JPS642615B2 - - Google Patents

Info

Publication number
JPS642615B2
JPS642615B2 JP9581380A JP9581380A JPS642615B2 JP S642615 B2 JPS642615 B2 JP S642615B2 JP 9581380 A JP9581380 A JP 9581380A JP 9581380 A JP9581380 A JP 9581380A JP S642615 B2 JPS642615 B2 JP S642615B2
Authority
JP
Japan
Prior art keywords
weight
carbon black
parts
propylene
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9581380A
Other languages
Japanese (ja)
Other versions
JPS5721441A (en
Inventor
Hiroshi Yui
Micha Okamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP9581380A priority Critical patent/JPS5721441A/en
Publication of JPS5721441A publication Critical patent/JPS5721441A/en
Publication of JPS642615B2 publication Critical patent/JPS642615B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はプロピレン重合体と高密度エチレン重
合体と無機質フイラーとの特定割合組成物にカー
ボンブラツクを配合した、成形加工性、成形品の
外観および機械的性質に秀れ、導電性の飛躍的に
高められた樹脂組成物に関する。 熱可塑性樹脂にカーボンブラツクを配合して導
電性樹脂を得ることは公知であり、ポリプロピレ
ンについてもカーボンブラツク配合導電性樹脂組
成物が検討され一部で実用化されている。 しかしながら、従来のカーボンブラツク配合ポ
リプロピレンは成形加工性(混練性)や成形品外
観が悪く、カーボンブラツクの高い配合割合のも
の、および比表面積の大きいカーボンブラツクを
配合したものが特に不良であるといつた欠点があ
り、応用範囲が極めて制約されるという大きな問
題点があつた。 この問題点を軽減するために、各種の手法が多
角的に検討された。 先づ公知のいくつかの技術をカーボンブラツク
配合ポリプロピレン組成物に適用してその効果を
確認した。 第一にカーボンブラツクを配合した熱可塑性樹
脂組成物の成形加工性を改良するために提案され
た、ポリエチレン又はエチレン共重合体にカーボ
ンブラツクおよび特定の液状添加剤の一体化した
ものを特定の熱可塑性樹脂に分散せしめる方法
(特開昭52−47843号公報)をポリプロピレンにつ
いて適用して詳細検討した。その結果単にポリプ
ロピレンにカーボンブラツクを配合したものに比
較して確かにある程度の成形加工性の改良は認め
られたが、その程度はあまり大きくなく、導電性
はむしろ悪化する傾向が認められることを知つ
た。 第二にカーボンブラツクを配合した熱可塑性樹
脂組成物の導電性をさらに向上させるために提案
された、互に相溶しにくい2種以上の材料を主材
とし、この主材の境界面にカーボンブラツクを存
在せしめる方法(特公昭49−14532号公報)をポ
リプロピレンについて適用して詳細に検討した。
その結果単にポリプロピレンにカーボンブラツク
を配合したものに比較して導電性能のある程度の
向上は認められたものの目的とする成形加工性の
改良は認められなかつた。 このような状況を踏まえて、各種検討の結果、
意外にもプロピレン重合体に密度0.945g/cm3
上のエチレン重合体を所定量配合することによ
り、極めて成形加工性、成形品外観が秀れ、しか
も導電性能も飛躍的に高められたカーボンブラツ
ク配合プロピレン重合体組成物が得られることが
見出され、それが提案された(特願昭54−43867
号)。 本発明者らはさらに検討を加えた結果、プロピ
レン重合体と密度0.945g/cm3以上のエチレン重
合体とに加えて、所定量の無機フイラーを配合す
ることにより、成形加工性、成形品外観が秀れ、
しかも導電性能が飛躍的に高められたカーボンブ
ラツク配合プロピレン重合体組成物が得られるこ
とを見出して本発明を完成した。 すなわち、本発明は下記(a)〜(b)からなることを
特徴とする樹脂組成物であつて、(a)を(a)+(b)+(c)
基準で80〜25重量%、(b)を(a)+(b)+(c)基準で5〜
55重量%、(c)を(a)+(b)+(c)基準で15〜70重量%お
よび(d)を(a)+(b)+(c)100重量部に対して2〜100重
量部配合した導電性樹脂組成物である。 (a) プロピレン単独重合体およびプロピレン−エ
チレンブロツク共重合体から選ばれた結晶性プ
ロピレン重合体 (b) 密度0.945g/cm3以上のエチレン重合体 (c) 平均粒径が20μ以下である下記(d)成分以外の
微細な無機質フイラー (d) スーパー・コンダクテイブ・フアーネス(S.
C.F.)、コンダクテイブ・フアーネス(C.F.)
およびエクストラ・コンダクテイブ・フアーネ
ス(X.C.F.)から選ばれた少なくとも1種のカ
ーボンブラツク 以下に本発明の内容を詳しく述べる。 本発明で使用するプロピレン重合体は、プロピ
レン単独重合体(ポリプロピレン)およびプロピ
レン−エチレンブロツク共重合体から選ばれる結
晶性プロピレン重合体である。 これらは、本発明の効果を著しく損なわない限
り15重量%以下の不飽和有機酸(アクリル酸、無
水マレイン酸等)又はその誘導体や芳香族不飽和
単量体(スチレン等)などのビニルモノマーをグ
ラフトしたものであつてもよい。また、プロピレ
ン−エチレンブロツク共重合体は、プロピレンを
50重量%以上含むものであるが、本発明の効果を
著しく損なわない限り20重量%以下の炭素数4以
上のα−オレフインを含むものであつてもよい。 これらプロピレン重合体は、組成物の成形性、
機械的性質等の要求性能に応じて適当なグレード
インデツクスのものを選定することができる。一
般には、メルトフローレート(MFR)が0.01〜
30g/10分のものが好ましく選ばれる。プロピレ
ン−エチレンブロツク共重合体を用いた場合に
は、特定密度のポリエチレンを所定量配合するこ
とによる導電性の改良効果が著しく大きい。 これらプロピレン重合体には2,6−ジ−t−
ブチル−4−メチルフエノール、1,1,3−ト
リ−(2−メチル−4−ヒドロキシ−5−t−ブ
チルフエニル)ブタン、テトラキス〔メチレン
(3,5−t−ブチル−4−ヒドロキシヒドロケ
イ皮酸エステル)〕メタンなどのフエノール系酸
化防止剤、ジラウリル−チオ−ジプロピオン酸エ
ステル、ジステアリル−チオ−ジプロピオン酸エ
ステルなどのイオウ系酸化防止剤などを必要に応
じて配合することができる。 また、本発明の効果を著しく損なわない範囲で
上記プロピレン重合体以外の樹脂やプロピレン−
エチレン共重合体ゴム、プロピレン−エチレン−
ジエンモノマー三元共重合体ゴム等の他の成分を
組成物の物性改良のために配合することもでき
る。 次に、本発明で使用するエチレン重合体は、密
度が0.945g/cm3以上のエチレン重合体であり、
これのみが本発明の特異的な効果を発揮し得るも
のである。かかるエチレン重合体は通常の所謂低
圧法、すなわち各種触媒の存在下で100気圧、好
ましくは35気圧以下で行なわれるエチレンの重合
法で得ることができる。その際プロピレン、1−
ブテン、1−ペンテン、1−ヘキセン等の他のα
−オレフインを微量混合フイードし、重合体総量
で5重量%以下、好ましくは3重量%以下共重合
した高密度なエチレン重合体であつてもよい。 密度が0.945g/cm3以上のエチレン重合体の中
では、密度が0.960g/cm3以上の高密度エチレン
重合体が特に好ましい。分子量は重量平均分子量
で数千〜数十万の間のものを選択し得る。 無機質フイラーとしては、周期律表第族〜
族の金属原子(たとえばNa、K、Ca、Mg、
Ba、Zn、Al、Fe、Ti等)およびケイ素の酸化
物、水酸化物、硫化物、炭酸塩、硫酸塩、ケイ酸
塩またはこれら化合物のいくつかが存在する各種
粘土鉱物の中で微細な固体物質であるものを用い
ることができる。具体的には例えば酸化鉄、酸化
亜鉛、酸化チタン、アルミナ、シリカ、酸化カル
シウム、水酸化アルミニウム、水酸化マグネシウ
ム、水酸化カルシウム、炭酸マグネシウム、炭酸
カルシウム(重質、軽質、コロイド)、硫酸バリ
ウム、硫酸カルシウム、ケイ酸カルシウム、タル
ク、ウオラストナイト、クレー、ガラスビーズ、
ガラス粉末、ケイ砂、石英粉、シラス、ケイソウ
土等を挙げることができる。これらは二種以上併
用することもできる。 これら無機フイラーの粒径は、平均粒径が20μ
以下のものであり、これより大きいものでは成形
加工性、成形品外観の点で好ましくない。 また、本発明で使用するカーボンブラツクは、
比表面積の大きいS.C.F.(Super Conductive
Furnace)、C.F.(Conductive Furnace)および
X.C.F.(Extra Conductive Furnace)から選ば
れた少なくとも1種のものであり、これらは、少
量の配合で高度の導電性が得られる点で有利であ
る。 これらは市販のものから適宜選んで使用でき、
例えば、S.C.FとしてはCabot社製「バルカン
SC」や「バルカンP」が、C.F.としては同じく
「バルカンC」が、またX.C.F.としてはAKZO社
製「ケツチエンブラツク」のほかCabot社製「バ
ルカンXC−72」や「CSX−99」が代表的であ
る。 なかでも、比表面積が850m2/g以上、特に900
m2/g以上のカーボンブラツクは極めて少量の配
合で高度の導電性を付与できる点で特に好まし
い。 本発明で用いるカーボンブラツクは、着色用や
充填用のカーボンブラツクにみられる無定形構造
ゆえに導電性の極めて劣るカーボンブラツクとは
異なり、表面積がグラフアイト構造を有する導電
性カーボンの中でも特に特定の高導電性フアーネ
スブラツクを選択的に用いるものである。それゆ
えに、通常結晶性プロピレン重合体と高密度ポリ
エチレンとブレンドしたときには相容性の不足か
らデラミネーシヨン(層状剥離現象)が起こる
が、この特殊なカーボンブラツク表面のグラフア
イト構造が高密度ポリエチレンの結晶構造と特異
的な親和性を発揮して極めて良好に相溶しあい、
プロピレン重合体の中でデラミネーシヨンを起こ
さず、かつ高導電性を示す特異な相溶構造のもの
となつて本発明の効果を奏せしめたことは意外な
ことであつた。 なお、この特定フアーネスブラツクにチヤンネ
ルブラツクやアセチレンブラツク等の他のカーボ
ンブラツクを従重量割合の範囲で配合した導電性
複合カーボンブラツクも本発明の態様として用い
ることができる。 本発明は上述の如き(a)プロピレン重合体、(b)高
密度エチレン重合体、(c)無機質フイラーおよび(d)
カーボンブラツクを使用するものであるが、それ
らの配合割合は、(a)を(a)+(b)+(c)基準で80〜25重
量%、好ましくは60〜30重量%、(b)を(a)+(b)+(c)
基準で5〜55重量%、好ましくは10〜30重量%、
(c)を(a)+(b)+(c)基準で15〜70重量%、好ましくは
20〜40重量%および(d)を(a)+(b)+(c)100重量部に
対して2〜100重量部の範囲が好適である。 高密度エチレン重合体の量が上記の範囲未満の
ものは、成形加工性、成形品外観、導電性が悪化
し、また上記範囲超過のものは導電性が悪化する
場合がある。 無機質フイラーの量が上記の範囲未満のものは
導電性の改良効果がなく、また上記の範囲超過の
ものは機械的性質が悪化する場合がある。 カーボンブラツクの配合量が上記範囲未満では
電気伝導性に乏しく、また上記範囲超過では機械
的性質が低下して好ましくないことがある。カー
ボンブラツクの比表面積の大きいものは、上記配
合範囲において比較的低濃度の領域で高度の導電
性を与える。これらのうち、比表面積が850m2
g以上、特に900m2/g以上のケツチエンブラツ
クは極めて低濃度の領域で高度の導電性を与え
る。 本発明組成物は、たとえばバンバリーミキサ
ー、ロール、ブラベンダープラストグラムなどの
バツチ式の混練機のほかに、一軸押出機、二軸押
出機などの連続式の押出機で容易に得ることがで
きる。配合順序は特に限定されるものではなく、
配合物を一度に混合して混練する方法のほかに、
初めにバツチ式あるいは連続式の押出機で特定の
高密度エチレン重合体とカーボンブラツクとを混
練しておき、その混練物とプロピレン重合体およ
び、無機質フイラーを混練することもできる。初
めに高密度エチレン重合体と無機質フイラーとカ
ーボンブラツクとを混練しておき、その混練物と
プロピレン重合体とを混練することもできる。ま
た、特定の高密度エチレン重合体と無機質フイラ
ーとカーボンブラツクの混練物とプロピレン重合
体とをドライブレンドして射出成形等の成形工程
に供することも可能である。 本発明は、本発明に先立つて見出された前述の
提案、すなわちプロピレン重合体と密度が0.945
g/cm3以上のエチレン重合体とカーボンブラツク
とからなる組成物において、これにさらに無機質
フイラーを所定量加えることによつて、密度が
0.945g/cm3以上のエチレン重合体とカーボンブ
ラツク粒子との特異的な相互作用に、さらに無機
質フイラーの特殊な効果が特異的に加わつたもの
である。 この結果、前述の本発明に先立つ提案における
効果に加えて、 (1) コンパウンド製造時の加工性 (2) 各種成形性(射出成形、押出成形等) (3) 各種成形品の外観 等の改良効果のほかに導電性の飛躍的向上を実現
することができた。 この無機質フイラー添加による導電性の飛躍的
向上の効果は、無機質フイラーの配合によるポリ
マー部分の体積の減少に伴うポリマーに対するカ
ーボンブラツクの配合割合の増加による導電性向
上効果をはかるに上回るものである。このような
予期せざる著しく大きな導電性向上効果は、本発
明者らの詳細な実験によつて初めて見出されたも
のである。この効果を発揮する機構は明確には解
明されていないが、無機質フイラーの配合量が15
重量%以上で初めてこの効果が出現することか
ら、無機質フイラーの添加によりカーボンブラツ
クの分散形態が導電性向上に有利な方向に変化す
ることが原因の大きな要因と考えられる。 従つて、この効果は、無機質フイラーの単純な
増量効果によるものではなく、カーボンブラツク
の特殊分散形態付与という複雑な原因によるもの
と考えられる。 本発明組成物はこのような高度の導電性を有す
る結果、電磁波遮蔽性が極めて良好であり、無機
質フイラー配合に伴う剛性、寸法精度の向上と相
まつて、電磁波障害を避ける必要のある電子機
器、事務機器などのハウジング分野、ICなどの
包装容器分野などに極めて大きな適性を有する
他、ガソリン等の危険物の容器類、薄膜電池、面
発熱体などの幅広い分野に適性を有している。 実施例 1 ポリプロピレン(MFR4.5g/10分)、密度
0.965g/cm3の高密度ポリエチレン(MFR5.5g/
10分)、平均粒径3μのタルクの各種割合の混合物
に、これらの合計量100重量部に対して6重量部
のケツチエンブラツク(比表面積1000m2/g)お
よび0.2重量部の2,6−ジ−t−ブチル−4−
メチルフエノールを配合してスーパーミキサーで
混合し、池具鉄工社製PCM30型二軸押出機で混
練しペレツト化した。このペレツトを圧縮成形し
た厚さ2mmのシートを得た。このシートの体積固
有抵抗をSRIS規格2301−1969のホイートストン
ブリツジ法によつて測定した。その結果を表1に
示した。 表1から明らかな通り、実施例のものは比較例
のものに比較して導電性の尺度である体積固有抵
抗が極めて低く良好であつた。
The present invention combines carbon black with a specific ratio composition of propylene polymer, high-density ethylene polymer, and inorganic filler, which has excellent molding processability, molded product appearance, and mechanical properties, and dramatically improves electrical conductivity. Enhanced resin composition. It is known to obtain a conductive resin by blending carbon black with a thermoplastic resin, and conductive resin compositions containing carbon black have also been studied for polypropylene and have been put into practical use in some cases. However, conventional polypropylene containing carbon black has poor moldability (kneadability) and appearance of molded products, and those containing a high proportion of carbon black and those containing carbon black with a large specific surface area are particularly poor. However, there were some drawbacks, and there was a major problem in that the scope of application was extremely limited. In order to alleviate this problem, various methods have been investigated from various angles. First, several known techniques were applied to a polypropylene composition containing carbon black, and their effects were confirmed. First, it was proposed to improve the molding processability of thermoplastic resin compositions containing carbon black. The method of dispersion in a plastic resin (Japanese Unexamined Patent Publication No. 52-47843) was applied to polypropylene for detailed study. As a result, it was found that although there was certainly some improvement in moldability compared to simply blending carbon black with polypropylene, the degree of improvement was not very large, and it was found that the conductivity tended to deteriorate. Ivy. Second, in order to further improve the electrical conductivity of thermoplastic resin compositions containing carbon black, the main material is two or more materials that are difficult to be compatible with each other, and the interface between the main materials is carbon black. The method of making black exist (Japanese Patent Publication No. 49-14532) was applied to polypropylene and studied in detail.
As a result, although a certain degree of improvement in electrical conductivity was observed compared to a product in which carbon black was simply blended with polypropylene, the desired improvement in moldability was not observed. Based on this situation, as a result of various considerations,
Surprisingly, by blending a predetermined amount of ethylene polymer with a density of 0.945 g/cm 3 or more into propylene polymer, carbon black has excellent moldability and appearance, and has dramatically improved conductivity. It was discovered that a blended propylene polymer composition could be obtained, and it was proposed (Japanese Patent Application No. 1986-43867).
issue). As a result of further studies, the present inventors found that by blending a predetermined amount of inorganic filler in addition to a propylene polymer and an ethylene polymer with a density of 0.945 g/cm 3 or more, the moldability and appearance of the molded product could be improved. Be excellent,
Furthermore, the inventors have completed the present invention by discovering that a carbon black-containing propylene polymer composition with dramatically improved conductivity can be obtained. That is, the present invention is a resin composition characterized by consisting of the following (a) to (b), in which (a) is replaced by (a) + (b) + (c).
80~25% by weight based on the standard, (b) 5~5% based on (a) + (b) + (c)
55% by weight, (c) 15 to 70% by weight based on (a) + (b) + (c), and (d) 2 to 100 parts by weight of (a) + (b) + (c). This is a conductive resin composition containing 100 parts by weight. (a) Crystalline propylene polymer selected from propylene homopolymer and propylene-ethylene block copolymer (b) Ethylene polymer having a density of 0.945 g/cm 3 or more (c) The following with an average particle size of 20 μ or less (d) Fine inorganic filler other than ingredients (d) Super conductive furnace (S.
CF), Conductive Furness (CF)
and Extra Conductive Furnace (XCF).The content of the present invention will be described in detail below. The propylene polymer used in the present invention is a crystalline propylene polymer selected from propylene homopolymers (polypropylene) and propylene-ethylene block copolymers. These may contain up to 15% by weight of unsaturated organic acids (acrylic acid, maleic anhydride, etc.) or their derivatives, or vinyl monomers such as aromatic unsaturated monomers (styrene, etc.) unless the effects of the present invention are significantly impaired. It may also be a graft. In addition, propylene-ethylene block copolymer
Although it contains 50% by weight or more, it may contain 20% by weight or less of α-olefin having 4 or more carbon atoms as long as the effects of the present invention are not significantly impaired. These propylene polymers improve the moldability of the composition,
An appropriate grade index can be selected depending on required performance such as mechanical properties. Generally, the melt flow rate (MFR) is 0.01~
30g/10 minutes is preferably selected. When a propylene-ethylene block copolymer is used, the effect of improving conductivity by blending a predetermined amount of polyethylene of a specific density is significant. These propylene polymers include 2,6-di-t-
Butyl-4-methylphenol, 1,1,3-tri-(2-methyl-4-hydroxy-5-t-butylphenyl)butane, tetrakis[methylene(3,5-t-butyl-4-hydroxyhydrocinmine) (acid esters)] Phenol antioxidants such as methane, sulfur antioxidants such as dilauryl-thio-dipropionate, distearyl-thio-dipropionate, and the like may be blended as necessary. In addition, resins other than the above-mentioned propylene polymers and propylene polymers may be used as long as the effects of the present invention are not significantly impaired.
Ethylene copolymer rubber, propylene-ethylene-
Other components such as diene monomer terpolymer rubber can also be blended to improve the physical properties of the composition. Next, the ethylene polymer used in the present invention is an ethylene polymer having a density of 0.945 g/cm 3 or more,
Only this can exhibit the specific effects of the present invention. Such ethylene polymers can be obtained by the conventional so-called low-pressure process, that is, the polymerization of ethylene carried out in the presence of various catalysts at 100 atmospheres, preferably below 35 atmospheres. At that time, propylene, 1-
Other α such as butene, 1-pentene, 1-hexene, etc.
- It may be a high-density ethylene polymer copolymerized by feeding a small amount of olefin and copolymerizing the total polymer amount at 5% by weight or less, preferably 3% by weight or less. Among ethylene polymers having a density of 0.945 g/cm 3 or more, high-density ethylene polymers having a density of 0.960 g/cm 3 or more are particularly preferred. The molecular weight can be selected from a weight average molecular weight of several thousand to several hundreds of thousands. As inorganic fillers, those from groups of the periodic table ~
Group metal atoms (e.g. Na, K, Ca, Mg,
Ba, Zn, Al, Fe, Ti, etc.) and silicon oxides, hydroxides, sulfides, carbonates, sulfates, silicates or some of these compounds are present in various clay minerals. A solid substance can be used. Specifically, for example, iron oxide, zinc oxide, titanium oxide, alumina, silica, calcium oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, magnesium carbonate, calcium carbonate (heavy, light, colloid), barium sulfate, Calcium sulfate, calcium silicate, talc, wollastonite, clay, glass beads,
Examples include glass powder, silica sand, quartz powder, shirasu, diatomaceous earth, and the like. Two or more of these can also be used in combination. The average particle size of these inorganic fillers is 20μ
They are as follows, and anything larger than this is unfavorable in terms of moldability and appearance of the molded product. Furthermore, the carbon black used in the present invention is
SCF (Super Conductive) with a large specific surface area
Furnace), CF (Conductive Furnace) and
It is at least one kind selected from XCF (Extra Conductive Furnace), and these are advantageous in that a high degree of conductivity can be obtained with a small amount of blending. These can be selected and used from commercially available products.
For example, the SCF is "Vulcan" manufactured by Cabot.
``SC'' and ``Vulcan P'', CF is also ``Vulcan C'', and XCF is represented by AKZO's ``Ketschenblak'', as well as Cabot's ``Vulcan XC-72'' and ``CSX-99''. It is true. Among them, those with a specific surface area of 850 m 2 /g or more, especially 900 m 2 /g or more.
Carbon black of m 2 /g or more is particularly preferred since it can provide a high degree of conductivity with a very small amount. The carbon black used in the present invention is different from the carbon black used for coloring and filling, which has extremely poor conductivity due to its amorphous structure. A conductive furnace black is selectively used. Therefore, when crystalline propylene polymer is blended with high-density polyethylene, delamination occurs due to lack of compatibility, but this special graphite structure on the surface of carbon black They exhibit a specific affinity with the crystal structure and are extremely compatible with each other.
It was surprising that the propylene polymer had a unique compatible structure that does not cause delamination and exhibits high conductivity, thereby achieving the effects of the present invention. Incidentally, a conductive composite carbon black obtained by blending other carbon blacks such as channel black and acetylene black with the specific furnace black in a specific weight ratio range can also be used as an embodiment of the present invention. The present invention comprises (a) a propylene polymer, (b) a high-density ethylene polymer, (c) an inorganic filler, and (d)
Carbon black is used, and the blending ratio of (a) to (a) + (b) + (c) is 80 to 25% by weight, preferably 60 to 30% by weight, (b) (a) + (b) + (c)
5 to 55% by weight, preferably 10 to 30% by weight,
15 to 70% by weight of (c) based on (a) + (b) + (c), preferably
A range of 20 to 40% by weight and 2 to 100 parts by weight of (d) per 100 parts by weight of (a)+(b)+(c) is suitable. If the amount of the high-density ethylene polymer is less than the above range, the molding processability, appearance of the molded product, and electrical conductivity may deteriorate, and if it exceeds the above range, the electrical conductivity may deteriorate. If the amount of inorganic filler is less than the above range, there will be no effect of improving conductivity, and if the amount exceeds the above range, mechanical properties may deteriorate. If the amount of carbon black is less than the above range, the electrical conductivity will be poor, and if it exceeds the above range, the mechanical properties will deteriorate, which may be undesirable. Carbon black with a large specific surface area provides a high degree of conductivity at a relatively low concentration in the above blending range. Of these, the specific surface area is 850m 2 /
Ketchen black of more than 900 m 2 /g, especially more than 900 m 2 /g, provides a high degree of conductivity in areas of very low concentration. The composition of the present invention can be easily obtained using a continuous extruder such as a single-screw extruder or a twin-screw extruder in addition to a batch-type kneader such as a Banbury mixer, a roll, or a Brabender plastogram. The order of blending is not particularly limited,
In addition to the method of mixing and kneading the formulation all at once,
It is also possible to first knead a specific high-density ethylene polymer and carbon black in a batch-type or continuous-type extruder, and then knead the kneaded product with the propylene polymer and the inorganic filler. It is also possible to first knead the high-density ethylene polymer, inorganic filler, and carbon black, and then knead the kneaded product with the propylene polymer. Furthermore, it is also possible to dry blend a kneaded product of a specific high-density ethylene polymer, an inorganic filler, and carbon black with a propylene polymer, and then subject the mixture to a molding process such as injection molding. The present invention is based on the above-mentioned proposal discovered prior to the present invention, namely, a propylene polymer and a material having a density of 0.945.
By adding a predetermined amount of an inorganic filler to a composition consisting of an ethylene polymer of g/cm 3 or more and carbon black, the density can be increased.
The special effect of the inorganic filler is added to the specific interaction between the ethylene polymer of 0.945 g/cm 3 or more and the carbon black particles. As a result, in addition to the effects of the proposals prior to the present invention mentioned above, (1) processability during compound production, (2) various moldability (injection molding, extrusion molding, etc.), and (3) improvement in the appearance, etc. of various molded products. In addition to the effects, we were also able to achieve a dramatic improvement in conductivity. The effect of dramatically improving conductivity due to the addition of an inorganic filler far exceeds the effect of improving conductivity due to an increase in the blending ratio of carbon black to the polymer due to a decrease in the volume of the polymer portion due to the addition of an inorganic filler. Such an unexpectedly significant effect of improving conductivity was discovered for the first time through detailed experiments conducted by the present inventors. The mechanism that exerts this effect is not clearly elucidated, but the amount of inorganic filler added is 15%.
Since this effect only appears when the amount exceeds % by weight, it is considered that the major cause is that the addition of the inorganic filler changes the dispersion form of carbon black in a direction that is advantageous for improving conductivity. Therefore, it is considered that this effect is not due to a simple effect of increasing the amount of the inorganic filler, but is due to a complex cause such as the special dispersion form of carbon black. As a result of the composition of the present invention having such high conductivity, it has extremely good electromagnetic wave shielding properties, and together with improved rigidity and dimensional accuracy due to the inorganic filler formulation, it can be used in electronic devices that need to avoid electromagnetic interference, It is extremely suitable for use in the field of housing for office equipment, etc., packaging containers for ICs, etc., and is also suitable for a wide range of fields such as containers for hazardous materials such as gasoline, thin-film batteries, and surface heating elements. Example 1 Polypropylene (MFR4.5g/10min), density
0.965g/ cm3 high density polyethylene (MFR5.5g/
10 minutes), 6 parts by weight of talc (specific surface area 1000 m 2 /g) and 0.2 parts by weight of 2,6 to 100 parts by weight of the total amount of talc with an average particle size of 3 μm. -di-t-butyl-4-
Methyl phenol was blended and mixed using a super mixer, and kneaded using a PCM30 twin screw extruder manufactured by Ikegu Iron Works Co., Ltd. to form pellets. A sheet having a thickness of 2 mm was obtained by compression molding the pellets. The volume resistivity of this sheet was measured by the Wheatstone bridge method according to SRIS standard 2301-1969. The results are shown in Table 1. As is clear from Table 1, the volume resistivity, which is a measure of electrical conductivity, of the examples was extremely low and good compared to that of the comparative examples.

【表】 実施例 2 実施例1において、ケツチエンブラツク6重量
部の代りにフアーネスブラツク(Cabot社製
「CSX−99」)15重量部を用いて同様の実験を行
つた。結果を表2に示した。 表2から明らかな通り、実施例のものは比較例
のものに比較して体積固有抵抗が極めて低く良好
であつた。
[Table] Example 2 The same experiment as in Example 1 was conducted using 15 parts by weight of furnace black ("CSX-99" manufactured by Cabot) instead of 6 parts by weight of Ketchen black. The results are shown in Table 2. As is clear from Table 2, the volume resistivity of the examples was very low and good compared to that of the comparative examples.

【表】 実施例 3 エチレン含量8重量%のプロピレン−エチレン
ブロツク共重合体(MFR4.0g/10分)、密度
0.960g/cm3の高密度ポリエチレン(MFR5.0g/
10分)、平均粒径2μの炭酸カルシウムの各種割合
の混合物に、これらの合計量100重量部に対して
6重量部のケツチエンブラツク(比表面積1000
m2/g)および0.2重量部の1,1,3−トリ−
(2−メチル−4−ヒドロキシ−5−t−ブチル
フエニル)ブタンと共にブラベンダープラストグ
ラムで温度230℃で5分間混練した。この混練物
を圧縮成形して得た厚さ2mmのシートの体積固有
抵抗を表3に示した。 表3から明らかな通り、実施例のものは比較例
のものに比較して体積固有抵抗が極めて低く良好
であつた。
[Table] Example 3 Propylene-ethylene block copolymer with ethylene content of 8% by weight (MFR4.0g/10min), density
0.960g/ cm3 high density polyethylene (MFR5.0g/
10 minutes), 6 parts by weight of calcium carbonate (specific surface area 1000
m 2 /g) and 0.2 parts by weight of 1,1,3-tri-
The mixture was kneaded with (2-methyl-4-hydroxy-5-t-butylphenyl)butane in a Brabender plastogram at a temperature of 230°C for 5 minutes. Table 3 shows the volume resistivity of a 2 mm thick sheet obtained by compression molding this kneaded product. As is clear from Table 3, the volume resistivity of the examples was much lower and better than that of the comparative examples.

【表】 実施例 4 エチレン含量8重量%のプロピレン−エチレン
ブロツク共重合体(MFR4.0g/10分)48重量
部、密度0.960g/cm3の高密度ポリエチレン
(MFR5.0g/10分)32重量部、平均粒径5μのタ
ルク20重量部に、これらの合計量100重量部に対
して15重量部のケツチエンブラツクおよび0.2重
量部の2,6−ジ−t−ブチル−4−メチルフエ
ノールと、衝撃強度改良剤としてプロピレン含量
28%でムーニー粘度75のエチレン−プロピレン共
重合ゴム15重量部を加えてスーパーミキサーで混
合した後、池貝鉄工社製PCM30型二軸押出機で
連続混練しペレツト化した。このペレツトを各機
製作所製スクリユーインライン射出成形機にて温
度230℃で試験片を成形し、この試験片について
各種の物性を測定したところ、体積固有抵抗、剛
性、衝撃強度、外観が極めて秀れていた。また、
このペレツトを用いてコンピユーターのハウジン
グを射出成形したところ、電磁波シールド性が良
好であり、外観、機械的性質、寸法精度耐熱性が
秀れており、極めて良好な製品が得られた。 実施例 5 ポリプロピレン(MFR1.0g/10分)42重量
部、密度0.960g/cm3の高密度ポリエチレン
(MFR5.5g/10分)28重量部、平均粒径3μのタ
ルク30重量部、これらの合計量100重量部に対し
て4.0重量部のケツチエンブラツク(比表面積
1000m2/g)および0.2重量部の2,6−t−ブ
チル−4−メチルフエノールをスーパーミキサー
で混合し、池貝鉄工社製PCM30型二軸押出機で
混練しペレツト化した。 比較のために同じポリプロピレン60重量部、同
じ高密度ポリエチレン40重量部、これらの合計量
100重量部に対して5.8重量部のケツチエンブラツ
クおよび0.2重量部の同じ酸化防止剤を同様の方
法で混合混練し、ペレツト化した。 これらのペレツトを実施例1と同様の方法で射
出成形して試験片を作成し、試験片シートの体積
固有抵抗を測定した。その結果を表4に示した。 表4から明らかなように無機質フイラーを配合
した実施例のものは、無機質フイラーを用いず
に、ポリマー成分に対するケツチエンブラツク配
合量を実施例と同一レベルに揃えた比較例と比べ
て導電性が秀れており、この原因が無機質フイラ
ーの配合による単純な増量効果だけによるもので
はないことがわかる。
[Table] Example 4 48 parts by weight of propylene-ethylene block copolymer with an ethylene content of 8% by weight (MFR4.0g/10min), high density polyethylene with a density of 0.960g/ cm3 (MFR5.0g/10min)32 parts by weight, 20 parts by weight of talc with an average particle size of 5μ, 15 parts by weight of ketschen black and 0.2 parts by weight of 2,6-di-t-butyl-4-methylphenol based on 100 parts by weight of the total amount. and propylene content as an impact strength modifier.
15 parts by weight of 28% ethylene-propylene copolymer rubber having a Mooney viscosity of 75 was added and mixed in a super mixer, followed by continuous kneading and pelletization in a PCM30 twin-screw extruder manufactured by Ikegai Tekko Co., Ltd. These pellets were molded into test pieces at a temperature of 230°C using a screw-in-line injection molding machine manufactured by Kakki Seisakusho, and various physical properties of the test pieces were measured. It was Also,
When a computer housing was injection molded using this pellet, an extremely good product was obtained, which had good electromagnetic shielding properties, excellent appearance, mechanical properties, dimensional accuracy, and heat resistance. Example 5 42 parts by weight of polypropylene (MFR 1.0 g/10 min), 28 parts by weight of high-density polyethylene (MFR 5.5 g/10 min) with a density of 0.960 g/cm 3 , 30 parts by weight of talc with an average particle size of 3 μm, these 4.0 parts by weight of Ketchen black (specific surface area) per 100 parts by weight of the total amount
1000 m 2 /g) and 0.2 parts by weight of 2,6-t-butyl-4-methylphenol were mixed in a super mixer and kneaded in a PCM30 twin screw extruder manufactured by Ikegai Tekko Co., Ltd. to form pellets. For comparison, 60 parts by weight of the same polypropylene, 40 parts by weight of the same high-density polyethylene, their total amount
Based on 100 parts by weight, 5.8 parts by weight of Ketchen Black and 0.2 parts by weight of the same antioxidant were mixed and kneaded in the same manner and pelletized. These pellets were injection molded in the same manner as in Example 1 to prepare test pieces, and the volume resistivity of the test piece sheets was measured. The results are shown in Table 4. As is clear from Table 4, the conductivity of the example containing an inorganic filler was higher than that of the comparative example, which did not use an inorganic filler and had the amount of KETCHEN BLACK mixed in the polymer component at the same level as the example. It is clear that this is not due to a simple increase in volume due to the addition of the inorganic filler.

【表】 実施例 6 実施例1において、ポリプロピレン、高密度ポ
リエチレンおよびタルクの配合割合を表5のとお
りとした以外は実施例1と同様にして体積固有抵
抗を評価した。その結果を表5および第1図に示
す。 表5および第1図から明らかな通り、ポリプロ
ピレンに特定カーボンブラツクを配合したのみの
組成物や高密度ポリエチレンに特定カーボンブラ
ツクを配合したのみの組成物では極めて低い導電
性である。また、ポリプロピレンと高密度ポリエ
チレンのブレンド樹脂に特定カーボンブラツクを
配合した組成物や、ポリプロピレン又は高密度ポ
リエチレンの単一樹脂に特定カーボンブラツクと
タルクを併用配合した組成物は導電性が若干改善
されるが末だ十分ではない。これに対して、本発
明の組成物は導電性が飛躍的に向上している。
[Table] Example 6 Volume resistivity was evaluated in the same manner as in Example 1, except that the blending ratios of polypropylene, high-density polyethylene, and talc were as shown in Table 5. The results are shown in Table 5 and FIG. As is clear from Table 5 and FIG. 1, compositions containing only polypropylene blended with a specific carbon black or compositions containing only a specific carbon black blended with high-density polyethylene have extremely low conductivity. In addition, conductivity is slightly improved in compositions in which specific carbon black is blended with a blend resin of polypropylene and high-density polyethylene, and in compositions in which specific carbon black and talc are blended together in a single resin of polypropylene or high-density polyethylene. It's not enough. In contrast, the composition of the present invention has dramatically improved conductivity.

【表】【table】

【表】 実施例 7 実施例1において、ケツチエンブラツク6重量
部の代わりにバルカンSC、バルカンC(いずれも
Cabot社製フアーネスブラツク商品名)のそれぞ
れ20重量部を用いて同様に実験を行なつた。結果
を表6に示す。
[Table] Example 7 In Example 1, Vulcan SC and Vulcan C (both
A similar experiment was conducted using 20 parts by weight of Furness Black (trade name) manufactured by Cabot. The results are shown in Table 6.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例6の評価結果である高密度ポ
リエチレン配合割合と体積固有抵抗との相関を示
す図面である。 曲線Aは、タルクと特定カーボンブラツクとの
併用配合系であり、曲線Bは特定カーボンブラツ
クの配合系である。
FIG. 1 is a drawing showing the correlation between the high-density polyethylene blending ratio and the volume resistivity, which is the evaluation result of Example 6. Curve A is a combination system of talc and specific carbon black, and curve B is a combination system of specific carbon black.

Claims (1)

【特許請求の範囲】 1 下記(a)〜(d)からなることを特徴とする樹脂組
成物であつて、(a)を(a)+(b)+(c)基準で80〜25重量
%、(b)を(a)+(b)+(c)基準で5〜55重量%、(c)を(a)
+(b)+(c)基準で15〜70重量%および、(d)を(a)+(b)
+(c)100重量部に対して2〜100重量部配合した導
電性樹脂組成物。 (a) プロピレン単独重合体およびプロピレン−エ
チレンブロツク共重合体から選ばれた結晶性プ
ロピレン重合体 (b) 密度0.945g/cm3以上のエチレン重合体 (c) 平均粒径が20μ以下である下記(d)成分以外の
微細な無機質フイラー (d) スーパー・コンダクテイブ・フアーネス(S.
C.F.)、コンダクテイブ・フアーネス(C.F.)
およびエクストラ・コンダクテイブ・フアーネ
ス(X.C.F.)から選ばれた少なくとも1種のカ
ーボンブラツク
[Scope of Claims] 1. A resin composition comprising the following (a) to (d), wherein (a) is 80 to 25% by weight based on (a) + (b) + (c). %, (b) to (a) + (b) + (c) 5 to 55% by weight, (c) to (a)
15 to 70% by weight based on +(b)+(c) and (d) as (a)+(b)
+(c) A conductive resin composition containing 2 to 100 parts by weight based on 100 parts by weight. (a) Crystalline propylene polymer selected from propylene homopolymer and propylene-ethylene block copolymer (b) Ethylene polymer having a density of 0.945 g/cm 3 or more (c) The following with an average particle size of 20 μ or less (d) Fine inorganic filler other than ingredients (d) Super conductive furnace (S.
CF), Conductive Furness (CF)
and at least one carbon black selected from Extra Conductive Furnace (XCF).
JP9581380A 1980-07-14 1980-07-14 Electrically conductive resin composition Granted JPS5721441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9581380A JPS5721441A (en) 1980-07-14 1980-07-14 Electrically conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9581380A JPS5721441A (en) 1980-07-14 1980-07-14 Electrically conductive resin composition

Publications (2)

Publication Number Publication Date
JPS5721441A JPS5721441A (en) 1982-02-04
JPS642615B2 true JPS642615B2 (en) 1989-01-18

Family

ID=14147857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9581380A Granted JPS5721441A (en) 1980-07-14 1980-07-14 Electrically conductive resin composition

Country Status (1)

Country Link
JP (1) JPS5721441A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108242A (en) * 1981-12-22 1983-06-28 Mitsubishi Petrochem Co Ltd Electrically conductive resin composition
JPS6031549A (en) * 1983-07-29 1985-02-18 Dainippon Printing Co Ltd Electromagnetic wave-shielding resin composition and production thereof
JPS60262856A (en) * 1984-06-11 1985-12-26 Fujikura Ltd Electrically conductive polymer composition and heater made by using the same
JPH0811773B2 (en) * 1985-03-26 1996-02-07 三井東圧化学株式会社 Method for coating polypropylene resin composition containing filler
JPS6228841U (en) * 1985-08-06 1987-02-21
JPH078532B2 (en) * 1986-05-30 1995-02-01 三菱油化株式会社 Drawing method for resin sheet
JPH0414703A (en) * 1990-05-09 1992-01-20 Kokan Kogyo Kk Conductive filler
JP3848926B2 (en) * 2003-02-21 2006-11-22 ミサト株式会社 Electromagnetic wave absorbing structure and manufacturing method thereof
WO2005012411A1 (en) * 2003-07-29 2005-02-10 The University Of Akron Electrically-conducting polymers, a method for preparing electrically-conducting polymers, and a method for controlling electrical conductivity of polymers
CN104725718A (en) * 2014-12-26 2015-06-24 上海金发科技发展有限公司 Polypropylene structure foamed material with favorable appearance and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145297B2 (en) * 1973-01-30 1976-12-03
JPS5247843A (en) * 1975-10-15 1977-04-16 Asahi Chem Ind Co Ltd Conductive resin compositions
JPS5254008A (en) * 1975-10-25 1977-05-02 Asahi Chemical Ind Plug of plastic material for electric detonator
JPS55106252A (en) * 1979-02-08 1980-08-14 Kokoku Gomme Kogyo Kk Modified polypropylene resin and surface metallization thereof
JPS56159252A (en) * 1980-05-13 1981-12-08 Lion Corp Electrically conductive plastic sheet

Also Published As

Publication number Publication date
JPS5721441A (en) 1982-02-04

Similar Documents

Publication Publication Date Title
KR860000770B1 (en) Poly propylene resin composition
CN112500644B (en) Conductive polypropylene composition and preparation method thereof
EP0273228B1 (en) Polypropylene composition
JPS61233047A (en) Polypropylene resin composition
GB2111071A (en) Moldable composition containing propylene polymer
CA1248270A (en) Improved polyolefin thermoplastic resin compositions
JPS642615B2 (en)
JPH0416500B2 (en)
JPS61155451A (en) Electrically conductive resin composition
JPS60124654A (en) Electrically conductive resin composition
EP0412534B1 (en) Propylene polymer composition
GB2183925A (en) Electrical resistors molded from thermoplastic polymer composition
JPS6324018B2 (en)
KR950012656B1 (en) Electric conductive resin product for shielding electromagnetic wave
JPH05255520A (en) Production of sliding member
EP1362079B1 (en) Polypropylene resin composition with improved surface hardness and scratch resistance properties
EP0426315A2 (en) Polypropylene resin composition
JPS59202241A (en) Thermoplastic resin composition
JPS5875707A (en) Polyolefin based electroconductive material
JPS6017296B2 (en) Thermoplastic resin molding material
JPH0224861B2 (en)
JPH0126617B2 (en)
JPH10168250A (en) Thermoplastic resin composition and preparation thereof
JPH0224860B2 (en)
JPS61215643A (en) Polypropylene resin composition for coated bumper