JP3033042B2 - Oxidation resistant C / C composite and method for producing the same - Google Patents

Oxidation resistant C / C composite and method for producing the same

Info

Publication number
JP3033042B2
JP3033042B2 JP3223646A JP22364691A JP3033042B2 JP 3033042 B2 JP3033042 B2 JP 3033042B2 JP 3223646 A JP3223646 A JP 3223646A JP 22364691 A JP22364691 A JP 22364691A JP 3033042 B2 JP3033042 B2 JP 3033042B2
Authority
JP
Japan
Prior art keywords
sio
coating
composite
layer
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3223646A
Other languages
Japanese (ja)
Other versions
JPH0543366A (en
Inventor
俊哉 瀬高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP3223646A priority Critical patent/JP3033042B2/en
Publication of JPH0543366A publication Critical patent/JPH0543366A/en
Application granted granted Critical
Publication of JP3033042B2 publication Critical patent/JP3033042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高温酸化雰囲気下にお
いて優れた酸化抵抗性の被覆組織を備える耐酸化性C/
C複合材(「炭素繊維強化炭素複合材」、以下同じ)と
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidation-resistant C /
The present invention relates to a C composite material ("carbon fiber reinforced carbon composite material", the same applies hereinafter) and a method for producing the same.

【0002】[0002]

【従来の技術】C/C複合材は、1000℃を越える温度域
においても高度の比強度、比弾性率を維持し、かつ低い
熱膨張率を示す等の特異は材質特性を有することから、
航空宇宙用の部材として注目されている。ところが、こ
の材料は 500℃程度の大気雰囲気下で酸化が進行すると
いう炭素材固有の材質的な欠点があるため、高温大気中
での使用は極く短時間の条件を除いて不可能である。こ
のため、C/C複合材の表面に耐酸化性の被覆を施して
改質化する試みが従来から盛んにおこなわれている。
2. Description of the Related Art C / C composite materials have unique material characteristics such as maintaining a high specific strength and specific elastic modulus even in a temperature range exceeding 1000 ° C. and exhibiting a low coefficient of thermal expansion.
Attention has been paid to aerospace components. However, this material has the inherent material defect of carbon material that oxidation proceeds in the air atmosphere at about 500 ° C, and it is impossible to use it in a high temperature atmosphere except for a very short time. . For this reason, attempts have been made actively to modify the surface of the C / C composite material by applying an oxidation-resistant coating thereon.

【0003】このうち、最も一般的な耐酸化処理とされ
ているのはCVD(化学的気相蒸着)によりセラミック
ス被膜層を形成する方法で、SiCを被覆化する処理が
代表的な技術として知られている。CVD法によればC
/C複合基材面に緻密なSiC被膜を形成することがで
きるが、熱変動によりSiC被膜が層間剥離したり、層
界面にクラックが発生する等の現象が多発し易い。この
現象は、C/C複合基材とSiC被膜層との熱膨張差が
大きいため最大歪みが追随できないことに起因するもの
であるため、C/C複合基材面をSiCの熱膨張率に近
似させるように改質させれば軽減化させることができ
る。このような観点から、C/C複合基材面に気相熱分
解法により熱分解炭素層を形成し、ついでCVDまたは
CVI法でSiCを被覆する方法(特開平2−111681号
公報) が提案されているが、十分な効果は期待できな
い。
[0003] Among them, the most common oxidation-resistant treatment is a method of forming a ceramic coating layer by CVD (chemical vapor deposition), and the treatment of coating SiC is known as a typical technique. Have been. According to the CVD method, C
Although a dense SiC film can be formed on the surface of the / C composite base material, phenomena such as delamination of the SiC film due to heat fluctuation and cracking at the layer interface tend to occur frequently. This phenomenon is attributable to the fact that the thermal expansion difference between the C / C composite substrate and the SiC coating layer is so large that the maximum strain cannot be followed. It can be reduced by modifying to approximate. From such a viewpoint, there has been proposed a method of forming a pyrolytic carbon layer on the surface of a C / C composite base material by a vapor phase pyrolysis method, and then coating the resultant with SiC by CVD or CVI (Japanese Patent Laid-Open No. 2-111681). However, sufficient effects cannot be expected.

【0004】これに対し、C/C複合基材の炭素を反応
源に利用してSi成分と反応させることによりSiCに
転化させるコンバージョン法は、基材の表層部が連続組
織としてSiC層を形成する傾斜機能材質となるため界
面剥離を生じることはない。しかし、CVD法に比べて
緻密性に劣るうえ、反応時、被覆層に微小なクラックが
発生する問題がある。
On the other hand, in a conversion method in which carbon of a C / C composite base material is used as a reaction source and reacted with a Si component to convert the Si component into SiC, the surface layer of the base material forms a SiC layer as a continuous structure. As a result, the interfacial peeling does not occur. However, there is a problem that the density is inferior to that of the CVD method, and minute cracks are generated in the coating layer during the reaction.

【0005】前記問題の解消を図るため、本発明者はC
/C複合基材面にコンバージョン法で形成したSiC被
覆層に、さらにSiO2 微粒被覆層を介してSiO2
2 5 等のガラス被覆層を形成する耐酸化性C/C材
とその製造方法を既に開発した(特願平2−150641号)
In order to solve the above problem, the present inventor has proposed C
/ C in SiC coating layer formed by the conversion method in the composite substrate surface, SiO 2 further through the SiO 2 fine coating layer,
Oxidation resistant C / C material for forming a glass coating layer such as B 2 O 5 and a method for producing the same have already been developed (Japanese Patent Application No. 2-150641).
.

【0006】[0006]

【発明が解決しようとする課題】この先願技術では、ガ
ラス被覆層を形成する手段として溶液状のガラス前駆体
を得ることが可能なアルコキシド法を適用しているた
め、基材のポアやクラックに対する封鎖性が高く、その
うえ 500℃前後の比較的低温域で処理することができる
関係で、C/C基材になんらの損傷を与えることなしに
良好な組織の耐酸化性被膜が形成される。しかしなが
ら、引き続き追試を重ねた結果、B2 3 −SiO2
ラスの外層では軟化点が 900℃程度であるため、1000℃
以上の高温に曝した場合には蒸気圧も上昇して経時的に
耐酸化性能が低下することが判明した。
In this prior application, an alkoxide method capable of obtaining a glass precursor in solution is applied as a means for forming a glass coating layer. Due to the high sealing property and the fact that it can be processed in a relatively low temperature range of about 500 ° C., an oxidation-resistant film having a good structure can be formed without causing any damage to the C / C substrate. However, as a result of repeated tests, the outer layer of B 2 O 3 —SiO 2 glass has a softening point of about 900 ° C.
It was found that when exposed to the above high temperature, the vapor pressure also increased and the oxidation resistance deteriorated with time.

【0007】本発明の目的は、先願技術に改良を加え、
1000℃を越える高温大気中においても長期に亘り安定し
た耐酸化性を発揮することができる被覆組織の耐酸化性
C/C複合材およびその工業的な製造方法を提供するこ
とにある。
An object of the present invention is to improve upon the prior art,
An object of the present invention is to provide an oxidation-resistant C / C composite material having a coating structure capable of exhibiting stable oxidation resistance over a long period of time even in a high-temperature atmosphere exceeding 1000 ° C. and an industrial production method thereof.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに本発明により提供される耐酸化性C/C複合材は、
C/C複合基材の表面に、傾斜機能構造の多結晶質Si
C被膜からなる内層、SiO2 微粒子被膜からなる中間
層、Al2 3 −SiO2 もしくはB2 3 −Al2
3 −SiO2 のガラス被膜からなる外層が積層被覆され
た組織を備えることを特徴とする。
The oxidation-resistant C / C composite material provided by the present invention to achieve the above object is provided by:
On the surface of C / C composite substrate, polycrystalline Si with functionally graded structure
C layer inner layer, SiO 2 fine particle coating intermediate layer, Al 2 O 3 —SiO 2 or B 2 O 3 —Al 2 O
It is characterized by having a structure in which an outer layer made of a 3- SiO 2 glass film is laminated and coated.

【0009】基材となるC/Cは、炭素繊維の織布、フ
エルト、トウなどにマトリックス樹脂液を含浸または塗
布して積層成形したのち、焼成炭化処理する常用の方法
で製造されたものが使用され、特に材料の製造履歴、材
質組織等の限定はない。
The C / C used as the base material is produced by a conventional method of impregnating or applying a matrix resin liquid onto a woven fabric, felt, tow or the like of carbon fiber, forming a laminate, and then performing a calcination treatment. It is used, and there is no particular limitation on the material manufacturing history, material structure, and the like.

【0010】C/C複合基材面を直接被覆するSiC被
膜の内層は、基材表層部が外面に向かうに従って次第に
SiCの組織化が進む傾斜機能構造の多結晶質SiC被
膜で、適切な膜厚は 100〜300 μm の範囲である。膜厚
が 100μm 未満では良好な傾斜機能構造が形成されず、
300 μm を越える厚い層形成は不要である。中間層を形
成するSiO2 被膜層は、内層におけるSiC組織の微
細なクラックや空隙を充填封止すると共に、後工程で被
覆されるガラス被膜層との密着性を高めるために機能す
る。Al2 3 −SiO2 もしくはB2 3 −Al2
3 −SiO2 の複合ガラス被膜により構成される外層
は、最終的に外面を無孔構造にして大気とC/C複合基
材を完全に遮断するバイア層となるもので、膜厚は5〜
10μm の範囲で十分な効果が得られる。
The inner layer of the SiC film directly covering the C / C composite substrate surface is a polycrystalline SiC film having a functionally graded structure in which the organization of SiC gradually progresses toward the outer surface of the substrate surface. Thickness is in the range of 100-300 μm. If the film thickness is less than 100 μm, a good functionally graded structure is not formed,
It is not necessary to form a thick layer exceeding 300 μm. The SiO 2 coating layer forming the intermediate layer functions to fill and seal fine cracks and voids in the SiC structure in the inner layer and to enhance the adhesion with the glass coating layer to be coated in a later step. Al 2 O 3 —SiO 2 or B 2 O 3 —Al 2 O
The outer layer composed of the 3- SiO 2 composite glass film is a via layer that finally has a non-porous outer surface and completely blocks the atmosphere and the C / C composite base material.
A sufficient effect can be obtained in the range of 10 μm.

【0011】上記の積層組織構成を備える耐酸化性C/
C複合材は、炭素繊維をマトリックス樹脂とともに複合
成形し硬化および焼成炭化処理して得られるC/C複合
材を基材とし、該基材の表面にSiOガスを接触させて
コンバージョン法によりSiC被膜の内層を形成する第
1被覆工程、Si(OC2 5)4 のアルコール溶液を塩
基性領域で加水分解するアルコキシド法により得られる
SiO2 の微粒子サスペンジョンを真空含浸する第2被
覆工程、Si(OC2 5)4 のアルコール溶液を酸性領
域でAlCl3 水溶液により加水分解するアルコキシド
法で得られるAl2 3 −SiO2 ガラス前駆体溶液を
真空含浸する第3被覆工程を順次に施し、ついで400 ℃
以上の温度で加熱処理することを構成上の特徴とする。
Oxidation resistant C /
The C composite material is a C / C composite material obtained by subjecting a carbon fiber to composite molding with a matrix resin, and curing and calcining the carbon fiber to form a substrate. A first coating step of forming an inner layer of Si (OC 2 H 5 ) 4 , a second coating step of vacuum impregnating a suspension of fine particles of SiO 2 obtained by an alkoxide method of hydrolyzing an alcohol solution of Si (OC 2 H 5 ) 4 in a basic region, A third coating step of vacuum impregnation of an Al 2 O 3 —SiO 2 glass precursor solution obtained by an alkoxide method of hydrolyzing an alcohol solution of OC 2 H 5 ) 4 with an aqueous solution of AlCl 3 in an acidic region is sequentially performed. 400 ° C
The heat treatment at the above temperature is a structural feature.

【0012】C/C複合基材を構成する炭素繊維には、
ポリアクリロニトリル系、レーヨン系、ピッチ系など各
種原料から製造された平織、綾織などの織布、フェルト
あるいはトウが使用され、マトリックス樹脂としてはフ
ェノール系、フラン系その他炭化性の良好な液状熱硬化
性樹脂が用いられる。炭素繊維は、浸漬、含浸、塗布な
どの手段を用いマトリックス樹脂液で十分に濡らしたの
ち半硬化してプリプレグを形成し、ついで積層加圧成形
する。成形耐は加熱して樹脂成分を完全に硬化し、引き
続き焼成炭化処理または更に黒鉛化してC/C複合基材
を得る。このC/C複合基材には、必要に応じてマトリ
ックス樹脂を含浸、硬化、炭化する処理を反復して組織
の緻密化が図られる。
The carbon fibers constituting the C / C composite base material include:
Woven fabrics such as plain weave, twill weave, felt or tow made from various raw materials such as polyacrylonitrile, rayon, and pitch are used, and phenol-based, furan-based, and other carbonizable liquid thermosetting materials are used as matrix resins. Resin is used. The carbon fiber is fully wetted with a matrix resin solution using means such as immersion, impregnation, and application, and then semi-cured to form a prepreg, and then laminated and pressed. The molding resistance is heated to completely cure the resin component, followed by calcination carbonization or further graphitization to obtain a C / C composite substrate. The C / C composite base material is densified by repeating the process of impregnating, curing, and carbonizing the matrix resin as necessary.

【0013】上記のC/C複合基材にコンバージョンに
よるSiC被膜の内層を形成する第1被覆工程は、Si
2 粉末をSiまたはC粉末と混合して密閉加熱系に収
納し、系内をC/C複合基材をセットもしくは埋設して
加熱反応させる方法でおこなわれる。この際の条件は、
SiO2 :SiまたはCのモル比を2:1とし、加熱温
度を1850〜2000℃の範囲に設定し、系内を還元または中
性雰囲気とすることが好ましい。加熱時、SiO2 はS
iまたはC成分により加熱還元されてSiOガスを生成
し、このSiOガスがC/C複合基材の炭素組織と反応
して表層部を傾斜機能構造のSiC被膜層に転化させ
る。
The first coating step of forming the inner layer of the SiC coating by conversion on the C / C composite base material described above comprises the steps of:
O 2 powder is mixed with Si or C powder, housed in a closed heating system, and a C / C composite substrate is set or buried in the system to cause a heating reaction. The conditions at this time are:
It is preferable that the molar ratio of SiO 2 : Si or C is 2: 1, the heating temperature is set in the range of 1850 to 2000 ° C., and the inside of the system is reduced or neutralized. When heated, SiO 2 becomes S
It is heated and reduced by the i or C component to generate SiO gas, and the SiO gas reacts with the carbon structure of the C / C composite base material to convert the surface layer portion into a functionally graded SiC coating layer.

【0014】第2被覆工程で使用されるSiO2 の微粒
子サスペンジョンは、Si(OC2 5)4 とエタノー
ル、メタノールなどなどのアルコール類をモル比1:10
〜15になるように混合して環流下で加熱撹拌し、ついで
前記Si(OC2 5)4に対するモル比が1:25〜30に
相当する量の水とともにNH4 OHを加えて塩基性とし
た状態で加熱撹拌して加水分解するアルコキシド法によ
って作製される。この際の塩基性領域は、pH11.0〜1
2.5の範囲に調整することが好適である。このようにし
て作製されたサスペンジョンは、 0.2〜1.2 μm のSi
2 球状微粒子が均一に分散した懸濁状態を呈する。S
iO2 微粒子被膜からなる中間層は、第1被覆工程後の
C/C複合基材を前記のSiO2 微粒子サスペンジョン
に浸漬し、真空含浸したのち乾燥する工程により形成さ
れる。更に、必要によりSiO2 微粒子サスペンジョン
を塗布、乾燥する処理を付加することもできる。
The suspension of fine particles of SiO 2 used in the second coating step is prepared by mixing Si (OC 2 H 5 ) 4 with an alcohol such as ethanol or methanol at a molar ratio of 1:10.
The mixture was heated and stirred under reflux, and then NH 4 OH was added together with water in an amount corresponding to the molar ratio of Si (OC 2 H 5 ) 4 to 1:25 to 30 to obtain a basic compound. It is produced by an alkoxide method of hydrolyzing by heating and stirring in the state described above. The basic region at this time has a pH of 11.0 to 1
It is preferred to adjust to a range of 2.5. The suspension manufactured in this way has a Si of 0.2 to 1.2 μm.
It exhibits a suspension state in which O 2 spherical fine particles are uniformly dispersed. S
The intermediate layer made of the iO 2 fine particle coating is formed by a step of immersing the C / C composite base material after the first coating step in the above-mentioned suspension of SiO 2 fine particles, impregnating in vacuum, and then drying. Further, if necessary, a process of coating and drying a suspension of SiO 2 fine particles can be added.

【0015】第3被覆工程に用いるAl2 3 −SiO
2 系のガラス前駆体溶液は、Si(OC2 5)4 に対し
モル比1:1.5 〜7.0 量のアルコール、モル比1:2〜
11量の水、およびAlCl4 ・9H2 Oを、Al2 3
/SiO2 =0.25〜0.50になるようにアルコール−水−
塩化アルミニウムの混合溶液を調製し、これにHClを
加えて酸性溶液としたのち、加熱撹拌しながらSi(O
2 5)4 を滴下して加水分解するアルコキシド法によ
って作製する。この際の好ましい酸性領域は、pH1〜
3の範囲である。第3被覆工程は、このガラス前駆体溶
液に第2被覆工程後のC/C複合基材を浸漬し、真空含
浸したのち乾燥し、ついで400 ℃以上の温度域で加熱処
理するプロセスによりAl2 3 −SiO2 被膜層を形
成する。
Al 2 O 3 —SiO used in the third coating step
The 2- system glass precursor solution is composed of alcohol having a molar ratio of 1: 1.5 to 7.0 with respect to Si (OC 2 H 5 ) 4 and a molar ratio of 1: 2 to 2.
11 amount of water, and AlCl 4 · 9H 2 O, Al 2 O 3
/ Alcohol so that the SiO 2 = 0.25~0.50 - water -
A mixed solution of aluminum chloride was prepared, and HCl was added thereto to form an acidic solution.
It is prepared by an alkoxide method in which C 2 H 5 ) 4 is dropped and hydrolyzed. A preferred acidic region at this time is pH 1 to 1.
3 range. In the third coating step, the C / C composite substrate after the second coating step is immersed in the glass precursor solution, impregnated in a vacuum, dried, and then subjected to a heat treatment in a temperature range of 400 ° C. or higher to form Al 2. O 3 forming the -SiO 2 coating layer.

【0016】なお、外層としてB2 5 −Al2 3
SiO2 の複合ガラス被膜層を形成するには、上記の第
3被覆工程で形成されたAl2 3 −SiO2の外層面
にB(OC4 9)3 を塗布し、ついで 500℃以上の温度
で加熱処理する方法が採られる。
It is to be noted that B 2 O 5 —Al 2 O 3
In order to form a composite glass coating layer of SiO 2 , B (OC 4 H 9 ) 3 is applied to the outer surface of Al 2 O 3 —SiO 2 formed in the third coating step, and then 500 ° C. or higher. A method of performing heat treatment at a temperature of

【0017】[0017]

【作用】本発明において、傾斜機能構造の多結晶質Si
C被膜からなる内層は、まずC/C複合基材の表面に緻
密で密着性の高い厚膜として形成される。SiO2 微粒
子被膜からなる中間層は、前記内層の微小な空隙(ピン
ホール)やクラック等を充填封止するとともに、全表面
に平滑に介在して外層のガラス被膜層との密着性を高め
る媒介作用を営む。そして、Al2 3−SiO2 もし
くはB2 3 −Al2 3 −SiO2 のガラス被膜から
なる外層は、加熱過程を通じて中間層の組織内まで浸透
してガラス質に転化し、被覆層の無孔構造化を確実なも
のとする。このような3段階における積層被覆の各機能
が総合的に作用して、C/C複合基材の全表面に酸化雰
囲気下での高温使用に耐える高耐酸化性能が付与され
る。
In the present invention, polycrystalline Si having a functionally graded structure is used.
The inner layer made of the C film is first formed as a dense and highly adherent thick film on the surface of the C / C composite substrate. The intermediate layer composed of the SiO 2 fine particle coating fills and seals minute voids (pinholes) and cracks in the inner layer, and is a medium that smoothly intervenes on the entire surface to enhance adhesion to the outer glass coating layer. Perform an action. The outer layer made of a glass film of Al 2 O 3 —SiO 2 or B 2 O 3 —Al 2 O 3 —SiO 2 penetrates into the structure of the intermediate layer through the heating process and is converted into a vitreous material. To ensure a non-porous structure. The functions of the three-layer coating in the three stages act collectively to provide the entire surface of the C / C composite substrate with high oxidation resistance that can withstand high-temperature use in an oxidizing atmosphere.

【0018】このようにして形成された外層のAl2
3 −SiO2 ガラス被膜層は、改良対象となる先願技術
によるSiO2 、B2 3 またはB2 3 −SiO2
らなるガラス被膜外層に比べて耐熱度が数百度向上し、
1000℃を越える高温大気中でも長期安定な耐酸化性を発
揮する。外層をB2 3 −Al2 3 −SiO2 ガラス
被膜層で形成した場合には、最外層部に多く介在するB
23 が1200℃以上の温度に曝された際に融解して表面
を覆い、組織内部への酸素の拡散を完全に遮断する。こ
の作用で、1700℃までの大気雰囲気においても十分な耐
酸化性を示す。
The thus formed outer layer of Al 2 O
3 -SiO 2 glass coat layer, thermal resistance is improved several hundred degrees in comparison with the glass coating layer made of SiO 2, B 2 O 3 or B 2 O 3 -SiO 2 by prior application technique to be improved target,
Demonstrate long-term stable oxidation resistance even in a high temperature atmosphere exceeding 1000 ° C. When the outer layer is formed of a B 2 O 3 —Al 2 O 3 —SiO 2 glass coating layer, B
When 2 O 3 is exposed to temperatures above 1200 ° C. it melts and covers the surface, completely blocking the diffusion of oxygen into the tissue. By this action, sufficient oxidation resistance is exhibited even in an air atmosphere up to 1700 ° C.

【0019】また、本発明の製造方法によれば、微粒子
SiO2 の中間層およびAl2 3 −SiO2 もしくは
2 3 −Al2 3 −SiO2 の外層をアルコキシド
法によるガラス前駆体溶液を用い、真空含浸により形成
しているから、常に緻密で密着性の良好なガス不透過性
の無孔被覆に転化させることができる。
Further, according to the production method of the present invention, the intermediate layer of fine particle SiO 2 and the outer layer of Al 2 O 3 —SiO 2 or B 2 O 3 —Al 2 O 3 —SiO 2 are formed by a glass precursor by an alkoxide method. Since it is formed by vacuum impregnation using a solution, it can be converted into a gas-impermeable non-porous coating that is always dense and has good adhesion.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0021】実施例1 (1) C/C複合基材の作製 ポリアクリロニトリル系高弾性タイプの平織炭素繊維布
をフェノール樹脂初期縮合物からなるマトリックス樹脂
液に浸漬して含浸処理したのち、14枚積層してモール
ドに入れ、加熱温度 110℃、適用圧力20kg/cm2の条件で
複合成形した。ついで、成形体を 250℃の温度に加熱し
て完全に硬化したのち、N2 雰囲気に保持された焼成炉
に移し、5℃/hr の昇温速度で1000℃まで上昇し5時間
保持して焼成炭化した。得られたC/C材にフェノール
樹脂液を真空加圧下に含浸し、前記と同様の1000℃焼成
処理を3回反復して二次元配向型のC/C複合基材を作
製した。
Example 1 (1) Preparation of C / C Composite Substrate Polyacrylonitrile-based high elasticity type plain woven carbon fiber cloth was immersed in a matrix resin solution composed of a phenol resin precondensate, and impregnated. The laminate was put into a mold and composite-molded under the conditions of a heating temperature of 110 ° C. and an applied pressure of 20 kg / cm 2 . Then, after the molded body is heated to a temperature of 250 ° C. and completely cured, the molded body is transferred to a firing furnace maintained in an N 2 atmosphere, raised to 1000 ° C. at a rate of 5 ° C./hr, and held for 5 hours. Fired and carbonized. The obtained C / C material was impregnated with a phenol resin liquid under vacuum pressure, and the same baking treatment at 1000 ° C. was repeated three times to produce a two-dimensionally oriented C / C composite base material.

【0022】(2) 第1被覆工程 SiO2 粉末と炭素粉末をモル比2:1の配合比率にな
るように混合し、混合粉末を黒鉛ルツボに入れ上部にC
/C複合基材をセットして黒鉛蓋を被せた。この黒鉛ル
ツボを電気炉に移し、内外をN2 ガス雰囲気に保持しな
がら1850℃の温度に1時間保持してC/C複合基材の表
層部に傾斜機能を有する厚さ 200μm のSiC被膜から
なる内層を被覆形成した。
(2) First coating step The SiO 2 powder and the carbon powder are mixed in a molar ratio of 2: 1 and the mixed powder is put into a graphite crucible and C
The / C composite substrate was set and covered with a graphite lid. The graphite crucible was transferred to an electric furnace, and kept at a temperature of 1850 ° C. for 1 hour while keeping the inside and outside in a N 2 gas atmosphere, and a 200 μm-thick SiC film having a gradient function was formed on the surface layer of the C / C composite base material. An inner layer was formed by coating.

【0023】(3) 第2被覆工程 Si(OC2 5)4 とエタノールをモル比1:12になる
量比で配合し、70℃の温度で環流撹拌をおこなったの
ち、前記Si(OC2 5)4 1モルに対し25モル量の水
と0.2 モル量のNH4 OHの混合液を撹拌しながら滴下
した。溶液のpHは12.0であった。引き続き撹拌を継続
し、約 0.2μm の球状SiO2 微粒子が均一に懸濁する
サスペンジョンを作製した。このサスペンジョンに第1
被覆工程を経たC/C複合基材を浸漬し、2Torrの減圧
下で1時間真空含浸をおこなった。ついで、風乾後、11
0 ℃の温度で乾燥し、さらに表面に前記のサスペンジョ
ンを塗布して同様に風乾および乾燥処理を施してSiO
2 微粒子からなる中間層を形成した。
(3) Second coating step Si (OC 2 H 5 ) 4 and ethanol were mixed in a molar ratio of 1:12, and the mixture was stirred under reflux at a temperature of 70 ° C. A mixture of 25 moles of water and 0.2 moles of NH 4 OH was added dropwise with stirring to 1 mole of 2 H 5 ) 4 . The pH of the solution was 12.0. Subsequently, stirring was continued to prepare a suspension in which spherical SiO 2 fine particles of about 0.2 μm were uniformly suspended. The first in this suspension
The C / C composite substrate after the coating step was immersed and vacuum impregnated under a reduced pressure of 2 Torr for 1 hour. Then, after air drying, 11
After drying at a temperature of 0 ° C., the surface was coated with the above-mentioned suspension, and air-dried and dried in the same manner.
An intermediate layer composed of two fine particles was formed.

【0024】(4) 第3被覆工程 Si(OC2 5)4 とエチレングリコールのモル比が
1:4で、Si(OC2 5)4 と水のモル比1:20とな
る量比のエチレングリコールと水の混合溶液を調製し、
この溶液にAl2 3 :SiO2 のモル比が0.25〜0.5
:1となる量比のAlCl3 を添加してエチレングリ
コール−水−塩化アルミニウムの混合溶液を作製した。
さらに加水分解を促進させるためにHClを加えて酸性
とし、この溶液を70℃の温度で還流撹拌をおこないなが
らSi(OC2 5)4 を滴下した。滴下後の溶液のpH
は、3.0 であった。引き続き1時間撹拌を継続してAl
2 3 −SiO2 ガラス前駆体溶液を得た。このガラス
前駆体溶液に第2被覆工程後のC/C複合基材を浸漬
し、2Torrの減圧下で1時間真空含浸をおこなった。風
乾後、50℃、70℃および90℃の各温度段階で乾燥してA
2 3 −SiO2 被膜からなる外層を被覆形成した。
(4) Third Coating Step The molar ratio of Si (OC 2 H 5 ) 4 to ethylene glycol is 1: 4, and the molar ratio of Si (OC 2 H 5 ) 4 to water is 1:20. To prepare a mixed solution of ethylene glycol and water,
The molar ratio of Al 2 O 3 : SiO 2 is 0.25-0.5 in this solution.
By adding AlCl 3 at a ratio of 1: 1, a mixed solution of ethylene glycol-water-aluminum chloride was prepared.
Further, HCl was added to promote the hydrolysis to make it acidic, and Si (OC 2 H 5 ) 4 was added dropwise while stirring the solution at a temperature of 70 ° C. under reflux. PH of solution after dripping
Was 3.0. Continue stirring for 1 hour
A 2 O 3 —SiO 2 glass precursor solution was obtained. The C / C composite substrate after the second coating step was immersed in this glass precursor solution, and vacuum impregnation was performed at a reduced pressure of 2 Torr for 1 hour. After air drying, dry at each temperature step of 50 ° C, 70 ° C and 90 ° C.
The outer layer of l 2 O 3 -SiO 2 coating was formed by coating.

【0025】第3被覆工程までの処理を施したC/C複
合基材を電気炉に移し、500 ℃の温度で10分間加熱して
被膜層をガラス質に転化させた。加熱処理により最終的
に外層として形成されたAl2 3 −SiO2 ガラス層
の厚さは8μm であった。
The C / C composite substrate treated up to the third coating step was transferred to an electric furnace and heated at a temperature of 500 ° C. for 10 minutes to convert the coating layer to vitreous. The thickness of the Al 2 O 3 —SiO 2 glass layer finally formed as the outer layer by the heat treatment was 8 μm.

【0026】(5) 耐酸化性の評価 上記の3段階被覆を施したC/C複合基材を大気雰囲気
に保持された電気炉に入れ、500 ℃の温度に30分保持し
たのち常温まで自然冷却した。この工程を 500〜1500℃
までの 200℃毎におこない、最終的なC/C複合基材の
酸化による重量減少率を測定した。その結果を表1に示
した。
(5) Evaluation of Oxidation Resistance The C / C composite substrate coated with the above three steps was placed in an electric furnace kept in an air atmosphere, kept at a temperature of 500 ° C. for 30 minutes, and then naturally allowed to reach room temperature. Cool. This process is 500 ~ 1500 ℃
The final C / C composite substrate was oxidized, and the weight loss rate due to oxidation was measured. The results are shown in Table 1.

【0027】実施例2 実施例1で得られた第3被覆工程後のC/C複合基材
に、B(OC4 9)3 を均一に塗布し、1昼夜風乾し
た。処理後の材料を電気炉に移し、650 ℃の温度に加熱
して外層をB2 3 −Al2 3 −SiO2 のガラス被
膜層に転化させた。このガラス層を厚さは10μm であっ
た。被覆後のC/C複合基材につき、実施例1と同様に
して酸化による重量減少率を測定し、結果を表1に併載
した。
Example 2 B (OC 4 H 9 ) 3 was uniformly applied to the C / C composite substrate after the third coating step obtained in Example 1 and air-dried all day and night. The treated material was transferred to an electric furnace and heated to a temperature of 650 ° C. to convert the outer layer into a glass coating layer of B 2 O 3 —Al 2 O 3 —SiO 2 . This glass layer had a thickness of 10 μm. For the C / C composite substrate after coating, the weight loss rate due to oxidation was measured in the same manner as in Example 1, and the results are shown in Table 1.

【0028】比較例 第1被覆工程および第2被覆工程を実施例1と同一条件
で処理したC/C複合基材につき、第3被覆工程を次の
ように処理してB2 3 −SiO2 のガラス被膜からな
る外層を被覆形成した。Si(OC2 5)4 とエタノー
ルをモル比1:5となる量比で混合して室温で撹拌した
のち、Si(OC2 5)4 1モルに対し25モル量の水と
0.03モルのHClの混合溶液を撹拌しながら滴下した。
滴下後のpHは3.0 であった。引き続き1時間撹拌を継
続し、ガラス前駆体溶液を作製した。このガラス前駆体
溶液に第2被覆工程後のC/C複合基材を浸漬し、2To
rrの減圧下で1時間真空含浸処理を施した。風乾後、50
℃、70℃および90℃の各温度段階で乾燥し、ついで電気
炉中で500 ℃の温度に10分間加熱してSiO2 被膜層を
形成した。さらに、その上面にB(OC4 9)3 を均一
に塗布し、1昼夜風乾したのち 600℃の温度に加熱して
外層をB2 3 −SiO2 ガラス層に転化させた。ガラ
ス層の厚さは10μmであった。この被覆材料につき、実
施例1と同様の酸化重量減を測定し、結果を表1に併載
した。
COMPARATIVE EXAMPLE With respect to a C / C composite base material in which the first coating step and the second coating step were processed under the same conditions as in Example 1, the third coating step was processed as follows to obtain B 2 O 3 —SiO An outer layer consisting of the glass coating of No. 2 was formed. After mixing Si (OC 2 H 5 ) 4 and ethanol in a molar ratio of 1: 5 and stirring at room temperature, 25 moles of water and 1 mole of Si (OC 2 H 5 ) 4 were added.
A mixed solution of 0.03 mol of HCl was added dropwise with stirring.
The pH after dropping was 3.0. Subsequently, stirring was continued for 1 hour to prepare a glass precursor solution. The C / C composite base material after the second coating step is immersed in this glass precursor solution,
Vacuum impregnation was performed for 1 hour under reduced pressure of rr. After air drying, 50
It was dried at each temperature step of 70 ° C., 70 ° C. and 90 ° C., and then heated in an electric furnace at a temperature of 500 ° C. for 10 minutes to form a SiO 2 coating layer. Further, B (OC 4 H 9 ) 3 was uniformly applied on the upper surface, air-dried all day and night, and then heated to a temperature of 600 ° C. to convert the outer layer into a B 2 O 3 —SiO 2 glass layer. The thickness of the glass layer was 10 μm. The weight loss of oxidation of this coating material was measured in the same manner as in Example 1, and the results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1の結果から、本発明の実施例による被
覆C/C複合基材は1000℃を越える高温大気中において
も高度の耐酸化性を示し、安定して使用できることが認
められた。
From the results shown in Table 1, it was confirmed that the coated C / C composite substrate according to the example of the present invention exhibited high oxidation resistance even in a high-temperature atmosphere exceeding 1000 ° C. and could be used stably.

【0031】[0031]

【発明の効果】以上のとおり、本発明によれば表面に傾
斜機能を有する多結晶質SiC被膜の内層、SiO2
粒子被膜の中間層、Al2 3 −SiO2 もしくはB2
3 −Al2 3 −SiO2 ガラス被膜の外層が一体に
積層形成された高度の耐酸化性を備えるC/C複合基材
を提供することが可能となる。したがって、高温酸化雰
囲気の過酷な条件に晒される構造部材用途に適用して安
定性能の確保、耐久寿命の延長化などの効果が発揮され
る。
As described above, according to the present invention, according to the present invention, the inner layer of the polycrystalline SiC coating having a gradient function on the surface, the intermediate layer of the SiO 2 fine particle coating, Al 2 O 3 —SiO 2 or B 2
It is possible to provide a C / C composite substrate having a high degree of oxidation resistance in which an outer layer of an O 3 —Al 2 O 3 —SiO 2 glass film is integrally laminated. Therefore, the present invention is applied to structural members that are exposed to severe conditions in a high-temperature oxidizing atmosphere, and exhibits effects such as securing stable performance and extending the durable life.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素繊維強化炭素複合基材の表面に、傾
斜機能構造の多結晶質SiC被膜からなる内層、SiO
2 微粒子被膜からなる中間層、Al2 3 −SiO2
しくはB2 3 −Al2 3 −SiO2 のガラス被膜か
らなる外層が積層被覆された組織の耐酸化性C/C複合
材。
1. An inner layer made of a polycrystalline SiC film having a functionally graded structure, SiO 2 on a surface of a carbon fiber reinforced carbon composite substrate.
Intermediate layer, Al 2 O 3 -SiO 2 or B 2 O 3 -Al 2 O 3 oxidation resistant tissue outer layer of glass coating -SiO 2 are laminated coated C / C composite material consisting of two particle coating.
【請求項2】 炭素繊維をマトリックス樹脂とともに複
合成形し硬化および焼成炭化処理して得られる炭素繊維
強化炭素複合材を基材とし、該基材の表面にSiOガス
を接触させてコンバージョン法によりSiC被膜の内層
を形成する第1被覆工程、Si(OC2 5)4 のアルコ
ール溶液を塩基性領域で加水分解するアルコキシド法に
より得られるSiO2 の微粒子サスペンジョンを真空含
浸する第2被覆工程、Si(OC2 5)4 のアルコール
溶液を酸性領域でAlCl3 水溶液により加水分解する
アルコキシド法で得られるAl2 3 −SiO2 ガラス
前駆体溶液を真空含浸する第3被覆工程を順次に施し、
ついで 400℃以上の温度で加熱処理することを特徴とす
る耐酸化性C/C複合材の製造方法。
2. A carbon fiber reinforced carbon composite material obtained by subjecting a carbon fiber to composite molding with a matrix resin, and curing and calcining the carbon fiber as a base material. A first coating step of forming an inner layer of the coating, a second coating step of vacuum impregnating a fine particle suspension of SiO 2 obtained by an alkoxide method of hydrolyzing an alcohol solution of Si (OC 2 H 5 ) 4 in a basic region, A third coating step of sequentially vacuum impregnating an Al 2 O 3 —SiO 2 glass precursor solution obtained by an alkoxide method of hydrolyzing an alcohol solution of (OC 2 H 5 ) 4 with an aqueous solution of AlCl 3 in an acidic region,
Then, a method for producing an oxidation-resistant C / C composite material, characterized by performing a heat treatment at a temperature of 400 ° C. or more.
【請求項3】 請求項2記載の製造工程で形成されたA
2 3−SiO2 の外層面にB(OC4 9)3を塗布
し、ついで500 ℃以上の温度で加熱処理することを特徴
とする耐酸化性C/C複合材の製造方法。
3. A formed in the manufacturing process according to claim 2.
A method for producing an oxidation-resistant C / C composite material, comprising applying B (OC 4 H 9 ) 3 to the outer layer surface of l 2 O 3 —SiO 2 and then performing heat treatment at a temperature of 500 ° C. or more.
JP3223646A 1991-08-09 1991-08-09 Oxidation resistant C / C composite and method for producing the same Expired - Fee Related JP3033042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3223646A JP3033042B2 (en) 1991-08-09 1991-08-09 Oxidation resistant C / C composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3223646A JP3033042B2 (en) 1991-08-09 1991-08-09 Oxidation resistant C / C composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0543366A JPH0543366A (en) 1993-02-23
JP3033042B2 true JP3033042B2 (en) 2000-04-17

Family

ID=16801451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3223646A Expired - Fee Related JP3033042B2 (en) 1991-08-09 1991-08-09 Oxidation resistant C / C composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3033042B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102757260B (en) * 2012-07-17 2013-10-09 西北工业大学 Repairing method of ceramic-based composite material coating with utilization temperature of being more than or equal to 1400 DEG C

Also Published As

Publication number Publication date
JPH0543366A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
JPH0543364A (en) Oxidation-resistant corbon fiber-reinforced carbon composite material and its production
JP3749268B2 (en) C / C composite oxidation resistant coating layer
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
JP3033042B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
JP3853035B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3198157B2 (en) Method for producing oxidation resistant C / C composite
JPH0570228A (en) Production of oxidation-resistant c/c composite material
JPH0826859A (en) Oxidation-resistant c/c composite material and method for producing the same
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH0952777A (en) Production of oxidation resistant c/c composite material
JP3038493B2 (en) Method for producing oxidation resistant C / C material
JP3461424B2 (en) Method for producing oxidation resistant C / C composite
JPH0794354B2 (en) Oxidation resistant C / C material and manufacturing method thereof
JP4152580B2 (en) Method for manufacturing and repairing C / C crucible for pulling Si single crystal
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JPH07309677A (en) Oxidation-resistant c/c composite material and its production
JP2000219584A (en) Carbon fiber reinforced carbon composite material coated with silicon carbide and its production
JP3818606B2 (en) Carbon fiber reinforced carbon composite

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees