JPH0952777A - Production of oxidation resistant c/c composite material - Google Patents

Production of oxidation resistant c/c composite material

Info

Publication number
JPH0952777A
JPH0952777A JP7225892A JP22589295A JPH0952777A JP H0952777 A JPH0952777 A JP H0952777A JP 7225892 A JP7225892 A JP 7225892A JP 22589295 A JP22589295 A JP 22589295A JP H0952777 A JPH0952777 A JP H0952777A
Authority
JP
Japan
Prior art keywords
sic
layer
composite material
prepreg
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7225892A
Other languages
Japanese (ja)
Inventor
Masayuki Hirabayashi
昌之 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP7225892A priority Critical patent/JPH0952777A/en
Publication of JPH0952777A publication Critical patent/JPH0952777A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another

Abstract

PROBLEM TO BE SOLVED: To produce an oxidation resistant C/C composite material on which an SiC coating film can be stably and tightly formed. SOLUTION: Prepreg formed by impregnating a liq. matrix resin into a fabric of carbon fibers is laminate-molded, cured and carbonized by firing to produce a C/C composite material and an SiC coating film having a functional gradient is formed on the composite material as a base material by bringing gaseous SiO into contact with the surface of the material and converting the SiO into SiC. In this method, prepreg layers positioned at the outermost layer parts (top and bottom layers) are formed using fabrics of carbon fibers woven from tow consisting of a larger number of filaments than tow for inner prepreg layers and a C/C composite material having a composite structure produced by laminating the prepreg layers is used as the base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コンバージョン法
によりC/C複合基材の表層部にSiC被膜を安定強固
に被覆形成した材質強度に優れる耐酸化性C/C複合材
(炭素繊維強化炭素複合材)の製造方法に関する。
TECHNICAL FIELD The present invention relates to an oxidation resistant C / C composite material (carbon fiber reinforced carbon) which has a stable and strong SiC coating formed on the surface layer of a C / C composite substrate by a conversion method. Composite material).

【0002】C/C複合材は、卓越した比強度、比弾性
率を有するうえに1000℃以上の高温においても優れ
た耐熱性および化学的安定性を備えているため、航空宇
宙用をはじめ高温過酷な条件で使用される各種の構造部
材として注目されている。しかし、C/C複合材は実質
的に炭素材料である関係で500℃以上の大気雰囲気下
では酸化が進行し、材質劣化を招く固有の欠点がある。
このため、C/C複合材の表面に酸化抵抗性のある被覆
を施して耐酸化性を改善する試みが従来から盛んに行わ
れており、例えば炭化珪素、窒化珪素、ジルコニヤ、ア
ルミナ等の耐熱セラミックス系物質によって被覆処理す
る方法が数多く開発されている。このうち、被覆層の形
成操作、性状特性など技術的、経済的な面から炭化珪素
の被膜形成が最も工業性に適している。
Since C / C composite materials have excellent specific strength and specific elastic modulus as well as excellent heat resistance and chemical stability even at a high temperature of 1000 ° C. or higher, they are used in aerospace and other high temperatures. It has been attracting attention as various structural members used under severe conditions. However, since the C / C composite material is substantially a carbon material, it has an inherent defect that oxidation progresses in an air atmosphere at 500 ° C. or higher, resulting in material deterioration.
For this reason, there have been many attempts to improve the oxidation resistance by coating the surface of the C / C composite material with oxidation resistance. For example, heat resistance of silicon carbide, silicon nitride, zirconia, alumina, etc. Many methods for coating with ceramic materials have been developed. Of these, the coating of silicon carbide is most suitable for industrial application in terms of technical and economical aspects such as the coating layer forming operation and property characteristics.

【0003】[0003]

【従来の技術】従来、C/C複合基材の表面にSiCの
被覆を施す方法として、気相反応により生成するSiC
を直接沈着させるCVD法(化学的気相蒸着法)と、基
材の炭素を反応源に利用してSiOガスと反応させるこ
とによりSiCに転化させるコンバージョン法が知られ
ている。このうち、前者のCVD法を適用して形成した
SiC被膜層は組織の緻密性は極めて高いが、基材との
界面が明確に分離している関係で、熱衝撃を与えるとC
/C複合基材とSiC被膜層との熱膨張差によってSi
C被膜層が剥離し易い欠点がある。この層間剥離現象
は、C/C複合基材とSiC被膜層との熱膨張差が大き
く、最大歪みが追従できないことに起因して起こるもの
であるから、C/C複合基材面をSiCの熱膨張率に近
似するように改質すれば軽減化させることができる。こ
のような観点から、C/C複合基材面に気相熱分解法に
より熱分解炭素層を形成し、ついでCVD法またはCV
I法でSiCを被覆する方法(特開平2−111681号公
報)が提案されているが、操作の煩雑性に見合う程の十
分な高温酸化抵抗性は期待できない。
2. Description of the Related Art Conventionally, as a method for coating the surface of a C / C composite substrate with SiC, SiC produced by a gas phase reaction
There are known a CVD method (chemical vapor deposition method) for directly depositing carbon and a conversion method for converting carbon of a base material into SiC by reacting with SiO gas using a reaction source. Among them, the SiC coating layer formed by applying the former CVD method has an extremely high density of structure, but the interface with the substrate is clearly separated, so that it is C
/ C composite substrate and SiC coating layer due to thermal expansion difference Si
There is a drawback that the C coating layer is easily peeled off. This delamination phenomenon occurs because the difference in thermal expansion between the C / C composite substrate and the SiC coating layer is large and the maximum strain cannot be followed. If it is modified so as to approximate the coefficient of thermal expansion, it can be reduced. From such a viewpoint, a pyrolytic carbon layer is formed on the C / C composite substrate surface by a vapor phase pyrolysis method, and then a CVD method or a CV method is used.
A method of coating SiC by method I (Japanese Patent Laid-Open No. 2-111681) has been proposed, but sufficient high temperature oxidation resistance commensurate with the complexity of the operation cannot be expected.

【0004】これに対し、後者のコンバージョン法は珪
素源と炭材を加熱反応させて生成するSiOガスとC/
C複合材を構成する炭素組織とを反応させ、C/C複合
材の表層部の表面から内部にかけて漸次SiC化する機
構に基づくものであるから、形成されるSiC被膜層は
SiC化の度合が材質内部に向かうに従って次第に減少
する連続的な傾斜機能組織を呈する。したがって、CV
D法により形成されるSiC被膜層のように明確な層間
がなく、熱衝撃を受けても層間界面剥離を生じることが
ない利点がある。しかし、その反面、表層部におけるS
iC被膜層の緻密度合が低下するうえに、反応時、被膜
層に微小なクラックが発生し、十分な耐酸化性を付与で
きない欠点がある。
On the other hand, in the latter conversion method, the SiO gas and C /
Since it is based on the mechanism of reacting with the carbon structure of the C composite material to gradually become SiC from the surface to the inside of the surface layer portion of the C / C composite material, the formed SiC coating layer has a degree of SiC formation. It exhibits a continuous functionally graded structure that gradually decreases toward the inside of the material. Therefore, CV
Unlike the SiC coating layer formed by the D method, there is no clear interlayer, and there is an advantage that interlayer delamination does not occur even when subjected to thermal shock. However, on the other hand, S in the surface layer
In addition to the decrease in the density of the iC coating layer, minute cracks are generated in the coating layer during the reaction, and sufficient oxidation resistance cannot be imparted.

【0005】このため、C/C基材の表面に予めコンバ
ージョン法によりSiC被膜層を形成し、これをベース
層としてその上に各種の被覆層を積層して耐酸化性能を
向上させる試みが提案されている。例えば微小クラック
をガラスシール層で目詰めする方法として、C/C基材
の表面に、SiC被覆層、SiO2 微粒被覆層、SiO
2 ガラス被覆層またはB2 3 ガラス被覆層もしくはB
2 3 ・SiO2 ガラス被覆層が3層状に積層被覆され
た構造の耐酸化性C/C材とその製造方法(特開平4−
42883 号公報、特開平4−187583号公報、特開平4−24
3989号公報、特開平4−243990号公報、特開平4−4336
6 号公報、特開平5−70228 号公報、特開平5−229886
号公報、特開平5−330961号公報、特開平6−48872 号
公報、特開平6−144967号公報、特開平6−247782号公
報など)が知られている。
Therefore, an attempt has been made to improve the oxidation resistance by forming a SiC coating layer on the surface of a C / C substrate in advance by a conversion method and laminating various coating layers on the SiC coating layer as a base layer. Has been done. For example, as a method of filling fine cracks with a glass seal layer, a SiC coating layer, a SiO 2 fine particle coating layer, and a SiO 2 fine particle coating layer are formed on the surface of a C / C substrate.
2 glass coating layer or B 2 O 3 glass coating layer or B
Oxidation-resistant C / C material having a structure in which 2 O 3 .SiO 2 glass coating layers are laminated in three layers and a method for producing the same (Japanese Patent Application Laid-Open No. Hei 4-
42883, JP 4-187583, JP 4-24
3989, JP-A-4-243990, JP-A-4-4336
6, JP-A-5-70228, JP-A-5-229886
JP-A-5-330961, JP-A-6-48872, JP-A-6-144967, JP-A-6-247782, etc.) are known.

【0006】これらの多層化被覆手段によればC/C複
合材の耐酸化性能を効果的に向上させることが可能とな
るが、ベース層として形成するコンバージョン法による
SiC被膜が厚くなるとC/C基材の内部組織までSi
C化が進行して、C/C基材の材質強度の低下を招く問
題がある。すなわち、コンバージョン法による被覆段階
においては、SiOガスはC/C基材の表面から組織内
部に浸透拡散しながらC/C基材組織をSiCに転化し
ていくため、C/C複合材の表面ばかりでなく、比較的
深い組織内部までSiC化が進行して基材組織、とくに
SiC化し易いマトリックス炭素部分を優先的に珪化し
て基材組織全体を脆弱化させ、更に、C/C複合基材と
の熱膨張差によってクラックの発生度合が増大する。
These multi-layered coating means can effectively improve the oxidation resistance of the C / C composite material, but if the SiC coating formed as the base layer by the conversion method becomes thicker, the C / C composition becomes larger. Si up to the internal structure of the substrate
There is a problem that the carbonization progresses and the material strength of the C / C base material is lowered. That is, in the coating step by the conversion method, the SiO gas converts the C / C base structure into SiC while permeating and diffusing from the surface of the C / C base into the inside of the structure. Not only that, but the SiC structure progresses to the inside of the relatively deep structure, and the matrix structure, especially the matrix carbon portion which is easily converted into SiC, is preferentially silicified to weaken the entire matrix structure. The degree of crack generation increases due to the difference in thermal expansion from the material.

【0007】上記の問題点を解消し、ベース層となるコ
ンバージョン法によるSiC被覆形成を表層部に留めて
組織内部の材質劣化を防止する手段として、多層被覆工
程時のC/C複合基材として、表面部分にポリアクリル
ニトリル系の炭素繊維層が介在し、内部はピッチ系の炭
素繊維により形成された複合組織とする耐酸化性炭素繊
維強化炭素材の製造方法(特願平5−273108号)や、S
iC被膜を形成する表層部分の炭素繊維体積含有率(Vf)
が内部に比べて高く、かつ前記の炭素繊維体積含有率(V
f)が少なくとも65%の複合組織とする耐酸化性C/C
複合材の製造方法(特開平6−144968号公報)が本出願
人によって開発されている。
As a means for solving the above problems and preventing the deterioration of the material inside the tissue by keeping the formation of the SiC coating by the conversion method as the base layer on the surface layer, as a C / C composite base material in the multilayer coating step. A method for producing an oxidation resistant carbon fiber reinforced carbon material, in which a polyacrylonitrile-based carbon fiber layer is present on the surface portion and the inside has a composite structure formed of pitch-based carbon fibers (Japanese Patent Application No. 5-273108). ), S
Carbon fiber volume content (Vf) of surface layer forming iC film
Is higher than the inside, and the carbon fiber volume content (V
f) is a composite structure with at least 65% oxidation resistance C / C
A method for manufacturing a composite material (Japanese Patent Laid-Open No. 6-144968) has been developed by the present applicant.

【0008】[0008]

【発明が解決しようとする課題】本発明者は、上記の先
行技術とは異なる観点からコンバージョン法によるC/
C基材の表層部にSiC被膜層を安定強固に形成する方
法について検討を進めた結果、C/C複合基材の最外層
部におけるマトリックス炭素の偏在度合を内部層に比べ
て相対的に大きくすると、コンバージョン化によるSi
C被覆層の形成が組織内部まで進行しないうえ、SiC
被覆層と内部のC/C基材組織とがSiC化層のアンカ
ー効果(投錨効果)により強固に結合することを確認し
た。
SUMMARY OF THE INVENTION The inventor of the present invention uses the C / C method based on the conversion method from the viewpoint different from the above-mentioned prior art.
As a result of further studies on a method for forming a SiC coating layer on the surface layer of the C base material in a stable and strong manner, the degree of uneven distribution of matrix carbon in the outermost layer of the C / C composite base material is relatively large as compared with the inner layer. Then Si by conversion
The formation of the C coating layer does not proceed to the inside of the tissue, and SiC
It was confirmed that the coating layer and the C / C base material structure inside were strongly bonded by the anchor effect (anchoring effect) of the SiC layer.

【0009】本発明は、上記の知見に基づいて開発され
たもので、その目的とするところは内部組織の材質低下
を伴うことなしに、コンバージョン法によりC/C複合
基材の表層部に安定強固なSiC被覆層を形成すること
ができる耐酸化性C/C複合材の製造方法を提供するこ
とにある。
The present invention was developed on the basis of the above findings, and its purpose is to stabilize the surface layer of a C / C composite substrate by the conversion method without deteriorating the material quality of the internal structure. It is to provide a method for producing an oxidation resistant C / C composite material capable of forming a strong SiC coating layer.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による耐酸化性C/C複合材の製造方法は、
炭素繊維織布にマトリックス樹脂液を含浸したプリプレ
グを積層成形し硬化および焼成炭化したC/C複合材を
基材とし、該基材面にSiOガスを接触させてコンバー
ジョン法により傾斜機能を有するSiC被膜を形成する
方法において、最外層部(最上層および最下層)に位置
するプリプレグを、内部のプリプレグ層よりフィラメン
ト数の多いトウで編組した炭素繊維織布を用いて積層し
た複合組織のC/C複合材を基材とすることを構成上の
特徴とする。
The method for producing an oxidation resistant C / C composite material according to the present invention for achieving the above object comprises:
SiC having a gradient function by a conversion method by using a C / C composite material obtained by laminating a prepreg obtained by impregnating a carbon fiber woven fabric with a matrix resin liquid, and curing and firing and carbonizing the prepreg, and bringing SiO gas into contact with the surface of the substrate to obtain a conversion method. In the method of forming a coating, the C / of a composite structure in which prepregs located in the outermost layers (uppermost layer and lowermost layer) are laminated using a carbon fiber woven fabric braided with a tow having a larger number of filaments than the inner prepreg layer A structural feature is that the C composite material is used as a base material.

【0011】[0011]

【発明の実施の形態】C/C複合基材は、炭素繊維織布
にマトリックス樹脂液を浸漬または塗布などにより含浸
して半硬化状のプリプレグを作成し、このプリプレグを
所定枚数積層成形したのち硬化および焼成炭化処理する
ことにより製造される。炭素繊維織布の種類には特に限
定はなく、例えばポリアクリルニトリル系、レーヨン
系、ピッチ系など各種の炭素繊維からなる平織、朱子
織、綾織などの織布を使用することができる。また、マ
トリックス樹脂液としては炭化残留率の高いフェノール
系、フラン系などの液状熱硬化性樹脂、タールピッチ、
フェノール変性タールピッチなどの熱可塑性物質が用い
られる。
BEST MODE FOR CARRYING OUT THE INVENTION A C / C composite substrate is obtained by impregnating a carbon fiber woven fabric with a matrix resin liquid by dipping or coating to form a semi-cured prepreg, and laminating and molding a predetermined number of the prepreg. It is produced by curing and firing carbonization. The kind of carbon fiber woven fabric is not particularly limited, and for example, plain weave, satin weave, twill weave and the like made of various carbon fibers such as polyacrylonitrile type, rayon type and pitch type can be used. Further, as the matrix resin liquid, a liquid type thermosetting resin such as a phenol type having a high carbonization residual rate, a furan type, tar pitch,
A thermoplastic such as phenol-modified tar pitch is used.

【0012】上記のC/C複合基材を作製する過程にお
いて、最外層部(最上層および最下層)に位置するプリ
プレグを、内部のプリプレグ層よりフィラメント数の多
いトウで編組した炭素繊維織布を用いて積層することが
本発明の主要な要件となる。通常、炭素繊維織布は炭素
繊維のフィラメント(単繊維)を1000〜15000
本束ねたトウを編組して製造されるが、トウを形成する
フィラメント数によって布目その他の編組状態が相違す
る。本発明においては、積層するプリプレグ層のうち、
最上層および最下層のプリプレグ中に複合する炭素繊維
織布を、内部に積層するプリプレグ中に複合する炭素繊
維織布よりもフィラメント数の多いトウにより編組した
相対的に布目の大きい織布により構成する。この場合の
フィラメント数の相違は、最外層部のプリプレグにおけ
る炭素繊維トウのフィラメント数を内部のプリプレグに
おける炭素繊維トウのフィラメント数の2倍以上である
ことが好ましく、2倍未満ではコンバージョン法による
SiC層の形成をC/C複合基材の表層部のみに形成す
ることができなくなる。なお、最外層部に積層するプリ
プレグは1〜2層でよい。
In the process of producing the above C / C composite substrate, a prepreg located in the outermost layer (uppermost layer and lowermost layer) is braided with a tow having a larger number of filaments than the internal prepreg layer. Laminating with is a major requirement of the present invention. Usually, the carbon fiber woven cloth has a carbon fiber filament (single fiber) of 1,000 to 15,000.
The braided tow is braided, but the weave and other braided states differ depending on the number of filaments forming the tow. In the present invention, among the prepreg layers to be laminated,
Composed of a relatively large woven fabric in which the carbon fiber woven fabric that is compounded in the prepreg of the uppermost layer and the lowermost layer is braided with a tow having a larger number of filaments than the carbon fiber woven fabric that is compounded in the prepreg laminated inside To do. In this case, the difference in the number of filaments is that the number of filaments of the carbon fiber tow in the prepreg of the outermost layer portion is preferably twice or more the number of filaments of the carbon fiber tow in the inner prepreg, and if it is less than twice, the SiC by the conversion method is used. It becomes impossible to form a layer only on the surface layer portion of the C / C composite substrate. The prepreg to be laminated on the outermost layer may have 1 to 2 layers.

【0013】積層状態で重ね合わせたプリプレグは、モ
ールド中で熱圧成形して平板状、曲板状など所望形状の
成形体としたのち、マトリックス樹脂を完全に加熱硬化
し、ついで常法に従い非酸化性雰囲気下で1000〜2
000℃の温度に加熱して焼成炭化する。このようにし
て作製されたC/C複合基材は、コンバージョン法によ
りSiC被膜の被覆を行う。
The prepregs laminated in a laminated state are thermocompression-molded in a mold to obtain a molded product having a desired shape such as a flat plate shape or a curved plate shape, and then the matrix resin is completely heat-cured and then subjected to a non-conventional method. 1000-2 under oxidizing atmosphere
It is heated to a temperature of 000 ° C. to be carbonized by firing. The C / C composite substrate thus produced is coated with a SiC film by a conversion method.

【0014】コンバージョン法によるSiC被膜の形成
は、次の操作で行われる。まず、石英、珪石、珪砂等の
SiO2 含有物質を10〜500μm に粉砕した珪素源
とコークス、ピッチ、黒鉛、カーボンブラック等を10
〜500μm とした炭素源とを機械的混合装置により十
分に混合して均一な混合物としたのち、黒鉛のような耐
熱性材料で構成された反応容器に入れる。珪素源と炭素
源の配合割合は混合する各粉末の表面積を考慮して決定
されるが、通常SiO2 :Cの重量比率で1:1〜5:
1の範囲になる組成に配合される。
The formation of the SiC film by the conversion method is performed by the following operation. First, a silicon source obtained by crushing SiO 2 -containing substances such as quartz, silica stone, and silica sand to 10 to 500 μm and coke, pitch, graphite, carbon black, etc.
A carbon source of about 500 μm is thoroughly mixed by a mechanical mixing device to form a uniform mixture, which is then placed in a reaction vessel made of a heat resistant material such as graphite. The blending ratio of the silicon source and the carbon source is determined in consideration of the surface area of each powder to be mixed, and is usually 1: 1 to 5: 1 by weight ratio of SiO 2 : C.
It is blended to a composition of 1 range.

【0015】上記の反応容器を密閉加熱炉内に設置し、
C/C複合基材を反応容器内の混合粉末中に埋没する
か、反応容器の近傍にセットした状態で、系内を非酸化
性雰囲気に保持しながら1600〜2000℃の温度に
加熱処理する。処理過程で珪素源と炭材の加熱還元反応
により発生したSiOガスは、C/C複合基材の表面部
からC/C基材の炭素と反応してSiCに転化しながら
内部に浸透拡散しC/C基材の表層部に傾斜機能組織の
SiC被膜層が形成される。
The above reaction vessel is installed in a closed heating furnace,
The C / C composite substrate is embedded in the mixed powder in the reaction vessel or set in the vicinity of the reaction vessel, and heat-treated at a temperature of 1600 to 2000 ° C. while maintaining the system in a non-oxidizing atmosphere. . The SiO gas generated by the heat reduction reaction between the silicon source and the carbonaceous material in the treatment process reacts with the carbon of the C / C base material from the surface of the C / C composite base material, converts into SiC, and permeates and diffuses inside. A SiC coating layer having a functionally graded structure is formed on the surface layer of the C / C substrate.

【0016】本発明によれば、コンバージョン法でC/
C複合基材の表面にSiC被覆層を形成するに際し、C
/C複合基材として最外層部(最上層および最下層)に
位置するプリプレグを、内部のプリプレグ層よりフィラ
メント数の多いトウで編組した炭素繊維織布を用いて積
層した複合組織として構成しているから、最外層部に介
在する炭素繊維織布の布目は内部層のそれに比べて大き
くなっており、この関係で焼成炭化後の組織は最外層部
において相対的にマトリックス樹脂から転化した炭素部
分が多く偏在する複合状態を呈する。
According to the present invention, C /
When forming the SiC coating layer on the surface of the C composite substrate, C
As a composite structure, the prepregs located in the outermost layers (the uppermost layer and the lowermost layer) as the / C composite substrate are laminated using a carbon fiber woven fabric braided with a tow having a larger number of filaments than the internal prepreg layer. Therefore, the texture of the carbon fiber woven cloth intervening in the outermost layer is larger than that in the inner layer, and in this relationship, the structure after firing and carbonization is the carbon portion relatively converted from the matrix resin in the outermost layer. Presents a complex state in which many

【0017】このようなC/C基材をコンバージョン法
によりSiOガスと接触させてSiC化すると、炭素繊
維に比較してSiC化反応し易いマトリックス樹脂の炭
化部分からSiC化が進行し、上下の最外層部が優先的
にSiC層に転化する。同時に、一部のSiOガスは内
部に浸透拡散して内部層まで楔を打ち込んだような状態
にSiCへ転化する。このようなSiC化作用により、
C/C複合基材の内部組織までSiC化する現象が効果
的に抑制され、表層部のみが完全にSiC層により被覆
されるとともに、該SiC層から内層に向かって形成さ
れた楔状のSiCがアンカー効果(投錨効果)を発揮し
て強固に結合する。したがって、C/C複合基材の材質
劣化を伴うことなく、常に安定強固な耐酸化性SiC被
膜の形成が可能となる。
When such a C / C base material is brought into contact with SiO gas by a conversion method to be made into SiC, the carbonization portion of the matrix resin, which is more liable to SiC reaction than carbon fiber, progresses to become SiC, and the upper and lower portions are converted into SiC. The outermost layer portion is preferentially converted to the SiC layer. At the same time, a part of the SiO gas permeates and diffuses into the inside and is converted into SiC in a state where a wedge is driven into the inner layer. Due to such an action of converting to SiC,
The phenomenon in which the internal structure of the C / C composite substrate is converted to SiC is effectively suppressed, and only the surface layer portion is completely covered with the SiC layer, and wedge-shaped SiC formed from the SiC layer toward the inner layer is formed. It exerts an anchor effect (anchor effect) and firmly bonds. Therefore, it is possible to always form a stable and strong oxidation resistant SiC coating without deterioration of the material of the C / C composite substrate.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0019】実施例1 (1)C/C基材の作製 ポリアクリルニトリル系高強度高弾性タイプの炭素繊維
トウ(フィラメント数3000本)を編組した平織炭素
繊維織布〔東レ(株)製〕に、マトリックス樹脂として
フェノール樹脂初期縮合物〔大日本インキ化学工業
(株)製〕を均一に塗布し48時間風乾してプリプレグ
シートを作成した。このプリプレグシートを上下方向に
16枚重ねて積層し、その上下(最外層)面にフィラメ
ント数6000本の炭素繊維トウを用いたほかは同一の
方法で作成したプリプレグシートを各1枚積層して20
0×200mmのモールドに入れ、加熱温度110℃、加
圧圧力20kg/cm2の条件で熱圧成形した。この成形体を
モールドから取り出し250℃の温度に加熱して完全に
硬化したのち、窒素雰囲気に保持された焼成炉に移し5
℃/hr の昇温速度で1000℃まで加熱し、この温度に
5時間保持して焼成炭化した。ついで、得られたC/C
材に前記と同一のフェノール樹脂初期縮合物を圧力7kg
/cm2で再度加圧含浸し、前記と同様に焼成処理する工程
を3回反復したのち、最終的に2000℃の温度により
焼成してC/C複合基材を作製した。作製されたC/C
複合基材(200mm×200mm×4.5mm)の炭素繊維
体積含有率(Vf)は65%、嵩密度は1.65g/ccであっ
た。
Example 1 (1) Preparation of C / C substrate A plain woven carbon fiber woven fabric (manufactured by Toray Industries, Inc.) in which a polyacrylonitrile-based high strength and high elasticity type carbon fiber tow (3000 filaments) was braided. Then, a phenol resin initial condensate [manufactured by Dainippon Ink and Chemicals, Inc.] was uniformly applied as a matrix resin and air dried for 48 hours to prepare a prepreg sheet. Sixteen prepreg sheets were stacked in the vertical direction and laminated, and one prepreg sheet was prepared by the same method except that carbon fiber tow having 6000 filaments was used on the upper and lower surfaces (outermost layer) of the prepreg sheet. 20
It was placed in a 0 × 200 mm mold and thermocompression molded under the conditions of a heating temperature of 110 ° C. and a pressure of 20 kg / cm 2 . The molded body was taken out of the mold, heated to a temperature of 250 ° C. to be completely cured, and then transferred to a firing furnace kept in a nitrogen atmosphere.
The mixture was heated to 1000 ° C. at a temperature rising rate of ° C./hr and kept at this temperature for 5 hours for calcination and carbonization. Then, the obtained C / C
The same phenol resin initial condensate as above was applied to the material at a pressure of 7 kg.
A step of impregnating under a pressure of / cm 2 again and firing treatment in the same manner as above was repeated three times, and finally fired at a temperature of 2000 ° C. to prepare a C / C composite substrate. C / C produced
The composite base material (200 mm × 200 mm × 4.5 mm) had a carbon fiber volume content (Vf) of 65% and a bulk density of 1.65 g / cc.

【0020】(2)SiC被膜層の形成 粒径40〜500μm の珪砂粉末と同粒径範囲の黒鉛粉
末をモル比2:1の比率になるように配合し、撹拌混合
器を用いて均質に混合した。混合粉末を黒鉛坩堝に入
れ、その上部にC/C複合基材をセットした。この黒鉛
坩堝を電気炉内に移し、内部をアルゴンガスで十分に置
換したのち50℃/hr の昇温速度で1900℃まで加熱
し、2時間保持してC/C複合基材の表層部にコンバー
ジョン法による傾斜機能を有するSiCの被膜層を形成
した。
(2) Formation of SiC coating layer Silica sand powder having a particle size of 40 to 500 μm and graphite powder having the same particle size range are blended in a molar ratio of 2: 1 and homogenized using a stirring mixer. Mixed. The mixed powder was put into a graphite crucible, and a C / C composite base material was set on the upper portion thereof. This graphite crucible was transferred into an electric furnace, and after the interior was sufficiently replaced with argon gas, the graphite crucible was heated to 1900 ° C. at a heating rate of 50 ° C./hr and kept for 2 hours to form a surface layer on the C / C composite substrate. A SiC coating layer having a gradient function was formed by the conversion method.

【0021】(3)ガラスシール層の形成 さらに、SiC被膜層の微細クラックをシールするため
に、下記の方法によりB2 3 −SiO2 ガラス質被膜
を被覆し、ガラスシールを施した。Si(OC2 5)4
をNH4 OHの塩基性領域で加水分解するアルコキシド
法により得られるSiO2 微粒子サスペンジョン中に前
記SiC被膜層を形成したC/C複合基材を浸漬し、減
圧下に含浸した。風乾後、SiO2 微粒子サスペンジョ
ンを塗布、風乾する操作を3回反復し、100℃で乾燥
してSiO2 からなる被覆層を形成した。次いで、この
C/C基材をB(OC4 9)3 溶液中に投入して減圧含
浸を施し、一昼夜風乾して空気中の水分により加水分解
したのち100℃で乾燥し、更に500℃の温度で熱処
理してB2 3 ガラス層に転化した。次に、Si(OC
2 5)4 を塩酸溶液中で加水分解して得られるSiO2
ガラス前駆体溶液中に、上記C/C基材を投入し減圧含
浸を行い100℃で乾燥した。処理後のC/C基材を再
度B(OC4 9)3 溶液中に投入し、減圧含浸したのち
一昼夜風乾して空気中の水分により加水分解した。10
0℃で乾燥後、アルゴン雰囲気下に800℃の温度で加
熱処理してB2 3 −SiO2 のガラス質被膜を形成し
た。
(3) Formation of Glass Sealing Layer Further, in order to seal fine cracks in the SiC coating layer, a B 2 O 3 —SiO 2 glassy coating was coated by the following method and glass sealing was performed. Si (OC 2 H 5 ) 4
The C / C composite base material having the SiC coating layer formed thereon was dipped in a SiO 2 fine particle suspension obtained by an alkoxide method in which is hydrolyzed in the basic region of NH 4 OH and impregnated under reduced pressure. After air-drying, the operation of applying the SiO 2 fine particle suspension and air-drying was repeated 3 times and dried at 100 ° C. to form a coating layer made of SiO 2 . Next, this C / C base material is put into a B (OC 4 H 9 ) 3 solution, impregnated under reduced pressure, air-dried for a whole day and night, hydrolyzed by moisture in the air, dried at 100 ° C., and further dried at 500 ° C. It was heat-treated at a temperature of 2 to convert to a B 2 O 3 glass layer. Next, Si (OC
SiO 2 obtained by hydrolyzing 2 H 5 ) 4 in a hydrochloric acid solution
The above C / C substrate was put into a glass precursor solution, impregnated under reduced pressure, and dried at 100 ° C. The treated C / C substrate was again put into the B (OC 4 H 9 ) 3 solution, impregnated under reduced pressure, air-dried for 24 hours, and then hydrolyzed by water in the air. 10
After drying at 0 ° C., it was heated at a temperature of 800 ° C. in an argon atmosphere to form a B 2 O 3 —SiO 2 vitreous coating.

【0022】(4)特性の評価 このようにして製造したSiC被膜を形成したC/C複
合材について、次の方法によりSiC被膜の膜厚、Si
C被膜層のアンカー部の深さを測定してその結果を表1
に、またC/C複合材の曲げ強度および耐酸化性試験を
行い、その結果を表2に示した。 SiC被膜の膜厚:SiC被膜を形成したC/C複合
材の一部をダイヤモンドカッターで切断し、その断面を
SEMにより観察して測定した。 SiC被膜層のアンカー部の深さ:SiC被膜を形成
したC/C複合材の一部をダイヤモンドカッターで切断
し、その断面をSEMによりSiC被膜の下層に存在す
るSiCと炭素の混合物層を観察し、XMAによりSi
の濃度分布を測定してSiCと炭素の混合物層の深さか
ら求めた。 曲げ強度:150×12.5×4mmの試験片について
支点間距離64mm、クロスヘッドスピード6mm/minの条
件で3点曲げ強度を測定した。 耐酸化性試験:SiC被膜を形成したC/C複合材を
大気中に保持された電気炉に入れ、1400℃の温度に
30分間保持したのち室温まで自然冷却した。この操作
を10回繰り返して行い、この熱サイクルにおけるC/
C複合材の重量減少率とSiC被膜層の状況を観察し
た。
(4) Evaluation of characteristics With respect to the C / C composite material having the SiC coating formed as described above, the film thickness of the SiC coating, Si
The depth of the anchor portion of the C coating layer was measured and the results are shown in Table 1.
Further, the bending strength and the oxidation resistance test of the C / C composite material were performed, and the results are shown in Table 2. Thickness of SiC coating: Part of the C / C composite material on which the SiC coating was formed was cut with a diamond cutter, and the cross section was observed and measured by SEM. Anchor depth of SiC coating layer: A part of C / C composite material on which the SiC coating was formed was cut with a diamond cutter, and its cross section was observed by SEM to observe a mixture layer of SiC and carbon existing under the SiC coating. And then Si by XMA
Was measured from the depth distribution of the mixture layer of SiC and carbon. Bending strength: A test piece of 150 × 12.5 × 4 mm was measured for three-point bending strength under the conditions of a fulcrum distance of 64 mm and a crosshead speed of 6 mm / min. Oxidation resistance test: The C / C composite material on which the SiC film was formed was placed in an electric furnace kept in the atmosphere, kept at a temperature of 1400 ° C. for 30 minutes, and then naturally cooled to room temperature. This operation was repeated 10 times to obtain C /
The weight loss rate of the C composite material and the state of the SiC coating layer were observed.

【0023】実施例2〜5 内部に積層するプリプレグシートおよび上下(最外層)
面に積層するプリプレグシートをフィラメント数の異な
る炭素繊維トウを編組した炭素繊維織布を用いて作成し
たほかは実施例1と同一の方法でC/C複合基材を作製
した。なお、実施例4では上下(最外層)面に各2枚の
プリプレグシートを積層した。これらのC/C複合基材
について実施例1と同一の方法によりSiC被膜層の形
成およびガラスシールを行い、得られたSiC被膜を形
成したC/C複合材について実施例1と同一の方法によ
り特性の評価を行ってその結果を表1、表2に併載し
た。
Examples 2 to 5 prepreg sheets laminated inside and upper and lower (outermost layer)
A C / C composite substrate was produced in the same manner as in Example 1 except that the prepreg sheet to be laminated on the surface was prepared using a carbon fiber woven fabric in which carbon fiber tows having different numbers of filaments were braided. In Example 4, two prepreg sheets were laminated on each of the upper and lower (outermost layer) surfaces. The C / C composite base material was subjected to the same method as in Example 1 to form a SiC coating layer and the glass was sealed, and the obtained C / C composite material with the SiC coating formed was subjected to the same method as in Example 1. The characteristics were evaluated and the results are shown in Tables 1 and 2.

【0024】比較例1〜4 フィラメント数が同じ炭素繊維トウを編組した炭素繊維
織布を用いて作成したプリプレグシートを積層してC/
C複合基材を作製したほかは実施例1と同一の方法によ
りSiCの被膜層の形成およびガラスシールを行った。
得られたSiC被膜を形成したC/C複合材について実
施例1と同一の方法により特性の評価を行ってその結果
を表1、表2に併載した。なお、耐酸化性試験は耐酸化
被膜層が剥離したため試験を行なわなかった。
Comparative Examples 1 to 4 A prepreg sheet made of a carbon fiber woven fabric in which carbon fiber tows having the same number of filaments were braided was laminated to form C /
A SiC coating layer was formed and glass was sealed in the same manner as in Example 1 except that a C composite substrate was prepared.
The characteristics of the obtained C / C composite material having the SiC coating formed thereon were evaluated by the same method as in Example 1, and the results are shown in Tables 1 and 2 together. The oxidation resistance test was not conducted because the oxidation resistant coating layer was peeled off.

【0025】[0025]

【表1】 注)*( )内は積層したプリプレグシートの枚数である。[Table 1] Note) * () is the number of laminated prepreg sheets.

【0026】[0026]

【表2】 [Table 2]

【0027】表1から、実施例のSiC被膜層は比較例
のSiC被膜層に比べて被膜の下層にSiCと炭素の混
合物層が深く存在し、かつSiCが楔状に形成されてい
るためにアンカー効果が大きいことが判る。その結果、
表2に示すように耐酸化性試験では比較例のSiC被膜
はいずれもヒートサイクル9回目以内で剥離が生じてい
るのに対して、実施例のSiC被膜は実施例3、5に若
干浮きが認められたほかはいずれも良好で重量減少率も
少なく、優れた耐酸化性能を示している。さらに、Si
C被膜の形成に伴うC/C複合材の強度低下も少なく、
高位の材質強度を有することが認められる。
As shown in Table 1, the SiC coating layer of the example has a deep mixture layer of SiC and carbon in the lower layer of the coating as compared with the SiC coating layer of the comparative example, and the SiC is formed in a wedge shape. You can see that the effect is great. as a result,
As shown in Table 2, in the oxidation resistance test, the SiC coatings of the comparative examples all peeled off within the 9th heat cycle, whereas the SiC coatings of the examples slightly floated in Examples 3 and 5. In addition to being observed, all of them are good, and the weight loss rate is small, showing excellent oxidation resistance. Furthermore, Si
The decrease in strength of the C / C composite material due to the formation of the C coating is small,
It is recognized that it has high material strength.

【0028】[0028]

【発明の効果】以上のとおり、本発明によればC/C基
材面にコンバージョン法によりSiC被膜を形成する場
合に、最外層部に位置するプリプレグを内部のプリプレ
グ層よりフィラメント数の多いトウで編組した炭素繊維
織布を積層した複合組織のC/C複合材を基材として用
いることにより、アンカー効果の大きいSiC被膜を安
定強固に被覆形成することが可能となる。したがって、
高温酸化性雰囲気に晒されても剥離することなく高度の
耐酸化性能を保持することができ、さらにC/C複合材
の材質強度の減退も抑制されるので、耐酸化性C/C複
合材の製造方法として極めて有用である。
As described above, according to the present invention, when a SiC coating is formed on the surface of a C / C substrate by a conversion method, the prepreg located in the outermost layer portion has a filament number larger than that of the internal prepreg layer. By using the C / C composite material having a composite structure in which the woven carbon fiber cloth is laminated as the base material, it becomes possible to stably and firmly form the SiC coating having a large anchor effect. Therefore,
Even if it is exposed to a high temperature oxidizing atmosphere, it can maintain a high level of oxidation resistance without peeling, and also suppresses the deterioration of the material strength of the C / C composite material. Is extremely useful as a manufacturing method of.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維織布にマトリックス樹脂液を含
浸したプリプレグを積層成形し硬化および焼成炭化した
C/C複合材を基材とし、該基材面にSiOガスを接触
させてコンバージョン法により傾斜機能を有するSiC
被膜を形成する方法において、最外層部(最上層および
最下層)に位置するプリプレグを、内部のプリプレグ層
よりフィラメント数の多いトウで編組した炭素繊維織布
を用いて積層した複合組織のC/C複合材を基材とする
ことを特徴とする耐酸化性C/C複合材の製造方法。
1. A C / C composite material obtained by laminating a prepreg obtained by impregnating a carbon fiber woven cloth with a matrix resin liquid, curing and firing carbonization is used as a base material, and SiO gas is brought into contact with the base material surface to carry out a conversion method. SiC with gradient function
In the method of forming a coating, the C / of a composite structure in which prepregs located in the outermost layers (uppermost layer and lowermost layer) are laminated using a carbon fiber woven fabric braided with a tow having a larger number of filaments than the inner prepreg layer A method for producing an oxidation resistant C / C composite material, which comprises a C composite material as a base material.
【請求項2】 最外層部(最上層および最下層)のプリ
プレグにおける炭素繊維トウのフィラメント数を、内部
のプリプレグにおける炭素繊維トウのフィラメント数の
2倍以上である炭素繊維織布を用いて積層した複合組織
のC/C複合材を基材とする請求項1記載の耐酸化性C
/C複合材の製造方法。
2. A carbon fiber woven fabric in which the number of filaments of the carbon fiber tow in the prepreg of the outermost layer portion (uppermost layer and lowermost layer) is twice or more the number of filaments of the carbon fiber tow in the inner prepreg. The oxidation resistant C according to claim 1, wherein the C / C composite material having a composite structure is used as a base material.
/ C composite material manufacturing method.
JP7225892A 1995-08-10 1995-08-10 Production of oxidation resistant c/c composite material Pending JPH0952777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7225892A JPH0952777A (en) 1995-08-10 1995-08-10 Production of oxidation resistant c/c composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7225892A JPH0952777A (en) 1995-08-10 1995-08-10 Production of oxidation resistant c/c composite material

Publications (1)

Publication Number Publication Date
JPH0952777A true JPH0952777A (en) 1997-02-25

Family

ID=16836519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7225892A Pending JPH0952777A (en) 1995-08-10 1995-08-10 Production of oxidation resistant c/c composite material

Country Status (1)

Country Link
JP (1) JPH0952777A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064031C (en) * 1998-05-19 2001-04-04 中国科学院山西煤炭化学研究所 Method for preparing high temperature anti-oxidation carbon base composite material
JP2002211990A (en) * 2001-01-09 2002-07-31 Taiheiyo Cement Corp Heat radiating plate and method of manufacturing for the same
US6838120B2 (en) 2001-02-12 2005-01-04 Agency For Defense Development Method for manufacturing carbon/silicon-carbide composite
WO2011027756A1 (en) 2009-09-04 2011-03-10 東洋炭素株式会社 Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064031C (en) * 1998-05-19 2001-04-04 中国科学院山西煤炭化学研究所 Method for preparing high temperature anti-oxidation carbon base composite material
JP2002211990A (en) * 2001-01-09 2002-07-31 Taiheiyo Cement Corp Heat radiating plate and method of manufacturing for the same
US6838120B2 (en) 2001-02-12 2005-01-04 Agency For Defense Development Method for manufacturing carbon/silicon-carbide composite
WO2011027756A1 (en) 2009-09-04 2011-03-10 東洋炭素株式会社 Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
US9085493B2 (en) 2009-09-04 2015-07-21 Toyo Tanso Co., Ltd. Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex

Similar Documents

Publication Publication Date Title
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3749268B2 (en) C / C composite oxidation resistant coating layer
JPH0952777A (en) Production of oxidation resistant c/c composite material
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3853035B2 (en) Oxidation resistant C / C composite and method for producing the same
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JPH08169786A (en) Production of oxidation resistant carbon fiber reinforced carbon composite material
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3461424B2 (en) Method for producing oxidation resistant C / C composite
JP3853058B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3494533B2 (en) Method for producing oxidation resistant C / C composite
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JP4208217B2 (en) Method for producing oxidation-resistant C / C composite material
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JP3033042B2 (en) Oxidation resistant C / C composite and method for producing the same
JP4152580B2 (en) Method for manufacturing and repairing C / C crucible for pulling Si single crystal
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPH0826859A (en) Oxidation-resistant c/c composite material and method for producing the same
JP2000219584A (en) Carbon fiber reinforced carbon composite material coated with silicon carbide and its production
JPH09255443A (en) Oxidation-resistant treatment of carbon fiber-reinforced carbon composite material
JP3818606B2 (en) Carbon fiber reinforced carbon composite