつた。この混練
物を名機スクリユーインライン射出成形機にて温
度210℃で射出成形して80mm×80mm×2mmのシー
トを得た。このシートは光沢があり、フローマー
クもなく、極めて美麗な外観を有していた。ま
た、このシートの体積固有抵抗は1.0×103Ωcmで
あつた。 比較例のために高密度ポリエチレンを用いずに
密度0.924g/cm3、MFR4.5g/10分の低密度ポリ
エチレン100Kgと「ケツチエンブラツク」4Kgと
を1,1,3−トリ−(2−メチル−4−ヒドロ
キシ−5−t−ブチルフエニル)ブタン200gと
共にスーパーミキサーで混合した後、同様の混練
を行つた。この場合には混練性が極めて悪く、満
足な製品が得られなかつた。 実施例 4 実施例2において、エチレン−酢酸ビニル共重
合体75重量%と高密度ポリエチレン25重量%との
合計量100重量部に対して、カーボンブラツクと
して「バルカンSC」と「バルカンC」のそれぞ
れ30重量部ずつを用いて同様の実験を行つた。結
果を表3に示す。
[Table] Example 3 100 kg of low-density polyethylene with a density of 0.924 g/cm 3 and MFR 4.5 g/10 minutes, 50 kg of high-density polyethylene (weight average molecular weight 130,000) with a density of 0.965 g/cm 3 , and 6 kg of "Ketsutien Black" and 1,1,3-tri-(2
The mixture was mixed with 300 g of -methyl-4-hydroxy-5-t-butylphenyl)butane in a super mixer, and then continuously kneaded in a 40 mm diameter single screw extruder manufactured by Mitsubishi Heavy Industries, Ltd., and the kneading properties were good. This kneaded product was injection molded at a temperature of 210°C using a famous screw in-line injection molding machine to obtain a sheet of 80 mm x 80 mm x 2 mm. This sheet was glossy, had no flow marks, and had an extremely beautiful appearance. Further, the volume resistivity of this sheet was 1.0×10 3 Ωcm. For a comparative example, 100 kg of low-density polyethylene with a density of 0.924 g/cm 3 and MFR of 4.5 g/10 minutes and 4 kg of "Ketschen Black" were mixed with 1,1,3-tri-(2- After mixing with 200 g of methyl-4-hydroxy-5-t-butylphenyl)butane in a super mixer, the same kneading was carried out. In this case, the kneading properties were extremely poor and a satisfactory product could not be obtained. Example 4 In Example 2, each of "Vulcan SC" and "Vulcan C" was added as carbon black to 100 parts by weight of the total amount of 75% by weight of ethylene-vinyl acetate copolymer and 25% by weight of high-density polyethylene. A similar experiment was conducted using 30 parts by weight each. The results are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記(a)〜(c)の各成分からなることを特徴とす
る樹脂組成物であつて、(a)を(a)+(b)基準で95〜35
重量%、(b)を(a)+(b)基準で5〜65重量%および(c)
を(a)+(b)100重量部に対して3〜100重量部配合し
た導電性樹脂組成物。 (a) 密度0.915〜0.944g/cm3のエチレン重合体 (b) 密度0.945g/cm3以上のエチレン重合体 (c) スーパー・コンダクテイブ・フアーネス(S.
C.F.)、コンダクテイブ・フアーネス(C.F.)
およびエクストラ・コンダクテイブ・フアーネ
ス(X.C.F.)から選ばれた少なくとも1種のカ
ーボンブラツク
[Scope of Claims] 1. A resin composition comprising each of the following components (a) to (c), wherein (a) is 95 to 35 on the basis of (a) + (b).
Weight%, (b) 5 to 65% by weight based on (a) + (b) and (c)
A conductive resin composition containing 3 to 100 parts by weight of (a)+(b) in an amount of 3 to 100 parts by weight. (a) Ethylene polymer with a density of 0.915 to 0.944 g/cm 3 (b) Ethylene polymer with a density of 0.945 g/cm 3 or more (c) Super conductive furnace (S.
CF), Conductive Furness (CF)
and at least one carbon black selected from Extra Conductive Furnace (XCF).
JP12297079A 1979-09-25 1979-09-25 Electrically conductive resin composition Granted JPS5645933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12297079A JPS5645933A (en) 1979-09-25 1979-09-25 Electrically conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12297079A JPS5645933A (en) 1979-09-25 1979-09-25 Electrically conductive resin composition

Publications (2)

Publication Number Publication Date
JPS5645933A JPS5645933A (en) 1981-04-25
JPS6324018B2 true JPS6324018B2 (en) 1988-05-19

Family

ID=14849096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12297079A Granted JPS5645933A (en) 1979-09-25 1979-09-25 Electrically conductive resin composition

Country Status (1)

Country Link
JP (1) JPS5645933A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853932A (en) * 1981-09-28 1983-03-30 Tokyo Ink Kk Electrically conductive and heat-weldable resin composition for plastic and metal
JPS58118839A (en) * 1982-01-08 1983-07-15 Hitachi Cable Ltd Semiconductive composition
JPS5966436A (en) * 1982-10-08 1984-04-14 Furukawa Electric Co Ltd:The Semiconductive resin composition
JPS6031548A (en) * 1983-07-29 1985-02-18 Toshiba Corp Electrically conductive organic composition having ptc characteristics
JPS60199041A (en) * 1984-03-22 1985-10-08 Fujikura Ltd Semiconductive composition
JPS6112737A (en) * 1984-06-27 1986-01-21 Fujikura Ltd Mixture for semiconductive layer
JPS6112738A (en) * 1984-06-27 1986-01-21 Fujikura Ltd Mixture for semiconductive layer
JP6052020B2 (en) * 2013-03-29 2016-12-27 日本ポリエチレン株式会社 Conductive polyethylene composition for injection molding and molded body and fuel system part using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214647A (en) * 1975-07-25 1977-02-03 Mitsubishi Petrochem Co Ltd Wire coating composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214647A (en) * 1975-07-25 1977-02-03 Mitsubishi Petrochem Co Ltd Wire coating composition

Also Published As

Publication number Publication date
JPS5645933A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
EP0502420B1 (en) Thermoplastic resin composition
KR101830957B1 (en) Method for manufacturing conductive resin composition
US4032600A (en) Resin formulation for rotational molding and shaped structures
JPH0625478A (en) Polyolefin composition and its preparation
JPS6324018B2 (en)
US6565784B1 (en) Telecommunications cable composition process
JPS642615B2 (en)
JPS60124654A (en) Electrically conductive resin composition
US4185067A (en) Method of rotationally molding plastic articles
JPS59202244A (en) Polyolefin resin composition
JP4099354B2 (en) Propylene resin composition for automobile, method for producing the same, and molded article thereof
JPS59202241A (en) Thermoplastic resin composition
JP4264304B2 (en) Propylene-based resin composition and molded body thereof
JPS6345421B2 (en)
JPS61101554A (en) Preparation of electrically conductive resin composition
JP2527739B2 (en) Polyacetal resin composition
JPS6088073A (en) Composition containing highly electrically conductive carbon black
Mishra et al. Rheological studies of dynamic vulcanization of butyl rubber and polypropylene blends
JP6759657B2 (en) Low temperature easy processable resin composition
JPS61294702A (en) Manufacture of polyolefin based conducting resin composition
JPS62132948A (en) Electrically conductive polypropylene film
JP3313458B2 (en) Conductive polyolefin masterbatch
CA1072282A (en) Method of rotationally molding plastic articles
Huang Carbon black-filled metallocene elastomers
JPH0224860B2 (en)